精确计算一个数的n次方

精确计算一个数的n次方
精确计算一个数的n次方

精确计算一个数的n次方

摘要本文通过数组,采用累加的算法实现了一个数的n次方的精确计算。

关键词科学计数法;精确计算;累加;数组;n次方;数值溢出;计算机应用Accurate Calculation of a Number n Power

ZENG Hong

First People’s Hospital of Zigong City,Sichuan Province,Computer Center,Zigong 643000,China

Abstract This article through the array, and the algorithm are likely a number of the accurate calculation of power n.

Keywords Scientific notation; Accurate calculation, accumulate, array; N power; Numerical overflow; computer application

通常我们的计算机在计算一个数的n次方时,当数值稍大一点,就会用科学计数法输出结果,引起数值不精确,比如:123140=3.86114×10292,如果结果再大些还会显示溢出,1234150。本文通过数组,采用累加的算法实现了一个数的n次方的精确计算。

累加的实际n次方的原理:

1232=123×123=123个123相加;

1233=123×123×123=(123个123相加)×123。

为了实现精确计算,我们把输入数的每一位数字分别存放到组数中,如:输入数123,则s(3)=1, s(2)=2, s(1)=3

1 源程序(以VFP为例)

clear

set talk off

input ‘请输入一个整数:’ to m

input ‘请输入次方:’ to n

dimension s(1000) &&定义数组s

dimension g(1000) &&定义数组g

store 0 to s,g &&数组s,g清0

b=m

i=1

do while .t.

g(i)=b-10*int(b/10) &&将输入的数每一位放到数组g个

b=int(b/10) &&除10取整,数位向右移一位

i=i+1

if b=0 then

exit

endif

enddo

i=1

do while i9 then &&如果某位大于9,则向上进位

s(j)=s(j)-10 &&本位减10

s(j+1)=s(j+1)+1 &&高位加1

求一个数的n次方根

数值计算 探讨求解的几种方法

摘要 很多科学计算问题都遇到非线性方程的求解问题。设非线性方程为 ()0 m f x x n =-=方程的解*x 称为方程的根或函数()f x 的零点。对于非线性方程的求解一般没有特殊公式,因此研究其数值解法是很有必要的,在此以求一个数的n 次方根为例探讨几种求近似根的常用方法,即二分法、牛顿迭代法、简化牛顿迭代法法以及割线法。 一、算法设计 计算机配置内存:2G 处理器主频:2.53GHz MATLAB 版本:R2011b 1.1二分法 设()f x 在区间[,]a b 上连续,()()0f a f b ?<,则[,]a b 内有方程的根。取[,]a b 的中点01 ()2 x a b = +,将区间一分为二。若0()0f x =,则0x 就是方程的根,否则判别根*x 在0x 的左侧还是右侧。 若0()()0f a f x ?<,则*0(,)x a x ∈,令110,a a b x ==;若0()()0f a f x ?>,则*0(,)x x b ∈,令101,a x b b ==。 不论出现那种情况,11(,)a b 均为新的有根区间,它的长度只有原有根区间长度的一半,达到了压缩有根区间的目的。 对压缩了的有根区间,又可施行同样的步骤,再次压缩有根区间。如此反复进行下去,即可得一系列有根区间套 11[,][,][,]n n a b a b a b ???? 由于每一区间都是前一区间的一半,因此区间[,]n n a b 的长度为 1 ()2n n n b a b a -= -若每次二分时所取区间中点都不是根,则上述过程将无限的进行下去。当n →∞

