对数函数导学案

合集下载

对数函数导学案

对数函数导学案

必修一 第三章第二节 对数函数赵宇课前预习学案一、预习目标理解对数函数的概念,正确画出对数函数图像,掌握对数函数的性质。

二、预习内容1. 对数函数的定义2. 画出x y 2log =和x y 21log =的图像3. 画出x y 3log =和x y 31log =的图像4. 总结归纳对数函数的图像与性质课堂探究学案一、学习目标1、理解对数函数的概念,正确画出对数函数图像,掌握对数函数的性质。

2、培养学生处理图像和应用函数解决实际问题的能力。

学习重点:对数函数的定义,图像和性质学习难点:对数函数图像和性质的理解二、知识反馈:三、知识回顾:四、学习过程【新课探究】回顾对数式与指数式的互化,将指数函数式转化成对数函数式,得到对数函数。

探究并完成下面的填空题。

1. 对数函数的定义:形如_______的函数称为对数函数。

它的定义域是_____,值域是_____。

注:①x a log 前面的系数为1,自变量在真数的位置,底数a 必须满足______。

②以10为底的对数为x y lg =,以e 为底的对数为______。

2. 画出x y 2log =和x y 1log =的图像3. 画出x y 3log =和x y 31log =的图像1.小组讨论探究对数函数的图像和性质 ()1,0log ≠>=a a x y a2.总结规律多个图象像支花,(1,0)过点把它扎,上升递增下降减,底互倒时横轴夹,函数值为任意数,数轴右边图象查,若要比较底数值,令y 为1看大小。

【课堂检测】1. 比较大小⑴ 3log 2和.53log 2 ⑵ 3log 21和.53log 21 ⑶ 3log a 和.53log a总结:底数相同,用对数函数单调性比较大小 ⑷ 3log 21和 4331log ⑸ 3log 4和 4log 3总结:底数不同时,寻求中间值作媒介进行比较2. 求定义域⑴)1,0)(-4(log ≠>=a a x y a⑵)x -2(log 22x y = ⑶)-2(log 21x y = 【学后总结与反思】1、学完本节课,你都有那些收获?2、学完本节课,你还存在哪些问题,该如何去解决?【课后作业】1、求下列函数定义域()5log 1y x =- 21l o g y x = 71l o g 13y x =-y =2、比较大小(1)10log 6与10log 8;(2)0.5log 6与0.5log 4(3)30.4,0.43,0.4log 33、求下列函数图像经过的定点坐标l o g a y x =____________________log (3)a y x =+____________________ log 1a y x =-__________________log (21)2a y x =-+________________ 形如log ()a y x m n =++的图像过定点__________________________4、已知函数[]3()2log ,1,9f x x x =+∈,求函数[]22()()y f x f x =+的最大值及y 取最大值是x 的值。

4.4.2对数函数的图象和性质导学案

4.4.2对数函数的图象和性质导学案

4.4.2对数函数的图象和性质导学案学习目标:1、通过画图,归纳出对数函数的性质,培养直观想象和逻辑推理的素养.2、掌握对数函数的图象及性质,初步会用对数函数的性质解决简单问题.3、理解反函数的概念,知道指数函数和对数函数互为反函数的关系. 学习重点:对数函数的图像与性质.学习难点:利用指数函数与对数函数的关系研究对数函数的图像与性质,体会类比、转化的思想.学习过程: 一、课前准备复习指数函数图象及性质;对数函数的定义 二、新课导学 1、温故知新(1) 对数函数的概念:_______________________________________________ (2) 对数的由来:_______________________________________________ (3) 学习指数函数的图象与性质时的研究方法和过程:_________________________________ 2、学习探究(1) 用列表、描点、连线的方法在同一坐标系中画出x y 2log =和x y 21log =函数图象思考:这两个函数的图象有什么关系呢?(2) 在同一直角坐标系内画出相应的对数函数的图象)log log log log log log (413121432x y x y x y x y x y x y ======、、、、、三、合作探究(一)根据图象,类比研究指数函数性质的方法,归纳对数函数的图象特征和性质,完成下列四、合作探究(二)小组探究讨论P135《探究与发现》五、典例解析例1、比较对数值的大小:6log 7log )3(;2log 2log )2(;34log 43log )1(76513155与与与例2、对数函数的图象问题,比较a 、b 、c 、d 、1的大小。