求连续自然数平方和的公式

求连续自然数平方和的公式 前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。这种方法浅显易懂,有它突出的优越性。在“有趣的图形数”一文中,也曾经用图形法推出过求连续自然数平方和的公式: 12+22+32…+n 2=6 ) 12)(1(++n n n 这里用列表法再来推导一下这个公式,进一步体会列表法的优点。 首先,算出从1开始的一些连续自然数的和与平方和,列出下表: n 1 2 3 4 5 6 …… 1+2+3+…+n 1 3 6 10 15 21 …… 12+22+32+…+n 2 1 5 14 30 55 91 …… 然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数 A n =n n ++++++++ 3213212 222, 再根据表中的数据,算出分数A n 的值,列出下表: n 1 2 3 4 5 6 …… A n 1 35 37 3 311 313 …… 观察发现,A n 的通项公式是3 1 2+n 。 既然A n =n n ++++++++ 3213212222,而它的通项公式是3 1 2+n ,于是大胆猜想 n n ++++++++ 3213212222=3 1 2+n 。 因为分母1+2+3+…+n =2 ) 1(+n n , 所以 2)1(3212222+++++n n n =31 2+n 。 由此得到 12+22+32…+n 2= 2)1(+n n ×312+n =6 ) 12)(1(++n n n 。 即 12+22+32…+n 2= 6 ) 12)(1(++n n n 。

用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续自然数平方和的公式。 这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了“猜想—证明”的思路。联想到当年著名文学家胡适也曾经有过“大胆假设,小心求证”的名言。看来,无论数学也好,文学也好,追求真理的道路是相通的。 这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、类比和猜想能力的培养,这往往是培育创新思维的有效途径。

笔算开n次方的方法

笔算开n次方 笔算开n次方的方法: 1、把被开方的整数部分从个位起向左每隔n位为一段,把开方的小数部分从小数点第一位起向右每隔n位为一段,用撇号分开; 2、根据左边第一段里的数,求得开n次算术根的最高位上的数,假设这个数为a; 3、从第一段的数减去求得的最高位上数的n次方,在它们的差的右边写上第二段数作为第一个余数; 4、把n(10a)^(n-1)去除第一个余数,所得的整数部分试商(如果这个最大整数大于或等于10,就用9做试商); 5、设试商为b。如果(10a+b)^n-(10a)^n小于或等于余数,这个试商就是n次算术根的第二位;如果(10a+b)^n-(10a)^n大于余数,就把试商逐次减1再试,直到(10a+b)^n-(10a)^n小于或等于余数为止。 6、用同样的方法,继续求n次算术跟的其它各位上的数(如果已经算了k位数数字,则a要取为全部k位数字)。 例如计算987654321987654321的五次算术根,就算到小数点后四位。 3 9 7 1. 1 9 2 9 5√987'65432'19876'54321.00000'00000'00000'00000 243 ________________________________________________ 744 65432......................................74465432/(5×30^4)整数部分是18,用9作试商 659 24199......................................39^5-30^5 _____________________________________________ 85 41233 19876................................854123319876/(5×390^4)的整数部分是7,用7作试商 83 92970 61757................................397^5-390^5 ____________________________________________ 1 4826 2 58119 54321..........................1482625811954321/(5×3970^4)的整数部分是1,用1作试商 1 24265 57094 08851..........................3971^5-3970^5 ___________________________________________ 23997 01025 45470 00000....................23997010254547000000/(5×39710^4)的整数部分是1,用1作试商 12433 44352 06091 99551....................39711^5-39710^5 _________________________________________ 11563 56673 39378 00449 00000..............1156356673393780044900000/(5×397110^4)的整数部分是9,用9作试商 11191 17001 57043 20516 21599..............397119^5-397110^5 _________________________________________ 372 39671 82334 79932 78401 00000........3723967182334799327840100000/(5×3971190^4)的整数部分是2,用2

1到10的n次方表格

竭诚为您提供优质文档/双击可除1到10的n次方表格 篇一:课题_按淘师湾作业答案表格数据的数值计算 10-1搜索结果列表 信息的获取-1bcbbb 信息的获取-2ddcab 信息的获取-3dbabc 信息的获取-4cbbc实体店购买与网购,实店买可翻阅价格高,网购不能翻阅价格便宜。信息的获取-5ad,dab,登(1到10的n次方表格)陆百度网,搜索南京,景点,路线,住宿等信息。 信息与信息技术-1cacdb 信息与信息技术-2ddcdb 信息与信息技术-3bdcac 信息与信息技术-4cddbb 网络信息检索4-1adbdb 网络信息检索4-2baccb 网络信息检索4-3bbbad 网络信息检索4-41.半人马座比邻星

2.茉莉花 3.màodié八九十岁的意思。 4.齐白石的蛙声十里出山泉 网络信息检索4-51.搜索引擎最早是yayoo,后来发展壮大,搜索引擎的工作方式和在图书馆里面进行图书查找的工作差不多 2.如果可以直接下载,那么右键菜单选择目标另存为,如果不行那么可以选中链接之后采用下载软件下载。 3.例如:优化查找的速度、扩大资料的范围等。 信息的评价5-1abaaaa 信息的评价5-2acdcab 信息的评价5-3baccd 信息的评价5-4abacd(ac多选) 信息的评价5-5cdbc(acd多选) 信息的编程加工6-1daddc 信息的编程加工6-2adcca 信息的编程加工6-3cbccc 信息的编程加工6-4cdb 信息的编程加工6-5c,s=a*a,Fbaced 信息的智能化加工7-1caccb 信息的智能化加工7-2cbcdc 信息的智能化加工7-3adcbc

小学奥数 数列求和 巧妙求和 含答案

第16讲巧妙求和 一、知识要点 某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。如果是等差数列求和,才可用等差数列求和公式。 在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。 二、精讲精练 【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。这本书共有多少页? 【思路导航】根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。要求这本书共多少页也就是求出这列数的和。这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解: (30+60)×11÷2=495(页) 想一想:如果把“第11天”改为“最后一天”该怎样解答? 练习1: 1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。这批零件共有多少个? 2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。最后一天读了50页恰好读完,这本书共有多少页? 3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。丽丽在这些天中学会了多少个英语单词? 【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次? 【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。 练习2: 1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次? 2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。一共有几把锁的钥匙搞乱了? 3.有10只盒子,44只羽毛球。能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?

两数N次方差的一般计算公式

两数N次方差的一般计算公式 在数学的学习中,有时候会碰到求两数的平方差的题目,在六年级的奥数学习中,通过面积和体积的计算公式,发现了相邻两数二次方和三次方的计算规律,后来我把它推演到不相邻两个数的N次方,发现同样有效。就如同二次方差用于计算面积差,三次方的差用于计算体积差一样,也许N次方的差在将来用于计算N维度的差。 推导过程: 一、由二次方看 首先,我们知道两个数的二次方的计算方法 已知一个数A的平方,求这个数相邻数的平方。 解答:如图,一个数A的平方如图中有色部分,即A^2;这个数的相邻数的平方可以看图中的白色方框包含的部分和绿色边框包含的部分,他们分别是: 5^2-4^2=5^(2-1)+4^(2-1)=5+4=9 几何上可以理解为:图中白色框的一边5与另一边4相加 4^2-3^2=4^(2-1)+3^(2-1)=4+3=7 几何上可以理解为:图中绿色框的一边3与另一边4的相加 所以对于相邻两数的二次方的差计算的一般公式如下: (A+1)^2-A^2=(A+1)^(2-1)*A^(2-2)+(A+1)^(2-2)*A^(2-1) 对于最外边白色框与里边绿色框的平方差,可通过图形看到 (A+1)^2-(A-1)^2=(A+1)^(2-1)* (A-1)^(2-2)*2+(A+1)^(2-2)*(A-1)^(2-1)*2 =[(A+1)^(2-1)* (A-1)^(2-2)+(A+1)^(2-2)*(A-1)^(2-1)]*2 几何上理解为:

长方向的A+1与[(A+1)-(A-1)]=2的面积、宽方向上A-1与[(A+1)-(A-1)]=2的面积,两块面积的和。 同理,推广到两个不相邻数P与Q的平方差,可表示为: P^2-Q^2=[P^(2-1)*Q^(2-2)+P^(2-2)*Q^(2-1)]*(P-Q) 二、再看三次方的情况 我们看相邻两个数的三次方的差的计算方法: 已知一个数A的三次方,求这个数相邻数的三次方。 设A的相邻数为A+1和A-1,则他们的三次方可以用一个三维立体图形形象地表示,如右图: (A+1)^3-A^3=(A+1)^(3-1)*A^(3-3)+(A+1)^(3-2)*A^(3-2)+(A+1)^(3-3)*A^(3-1) A^3-(A-1)^3=A^(3-1)*(A-1)^(3-3)+A^(3-2)*(A-1)^(3-2)+A^(3-3)*(A-1)^(3-1) 几何上的理解是: 长方向的A与高方向上的A厚度为1的体积、宽方向上的(A-1)与高方向上的A厚度为1的体积、长方向上的(A-1)与宽方向上的(A-1)厚度为1的体积,这三块体积之和。 对于不相邻两个数P、Q的三次方的差,可以看作是厚度为(P-Q)的形成体积的体积差,一般公式为: P^3-Q^3=[P^(3-1)*Q^(3-3)+P^(3-2)*Q^(3-2)+P^(3-3)*Q^(3-1)]*(P-Q) 三、推广到四次方 同样,可以知道相邻两个数的四次方之差公式:

最新自然数幂次方和公式

1 2 自然数幂次方和的另一组公式 3 摘要:一般的自然数幂次方和公式是用n 的p+1次方的多项式表示,考虑到任 4 一多项式均可用k n C 表示,本文给出了自然数幂次方和用k n C 表示的方法,并且给 5 出了相应的系数完整表达式。这比多项式表达方便得多,因为多项式表达的系数 6 至今仍是递推公式表达。 7 8 9 由笔者的文章(注【1】)知,自然数幂次方和可以用关于n 的多项式表达,而 10 每一个多项式均可用k n C 表示的,因此可猜想自然数幂次方和也可以用k n C 表达出 11 来。 12 假设自然数幂次方和可以写成以下形式 13 ∑∑=++===p k k n k n k p n C A k S 1 111 。。。。。。(1) 14 那么同理可应有: 15 ∑∑=++--=-==p k k n k n k p n C A k S 1 11)1(1 1 1 16 那么: 17 ∑∑=+=++--=-=p k k n k p k k n k n n p C A C A S S n 1 1 1 11 1 18

[ ]∑∑==+++=-=p k k n k p k k n k n k p C A C C A n 1 1 111 19 20 ∑== p k k n k p C A n 1 21 因为对于充分大的自然数n 均使得上述式子成立,所以上式对应的应该是一个22 关于n 的p 次多项式,其中: 23 )1).....(1(k n n n C k n -+-= 24 这仅仅是一个多项式的写法,与排列组合无关, n 可为任意的数。 25 分别令n=1,2,3, 。。。。p-1时就有: 26 01 1 1 1 +=+ ==∑∑∑∑=+===t k k t k p t k k t k t k k t k p k k t k p C A C A C A C A t 27 ∑==t k k t k p C A t 1 )1...3,2,1(-=p t 。。。。。。。。 28 (2) 29 ∑-=-=1 1t k k t k p t C A t A )1...3,2,1(-=p t 。。。。。。。。 30 (3) 31 这是一个递推的数列,其中A 1=1 , 很显然,通过它可以求出所有的系数t A ,32 仿照笔者的文章(注【1】)可证明,由(3)式求出的系数t A ,使得公式(1)33 成立,即自然数幂次方和的公式由(1)(3)给出了。 34 其中(3)式是递推公式,那么能不能直接写出系数A t 的表达式呢,下35 面给出这个结论。 36

常用的一些求和公式

下面是常用的一些求和公式:

a1, a1+d, a1+2d, a1+3d, .... (d为常数) 称为公差为d的等差数列.与等差数列相应的级数称为等差级数,又称算术级数. 通项公式 前n项和 等差中项 a1, a1q, a1q2, a1q3....,(q为常数) 称为公比为q的等比数列.与等比数列相应的级数称为等比级数,又称几何级数. 通项公式 前n项和 等比中项