例3、函数f(x)=lg(|x|-1)的大致图象是( )A B C D变式、画出函数y=|log 2(x+1)|的大致图象,并写出函数的值域和单调区间例4、解对数不等式)10)(14(log )72(log )3(;2)2(log )2();4(log log )1(37171≠>->+<+->a a x x x x x a a ,且六、总结提升 七、课后作业1、课本P135的1~3题,P160的2题,P161的11题2、选做题),1()1,0.()1,21.()21,0.()1,0(.)(02log )1(log 2+∞<<+ D C B A a a a a a 的取值范围是,则若x y 0 1y =log a x y =log b x y =log c xy =log d x。

对数函数导学案.doc

对数函数导学案.doc

2.2.1对数与对数运算(一)一【学习目标】 (一) 教学知识点1.对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. 二、教学重点:对数的定义. 三、教学难点:对数概念的理解. 四【新课讲授】(导学)假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?列出表达式: (自学)知识点1 : 对数的概念1.对数定义:一般地,如果 ,)1,0(≠>a a 且则数 b 叫做以a 为底 N 的对数, 记作 ,其中a 称为对数的底,N 称为真数. (b N N a a b =⇔=log )(1)底数的取值范围 ;真数的取值范围(2)对数式和指数式关系式 子名称 a b N指数式 对数式思考1.将下列指数式写成对数式: (1)62554= (2)64126=- (3)273=a(4)73.531=m )(知识点2 两种重要对数1.常用对数:以10为底的对数叫做常用对数N 10log 简记作 . 思考2:5log 10简记作; 5.3log 10简记作2.自然对数:用以无理数e=2.71828……为底的对数叫自然对数, N e log 简记作思考3:3log e 简记作 10log e 简记作 思考4. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.知识点三 : 重要公式:⑴负数与零没有对数; ⑵01log =a , 1log =a a ⑶对数恒等式N aNa =log五【典例欣赏】(互学) 1对数概念应用例1.求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.2对数基本运算例2求下列各式中的x 的值:(1)32log 64-=x ;(2)68log =x ;(3)x =100lg ;(4)x e =-2ln 。

对数函数导学案

对数函数导学案

学习内容 2.2 对数函数及其性质【学习目标】①理解对数函数的概念,体会对数函数是一类重要的函数模型.②掌握对数函数的图像和性质.二、学习重、难点1、重点:对数函数及其基本性质;2、难点:.对数函数图像及其应用【课前预习案】-------自主学习1.一般地,我们把函数___________________(10≠>aa且)称为对数函数.2.1>a时,函数xyalog=的定义域为___________________,值域为___________________,单调___________________区间___________________,)1,0(∈x时,y___________________0,),1(+∞∈x时,y___________________0.3.10<<a时,函数xyalog=的定义域为___________________,值域为___________________,单调___________________区间___________________,)1,0(∈x时,y___________________0,),1(+∞∈x时,y___________________0.4.xy10log==___________________叫做常用对数,xyelog==___________________叫做自然对数.【具体要求】阅读课本70--73页解决课前预习中的问题【学法指导】自主探究、合作交流【课堂探究】阅读课本第70页到72页的内容,尝试回答下面的问题探究1、元旦晚会前,同学们剪彩带备用。

现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。

设所得的彩带的根数为x ,剪的次数为y ,试用x 表示y .新知:对数函数的概念试一试:以下函数是对数函数的是( )A.2log (32)y x =- B. (1)log x y x-= C. 213log y x = D. ln y x = E. 23log 5y x =+探究2、探究2:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 作图:在同一坐标系中画出下列对数函数的图象.2log y x =; 0.5log y x =.新知:对数函数的图象和性质:1a >01a <<图 象定义域 值域 过定点 单调性【展示点评】----------我自信 具体要求:(1)书写、格式规范。