无穷递减等比级数的和 更多地了解数列与级数:等差数列与等差级数(算术级数) 等比数列 等比数列的通项公式 等比数列求和公式 (1) 等比数列:a (n+1)/an=q (n∈N)。 (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m); (3) 求和公式:Sn=n*a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) (q为比值,n为项数) (4)性质: ①若m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每k项之和仍成等比数列. ③若m、n、q∈N,且m+n=2q,则am*an=aq^2 (5) "G是a、b的等比中项""G^2=ab(G ≠ 0)". (6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。 等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 (1)等比数列的通项公式是:An=A1*q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

最美的十个公式和十个数形结合

英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc^2;既有简单的圆周公式,又有复杂的欧拉公式…… No.10 圆的周长公式(The Length of the Circumference of a Circle) 目前,人类已经能得到圆周率的2061亿位精度。还是挺无聊的。现代科技领域使用的圆周率值,有十几位就已经足够了。如果用35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。 No.9 傅立叶变换(The Fourier Transform) 这个挺专业的,一般人完全不明白。不多作解释。简要地说,没有这个式子就没有今天的电子计算机,所以,你能在这里上网除了感谢党和政府外还要感谢这个完全看不懂的式子。傅立叶虽然姓傅,但他是法国人。 No.8 德布罗意方程组(The de Broglie Relations) 这个东西也挺牛B的,高中物理学到光学的活很多概念跟它是远亲。简要地说,德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有“波长”。于是搞啊搞,就有了这个物质波方程(属于量子物理的范畴),它表达了波长、能量…等之间的关系。同时他也获得了1929年的诺贝尔物理学奖。 No.7 哥德巴赫猜想(Goldbach Conjecture) 1+1=2 这个公式不需要名称,不需要翻译,更不需要解释。

No.6 薛定谔方程(The Schr?dinger Equation) 也是一般人完全不明白的。因此我摘录官方的评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式”。由于对量子力学的杰出贡献,薛定谔获得1933年诺贝尔物理奖。另外,薛定谔虽然姓薛,但他是奥地利人。 No.5 质能方程(Mass–energy Equivalence) 好像从来没有一个科学界的公式有如此广泛的意义。在物理学的“奇迹年”1905年,由一个叫做爱因斯坦的年轻人提出。同年他还发表了《论动体的电动力学》——俗称狭义相对论。这个公式告诉我们:能量和质量是可以互换的。副产品:原子弹。 No.4 勾股定理/毕达哥拉斯定理(Pythagorean Theorem) No.3 牛顿第二定律(Newton's Second Law of Motion) 有史以来最伟大的有其没有之一的科学家在有史以来最伟大的科学巨作《自然哲学的数学原理》当中的被认为是经典物理学中最伟大的核心定律。动力学的所有基本方程都可由它通过微积分推导出来。对于学过高中物理的人,没什么好多讲了。 No.2 欧拉公式(Euler's Identity) 这个公式是上帝写的么?到了最后几名,创造者个个都是神人。欧拉是历史上最多产的数学家,也是各领域(包含数学的所有分支及力学、光学、音响学、水利、天文、化学、医药…等)最多著作的学者。数学史上称十八世纪为“欧拉时代”。 欧拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及注意力。他一生谦逊,很少用自己的名字给他发现的东西命名。不过还是命名了一个最重要的一个常数——e。

自然数幂求和公式的存在与规律探讨

本科毕业论文 自然数幂求和公式的存在与规律探讨 SUM FORMULA OF POWER OF NATURAL NUMBER'S EXISTENCE AND REGULARITY 学院(部):理学院 专业班级:08-2数学与应用数学 学生姓名:张兴刚 指导教师:范自强 2012年6 月1 日