对数函数的图像和性质导学案 高一上学期数学人教A版(2019)必修第一册

对数函数的图像和性质导学案 高一上学期数学人教A版(2019)必修第一册

4.4.2 对数函数的图像和性质一、学习目标1. 掌握对数函数的图象与性质2. 能利用对数函数的图象与性质比较大小解决与单调性、定点相关问题 二、知识梳理(复习导入)对数函数的概念:一般地,函数 (ɑ>0,且ɑ≠1)叫做对数函数. (新授探究)指数函数的图像及性质探究1:画出y =log 2x ,y =log 12x 的图象,探究两个函数的图象有什么区别和联系?探究2:此关系是否也适用于函数y =log a x (01)且>≠a a 与y =log 1ax (ɑ>0,且ɑ≠1的图象?探究3:能否用数学方法证明上述结论的成立?对数函数的图像及性质:xy =log 2x y =log 12xy =log 3x y =log 13xy =log 4x y =log 14x函数y =log a x (10<<a )y =log 1ax (1>a )图 象定义域 值 域 性定 点探究4:对数函数与指数函数的联系1、对数函数y =log _a x (a >0,且a ≠1)和指数函数y =a ^x "(" a >0",且" a ≠1")"互为 2、反函数的特点:(典例剖析) 1、比较大小2.如图,曲线C1,C2,C3,C4分别对应y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,你能指出a1,a2,a3,a4以及1的大小关系吗?3.求的值域. (课堂小结)◆ 对数函数的性质:定义域、值域、定值、单调性、奇偶性 ◆ 反函数的概念三、课后作业:P135页练习1、2、321y=log x x ,82⎡⎤∈⎢⎥⎣⎦,质 单调性奇偶性y =log a x 与 y =log 1ax 的图象关于________________。

3.2 对数函数 导学案优秀教案精讲例题教案

3.2 对数函数 导学案优秀教案精讲例题教案

3.2 对数函数3.2.1 对数课标知识与能力目标1.掌握对数的概念和运算性质,理解对数运算与指数运算互为逆运算.2.能运用对数的概念及其与指数的关系推导几个常见的公式和运算性质,并能熟练运用.3.掌握换底公式,了解用换底公式可以讲给对数式转换成自然对数或常用对数.知识点1 对数1.对数的概念:一般地,如果a(a>0,a≠1)的b 次幂等于N ,即N a b =,那么就称b 是以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数.2.常用对数:通常以10为底的对数称为常用对数,为了方便起见,对数N 10log ,简记为N lg .3.自然对数:以e 为底的对数称为自然对数.其中e =2.718 28…是一个无理数,正数N 的自然对数N e log 一般简记为N ln .4.换底公式:一般地有aNN c c a log log log =,其中a>0,a≠1,N>0,c>0,c≠1,这个公式称为对数的换底公式. 典型例题考点1:指数式与对数式的互化1.并非所有指数式都可以直接化为对数式,如(-3)2=9就不能直接写成log (-3)9=2,只有a>0,a≠1,N>0时,才有a x =N ⇔x =log a N . 2.对数式log a N =b 是由指数式a b =N 变化得来的,两式底数相同,对数式中的真数N 就是指数式中的幂的值,而对数值b 是指数式中的幂指数,对数式与指数式的关系如图:例1 (1)将下列指数式化为对数式:①3-3=127;②348=16;③a 5=15.(2)将下列对数式化为指数式:①5243log 3=;②3271log 31=;③1-1.0lg =.例2 log (0,1,0)b N a b b N =>≠>对应的指数式是____________.考点2:求对数的值例1 计算下列各式的值:(1)001.0lg ;(2)8log 4;(3)e ln .例2 求下列各式的值:(1)3log 9;(2)25.0log 2;(3)393log ;(4)35.02log .考点3:对数的基本性质及对数恒等式 例1 计算:(1))5(log log 52; (2)2231log 12+-; (3)c b b a b a log log ⋅(a ,b >1,c>0).考点4:对数运算中的转化思想 例1 求下列各式中的x :(1)27log x =32; (2)x 2log =-23; (3))223(log +x =-2; (4))(log log 25x =0.例2 求下列各式中x 的取值范围:(1))10lg(-x ; (2))2(lg )1(+-x x ; (3)2)1()1(lg -+x x .考点5:对数运算性质的应用 1.基本性质:(10≠a a ,且>)(1)1log =a a ; (2)01log =a ; (3)N a Na=log ; (4)N a N a =log .2.运算性质:(10≠a a ,且>) (1)N M MN a a a log log )(log +=; (2)N M NMa a log log log a-=; (3)M n M a n a log log =.例1 求下列各式的值: (1)245lg 8lg 344932lg 21+-; (2)22)2(lg 2lg 2)5(lg -+.例2 计算下列各式的值:(1)lg 3+2lg 2-1lg 1.2; (2)log 28+43+log 28-43.考点6:换底公式的应用 例1 (1)计算6log 16log 194+=________; (2)已知log 23=a,3b =7,则log 1256=________.(用a ,b 表示).例2 (1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.例3 (1)已知18log 9a =,185b =,试用a 、b 表示18log 45的值;(2)已知1414log 7log 5a b ==,,用a 、b 表示35log 28.考点7:对数的应用题步骤:1.依据题意建立等量关系;2.利用对数的定义及运算性质对上述等量关系变形;3.借助已知数据(或计算器)估值;4.下结论.例1 某化工厂生产化工产品,去年生产成本50元/桶,现使生产成本平均每年降低28%,那么几年后每桶生产成本为20元?(lg 2≈0.301,lg 3≈0.477 1,精确到1年).例2 光线每通过一块玻璃板,其强度要损失10%,把几块这样的玻璃板重叠起来,设光线原来的强度为a,通过x块玻璃板以后的强度值为y.(1)试写出y关于x的函数关系式;(2)通过多少块玻璃板以后,光线强度减弱到原来强度的一半以下?(根据需要取用数据lg 3≈0.477 1,lg 2≈0.301 0)能力提优题型1:指数与对数的互化例1 把x x xx ee e e y --+-=转化为用含y 的式子表示x 的形式.题型2:相等幂指数式问题 例1 设3643=+b a ,求ba 12+的值.例2 设),0(,,+∞∈z y x ,且z y x 643==. (1)比较z y x 6,4,3的大小; (2)求证:yxz2111=-.。

对数函数导学案

对数函数导学案

对数与对数函数导学案一、 学习目标:1、理解对数的概念,掌握对数的基本运算,并领会对数函数的图像与性质;2、会灵活使用对数函数的图像和性质解决与对数函数相关的问题;3、加深对图像法、比较法等一些常规方法的理解,进一步体会分类讨论,数形结合等数学思想。

二、重点:对数函数的图像与性质的应用。

难点:利用对数函数的性质来解决实际问题。

三、课前热身:1、指数式与对数式的关系:N a b =⇔ (10≠>a a 且)2、对数恒等式:=1log a , =a a log , =N a a log (10≠>a a 且)3、运算法则:⎪⎩⎪⎨⎧===na a a log N Mlog (MN)log M4、换底公式:5、换底公式的两个较为常用的推论:(1) =⋅a b b a log log ; (2) =n a b m log ( a , b > 0且均不为1)四、随堂演练1、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B 、123 C 、122 D 、1332、函数(21)log 32x y x -=-的定义域是( )A 、),1()1,32(+∞B 、),1()1,21(+∞C 、),32(+∞D 、),21(+∞3、若16log log 8log 4log 4843=⋅⋅m ,则m 的值为( ) A .2 B.9 C.18 D.174、已知x e f x =)(,则)5(f 等于( )A .5ln B.5ln - C.e 5log D.5e5、若0log log 2121<<n m ,则( )A 、1<<m nB 、1<<n mC 、n m <<1D 、m n <<1 6、若12log <a ,则a 的取值范围是( )A 、)2,1(B 、),2()1,0(+∞C 、)2,1()1,0(D 、)1,0(7、若b a lg ,lg 是方程01422=+-x x 的两个根,则2)(lg ba等于( )A 、2B 、21C 、4D 、418、 当10<<a 时,在同一坐标系中,函数y =a -x与y =log a x 的图象是( )9、为了得到函数103lg+=x y 的图象,能够把函数x y lg =的图象( ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 10、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在)1,(--∞上是减少的11、已知集合{}2,log 2>==x x y y A ,⎭⎬⎫⎩⎨⎧≥==0,)21(x y y B x ,则A B = 。