自然数幂求和公式的存在与规律探讨 摘要 自然数幂求和是一个古老的数学问题,本文从线性空间入手,提出关于多项式的自然线性空间的概念,利用了线性空间的简单性质,证明了任意正整数的自然数幂求和公式的存在和简单规律;归纳出自然数幂求和公式中一条精彩的结论,系数定理,一劳永逸的解决并揭示了自然数幂求和问题的内涵;本文亦从线性空间的角度,提出自由空间概念,为自然数幂求和问题带来了一种新的视角。 关键字:自然数幂求和、自然线性空间、多项式、系数定理、自由线性空间

Sum formula of power of natural number 's existence and regularity Abstract Natural number power sum is an ancient mathematical problems, this article from the linear space sets out, put forward on polynomial natural linear space, linear space of the simple nature, it is proved that for any positive integer sum formula of power of natural number exists, and the simple rule; summarize sum formula of power of natural number in a wonderful conclusion coefficient theorem, put things right once and for all solutions and reveals the natural number power sum problem connotation; this paper also from linear spatial angle, put forward the concept of free space, is a natural number power sum problem brought a new perspective. Keywords: natural number power sum, natural linear space, polynomial coefficient theorem, free linear space

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

连续自然数的立方和

连续自然数立方和的公式 “图形法“ 早在公元100年前后,毕达哥拉斯学派的继承人尼科马霍斯,在他的著作《算术入门》中就曾经用非 常简单的方法推导过这个公式。 奇数列1,3,5,7,9,11,13,…有一个性质,很容易验证: 请你自上而下仔细观察这一系列等式的左端: 第1个等式左端,结束于第1个奇数; 第2个等式左端,结束于第3个奇数; 第3个等式左端,结束于第6个奇数; 第4个等式左端,结束于第10个奇数; 第5个等式左端,结束于第15个奇数; …… 结果发现,这些奇数的序数1,3,6,10,15,…原来是“三角形数”,它的每一项等于从1开始的连 续自然数的和。第1项是1,第2项是1+2=3,第3项是1+2+3=6,第4项是1+2+3+4=10,第5 项是1+2+3+4+5=15,……第n项是1+2+3+…+n=n(n+1)/2。即,第n个等式左端,结束于第n(n +1)/2个奇数。 然后,对上面这一系列等式的左右两端,分别求和: 右端是连续自然数的立方和13+23+33+…+n3。 左端是连续奇数的和。我们知道,求连续奇数的和,求到第几个奇数,就等于第几个奇数的平方。现在,求到第n(n+1)/2个奇数,当然等于[n(n+1)/2]2。 这样就得到求连续自然数立方和的公式: 这种方法思路清晰论证简单。尼科马霍斯之所以能够想到这个方法,显然跟毕达哥拉斯学派对图形数的 宠爱有关。图形数是自然数的形象化,自然数是众数之源,自然数真是一个取之不尽用之不竭的宝藏。

“列表法” 这里再介绍一种列表法,同样可以推出这个公式,并且更简单,更好理解。 第一步:列一个表,在第一行填入一个因数1、2、3、4、5,在第一列填入另一个因数1、2、3、4、5。 第二步:在右下方的空格里分别填入对应的两个因数的积。 显然,所有乘积的和等于 这5块依次是:

n次方和及n次方差公式

n 次方和及n 次方差公式 (1)n 次方差公式: 123221()()n n n n n n n a b a b a a b a b ab b ------=-+++ ++,n N *∈ (2)n 次方和公式: 123221()()n n n n n n n a b a b a a b a b ab b -----+=+-++ -+,n N *∈,n 为奇数 注意:n 为偶数时,没有n 次方和公式 实际上, 12322211,()((1)(1)),n n n n n n n n n n n a b n a b a a b a b ab b a b n -------?+?+-++--+-=?-??为奇为偶 即n 为偶数时,立方和公式有两个: 123221123221()()()()n n n n n n n n n n n n a b a b a a b a b ab b a b a a b a b ab b -----------=-+++ ++=+-+++- 常用公式: 1.平方差公式:22()()a b a b a b -=+- 2.立方差公式:3322()()a b a b a ab b -=-++ 立方和公式:3322()()a b a b a ab b +=+-+ 3.四次方差公式:4432233223()() ()() a b a b a a b ab b a b a a b ab b -=-+++=+-+- 4.1231(1)(1)n n n n x x x x x x ----=-+++++,n N *∈ 1231(1)(1)n n n n x x x x x x ---+=+-+++-,n N *∈,n 为奇数

斯特林数和自然数前m项n次方的求和公式

斯特林数和自然数前m 项n 次方的求和公式 将 n 个元素,分成 k 个非空子集,不同的分配方法种数,称为斯特林数(Stirling Number ),记为),(k n S ,n k ≤≤1。 例如,将4个物体d c b a ,,,分成3个非空子集,有下列6种方法: )}(),(),,{(d c b a ,)}(),(),,{(d b c a ,)}(),(),,{(c b d a , )}(),(),,{(d a c b ,)}(),(),,{(c a d b ,)}(),(),,{(b a d c 。 所以,6)3,4(=S 。 斯特林数),(k n S 的值列表如下: 容易看出,有 1),()1,(==n n S n S ,12)2,(1 -=-n n S ,2 )1,(2 = =-C n n S n 。定理1 当 n k ≤≤2 时,有 ),()1,(),1(k n kS k n S k n S +-=+ 。 证 把1+n 个元素分成k 个非空子集,有),1(k n S +种不同分法。 把1+n 个元素分成k 个非空子集,也可以这样考虑:或者将第1+n 个元素单独作为1个子集,其余n 个元素分成1-k 个非空子集,这种情况下有)1,(-k n S 种不同做法;或者先将前n 个元素分成k 个非空子集,有),(k n S 种分法,再将第1+n 个元素插入这k 个子集,有k 种选择,这种情况下有k ),(k n S 种不同做法。所以共有),()1,(k n kS k n S +-种分法。 两种考虑,结果应该是一样的,因此有 ),()1,(),1(k n kS k n S k n S +-=+ 。 如果规定当1时,0),(=k n S ,则公式 ),()1,(),1(k n kS k n S k n S +-=+对 任何正整数n 和任何整数k 都成立。

推导自然数立方和公式两种方法

推导213)1(21??????+=∑=n n k n k 的两种方法 通化市第一中学校 刘天云 邮编 134001 方法一:拆项累加相消求和 已知:)12)(1(6 112++= ∑=n n n k n k 而)]2)(1()1()3)(2)(1([4 1)2)(1(++--+++=++k k k k k k k k k k k 则:∑=+++= ++n k n n n n k k k 1 )3)(2)(1(41)]2)(1([ 所以:∑∑∑∑====--++=n k n k n k n k k k k k k k 1 1121323)]2)(1([ )1(2 12)12)(1(613)3)(2)(1(41+?-++?-+++=n n n n n n n n n 2)1(21?? ????+=n n 另外:∑=+++= ++n k n n n n k k k 1)3)(2)(1(4 1)]2)(1([还可以作如下证明: )2)(1(432321++++??+??n n n )(6323433++++=n C C C )3)(2)(1(4 1643+++==+n n n n C n 方法二:构造群数列推导 构造奇数列,并按第n 群中含有个奇数的方式分群,即 1 / 3,5 / 7,9,11 / 13,15,17,19 / …… 我们用两种方法研究前n 群的所有数的和. 1、第n 群最末一个数是数列的第)1(2 1+n n 项,而且该项为 11)1(2 122)1(21 -+=-+?=+n n n n a n n

那么,第n 群最初一个数是数列的第1)1(2 1+-n n 项,而且该项为 111)1(21221)1(21 +-=-?? ????+-?=+-n n n n a n n 所以,第n 群的n 个数的和为:322)]1()1[(2 1n n n n n n =-+++-. 则前n 群的所有数的和可记作∑=n k k 13. 2、前n 群所有数的和为该奇数列的前)1(21+n n 项的和,即2 )1(21??????+n n 因此:2 13)1(21??????+=∑=n n k n k

可靠性计算公式大全

常运行的概率,用R(t)表示. 所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=0.99 平均故障间隔时间MTBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图12.8-1为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s 为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统