《对数函数图像及其性质》导学案

《对数函数图像及其性质》导学案

《对数函数图像及其性质》导学案对数函数图像及其性质导学案1. 引言本导学案旨在介绍对数函数的图像及其性质。

对数函数是数学中一种重要的函数类型,具有广泛的应用领域。

通过研究对数函数的图像和性质,我们可以更好地理解和应用对数函数。

2. 对数函数的定义对数函数是指以某个正数为底的对数函数,一般表示为 $y = \log_{a}x$,其中 $a>0$ 且 $a \neq 1$。

对数函数的定义域为正实数集合 $x>0$,值域为实数集合。

3. 对数函数的图像对数函数的图像在直角坐标系中呈现一条曲线,具体的图像形状和走势与底数 $a$ 的大小有关。

下面以底数 $a=2$ 和底数$a=\frac{1}{2}$ 为例进行说明。

3.1 底数为2的对数函数图像当底数 $a=2$ 时,对数函数 $y = \log_{2}x$ 的图像如下所示:![log_2(x)](log_2(x).png)3.2 底数为1/2的对数函数图像当底数 $a=\frac{1}{2}$ 时,对数函数 $y =\log_{\frac{1}{2}}x$ 的图像如下所示:![log_{1/2}(x)](log_{1/2}(x).png)4. 对数函数的性质对数函数具有以下几个重要的性质:- 对于任意正实数 $x_1$ 和 $x_2$,以及任意实数 $k$,都有$\log_{a}(x_1 \cdot x_2) = \log_{a}x_1 + \log_{a}x_2$ 和$\log_{a}(x_1^k) = k \cdot \log_{a}x_1$。

- 对于任意正实数 $x$ 和 $a > 1$,有 $\lim_{x \to +\infty}\log_{a}x = +\infty$。

换言之,当自变量 $x$ 趋向正无穷时,对数函数的取值趋向正无穷。

- 对于任意正实数 $x$,有 $\lim_{x \to 0^{+}} \log_{a}x = -\infty$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学 ◆必修一◆ 导学案
§2.2.2 对数函数及其性质(1)
1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;
3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函.
7071,找出疑惑之处)
复习1:画出2x y =、1 ()2x y =的图象,并以这两个函数为例,说说指数函数的性质. 复习2:某细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,细胞个数 y 是分裂次数 x 的函数,求函数的解析式?
二、新课导学
※ 学习探究
探究任务一:对数函数的概念
问题:根据以上准备我们知道:
已知分裂的次数x ,就能求出细胞的个数 y .
问题:已知细胞的个数 y ,如何确定分裂的次数x 呢?
新知:_______________ 叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是_______________
反思:
对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限
制_______________ .
探究任务二:对数函数的图象和性质
问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数图象,结合图象研究函数性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 试试:(1)同一坐标系中画出下列对数函数的图象.
2log y x =;0.5log y x =.
(2)画出函数y =3log x 及y =x 3
1log 的图象,并且说明这两个函数的相同性
质,不同性质.
反思:




(1)定义域:
(2)值域:
(3)过定点:
(4)单调性:
(2)图象具有怎样的分布规律?
※典型例题
例1求下列函数的定义域:
(1)2
log
a
y x
=;(2)log(3)
a
y x
=-;
※动手试试
练1. 求下列函数的定义域.
x
y
x
y
x
y
x
y
3
7
2
5
log
)4(;
3
1
1
log
3(;
log
1
2();
1(
log
1=
-
=
=
-
=)



三、总结提升
学习评价
※自我评价你完成本节导学案的情况为().
A. 很好
B. 较好
C. 一般
D. 较差
※当堂检测(时量:5分钟满分:10分)计分:
1. 当a>1时,在同一坐标系中,函数x
y a-
=与log
a
y x
=的图象是().
2. 函数
2
2log(1)
y x x
=+≥的值域为().
A. (2,)
+∞ B. (,2)
-∞
C. [)
2,+∞ D. [)
3,+∞
3. 不等式的
4
1
log
2
x>解集是().
A. (2,)
+∞ B. (0,2)
B. 1(,)
2
+∞ D.
1
(0,)
2
4. 函数
(-1)
log(3-)
x
y x
=的定义域是.
课后作业
1. 求下列函数的定义域:
(1)
2
log(35)
y x
=-(2)
0.5
log43
y x
=-。

相关文档
最新文档