3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度 多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度

数量运算公式总结

数量关系常用公式 1.两次相遇公式:单岸型 S=(3S1+S2)/2 两岸型 S=3S1-S2 例题:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 7 20 米处相遇。到达预定地点后,每艘船都要停留 10 分钟,以便让乘客上船下船,然后返航。这两艘船在距离乙岸 400 米处又重新相遇。问:该河的宽度是多少? A. 1120 米 B. 1280 米 C. 1520 米 D. 1760 米 2.漂流瓶公式: T=(2t逆*t顺)/ (t逆-t顺) 无动力的木筏,它漂到B城需多少天? 3.沿途数车问题公式:发车时间间隔T=(2t1*t2)/(t1+t2 )车速/人速=(t2+t1)/(t2-t1) 例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,每隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍? A. 3 B.4 C. 5 D.6 4.往返运动问题公式:V均=(2v1*v2)/(v1+v2) 例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?() A.24 B.24.5 C.25 D.25.5 5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)

6.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖每千克费用分别为4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦糖,那么这种什锦糖每千克成本多少元? A.4.8 元 B.5 元 C.5.3 元 D.5.5 元 7.十字交叉法:A/B=(r-b)/(a-r) 例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:8.N人传接球M次公式:次数=(N-1)的M次方/N 最接近的整数为末次传他人次数,第二接近的整数为末次传给自己的次数。 例题:四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。 A. 60种 B. 65种 C. 70种 D. 75种 9.对折问题:一根绳连续对折N次,从中剪M刀,则被剪成(2的N次方*M+1)段 10.方阵问题:方阵人数=(最外层人数/4+1)的2次方 N排N列最外层有:4N-4人 11.过河问题:M个人过河,船能载N个人。需要A个人划船,共需过河(M-A)/ (N-A)次。 例题 (广东05)有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完?()

自然数15次方和公式

自然数15次方和公式 S =1+2+3+4+……+n =n 2+n 2=n(n+1)2 S =12+22+32+……+n 2=2n 3+3n 2+n 6=n(n+1)(2n+1)6 S =13+23+33+……+n 3=n 4+2n 3+n 24 =n 2(n+1)24=n 2(n+1)24 S =14+24+34+……+n 4=6n 5+15n 4+10n 3-n 30=n(n+1)(2n+1)(3n 2+3n -1)30 S =15+25+35+……+n 5=2n 6+6n 5+5n 4-n 212=n 2(n+1)2(2n 2+2n -1)12 S =16+26+36+……+n 6=6n 7+21n 6+21n 5-7n 3+n 42=n(n+1)(2n+1)(3n 4+6n 3-3n +1)42 S =17+27+37+……+n 7=3n 8+12n 7+14n 6-7n 4+2n 224=n 2(n+1)2(3n 4+6n 3-n 2-4n+2)24 S =18+28+38+……+n 8=n(n+1)(2n+1)(5n 6+5n 5+5n 4-15 n 3-n 2+9n-3)90 S =19+29+39+……+n 9=n 2(n+1)2(2n 6+6n 5+n 4-8n 3+n 2+6n-3)20 S =110+210+310+……+n 10 =6n 11+33n 10+55n 9-66n 7+66n 5-33n 3+5n 66 S =111+211+311+……+n 11 =2n 12+12n 11+22n 10-33n 8+44n 6-33n 4+10n 224 S =112+212+312+……+n 12 =210n 13+1365n 12+2730n 11-5005n 9+8580n 7-9009n 5+4550n 3-691n 2730 S =113+213+313+……+n 13 =30n 14+210n 13+455n 12-1001n 10+2145n 8-3003n 6+2275n 4-691n 2 420 S =114+214+314+……+n 14 =6n 15+45n 14+105n 13-273n 11+715n 9-1287n 7+1365n 5-691n 3+105n 90 S =115+215+315+……+n 15 =3n 16+24n 15+60n 14-182n 12+572n 10-1287n 8+1820n 6-1382n 4+420n 248

相关文档
最新文档