八年级上册青岛版《数学配套练习册》答案
青岛版八年级数学上册同步练习附答案1.1 全等三角形

1.1 全等三角形一、选择题1.△ABC≌△BAD,A和B,C和D是对应点,∠CAB的对应角是()A.∠DAB B.∠DBA C.∠DBC D.∠CAD2.下列说法正确的是()A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形3.在△ABC中,∠A=∠B,若与△ABC全等的三角形中有一个角为90°,则△ABC中等于90°的角是()A.∠A B.∠B C.∠C D.∠B或∠C4.如图,在A,B,C,D,E,F几个区域中,其中全等图形的对数为()(第4题图)A.1 B.2 C.3 D.45.有下列说法:①能够完全重合的两个三角形是全等三角形;②一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小没有改变,即平移、翻折、旋转前后的两个图形是全等形;③面积相等的两个三角形是全等三角形;④全等三角形的周长相等;⑤全等三角形的对应边相等,对应角相等.其中正确的个数是()A.1B.2 C.3 D.46.有下列图形:①两个正方形;②每边长都是1cm的两个四边形;③每边都是2cm的两个三角形;④半径都是1.5cm的两个圆.其中是一对全等图形的有()A.1个B.2个C.3个D.4个二.填空题7.请观察图中的5组图案,其中是全等形的是(填序号).(第7题图)8.如图,△ABC≌△ADE,则AB=.若∠BAE=120°,∠BAD=40°,则∠BAC=°.(第8题图)(第9题图)9.如图,BE交AD于点C,△ABC≌△DEC,则∠A=,∠E=,∠BCA=,AB=,BC=,AC=,点C的对应点是点,AB∥,若AB⊥BE,则DE BE.10.如图,△ABC≌△DEF,若AB=7cm,BC=8cm,AC=6cm,BE=5cm,则EC=cm,△DEF的周长=cm.(第10题图)三、解答题11.已知△ABC≌△FED,若△ABC的周长为32,AB=8,BC=12,求FD的长.12.已知△ABC≌△DEF,∠A=85゜,∠B=60゜,AB=8,EH=5.求∠DFE的度数及DH的长.(第12题图)13.如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?(第13题图)答案一、1. B【分析】∵△ABC≌△BAD,A和B,C和D是对应点,∴∠CAB=∠DBA.故选B.2. D【分析】A.面积相等,但图形不一定能完全重合,故错误;B.周长相等的两个图形不一定能完全重合,故错误;C.正方形的面积不相等,也不是全等形,故错误;D.符合全等形的概念,故正确.故选D.3. C【分析】∵与△ABC全等的三角形中有一个角为90°,∠A=∠B,∴∠C=90°.故选C.4. C【分析】观察图形,根据全等的概念可知,图中A与D,E与F,B与C能够重合,是全等形,共3对.故选C.5. D【分析】①能够完全重合的两个三角形是全等三角形,故正确;②一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小没有改变,即平移、翻折、旋转前后的两个图形是全等形,故正确;③面积相等的两个三角形不一定是全等三角形,故错误;④全等三角形的周长相等,故正确;⑤全等三角形的对应边相等,对应角相等,故正确.故正确的有4个.故选D.6. B【分析】①两个正方形是相似图形,但不一定全等,故不符合题意;②每边长都是1cm 的两个四边形是菱形,其内角不一定对应相等,故不符合题意;③每边都是2cm的两个三角形是两个全等的等边三角形,故不符合题意;④半径都是1.5cm的两个圆是全等形,故符合题意.故选B.二、7.(1)(4)(5)8.AD,80【分析】∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∵∠BAD=40°,∴∠CAE=40°.∵∠BAE=120°,∴∠BAC=∠BAE-∠CAE=80°.9. ∠D,∠B,∠ECD,DE,EC,DC,C,DE,⊥【分析】△ABC≌△DEC,则∠A=∠D,∠E=∠B,∠BCA=∠ECD,AB=DE,BC=EC,AC=DC,点C的对应点是点C,AB∥DE,若AB⊥BE,则DE⊥BE.10. 3,21【分析】∵AB=7cm,BC=8cm,AC=6cm,∴EC=BC-BE=8-5=3(cm),△ABC的周长是21cm.∵△ABC≌△DEF,∴△DEF的周长=△ABC的周长=21cm.三、11. 解:∵△ABC的周长为32,AB=8,BC=12,∴AC=32-8-12=12.∵△ABC≌△FED,∴FD=AC=12.12. 解:∵△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=5,∴∠D=∠A=85°,∠DEF=∠B=60°,DE=AB=8,∴∠DFE=180°-∠D-∠DEF=35°,DH=DE-EH=8-5=3.13. 解:如答图.(第13题答图)。
八年级上册 青岛版《数学配套练习册》答案

青岛版数学练习册八年级上册参考答案1.11.略.2.DE,∠EDB,∠E.3.略.4.B5.C6.AB=AC,BE=CD,AE=AD,∠BAE=∠CAD7.AB∥EF,BC∥ED.8.(1)2a+2b;(2)2a+3b;(3)当n为偶数时,n2(a+b);当n为奇数时,n-12a+n+12b.1.2第1课时1.D2.C3.(1)AD=AE;(2)∠ADB=∠AEC.4.∠1=∠25.△ABC≌△FDE(SAS)6.AB∥CD.因为△ABO≌△CDO(SAS).∠A=∠C.7.BE=CD.因为△ABE≌△ACD(SAS).第2课时1.B2.D3.(1)∠ADE=∠ACB;(2)∠E=∠B.4.△ABD≌△BAC(AAS)5.(1)相等,因为△ABE≌△CBD(ASA);(2)DF=EF,因为△ADF≌△CEF(ASA).6.相等,因为△ABC≌△ADC(AAS).7.(1)△ADC≌△AEB;(2)AC=AB,DC=EB,BD=EC;∠ABE=∠ACD,∠BDO=∠CEO,∠BOD=∠COE.第3课时1.B2.C3.110°4.BC的中点.因为△ABD≌△ACD(SSS).5.正确.因为△DEH≌△DFH(SSS).6.全等.因为△ABD≌△ACD(SSS).∠BAF=∠CAF.7.相等,因为△ABO≌△ACO(SSS).1.3第1课时1~6(略).7.作∠AOB=∠α,延长BO,在BO上取一点C,则∠AOC即为所求.8.作∠AOB=∠α,以OB为边,在∠AOB的外部作∠BOC=∠β;再以OA为边,在∠AOC的内部作∠AOD=∠γ,则∠DOC即为所求.第2课时1.略.2.(1)略;(2)全等(SAS).3.作BC=a-b;分别以点B、C为圆心,a为半径画弧,两弧交于点A;连接AB,AC,△ABC即为所求.4.分四种情况:(1)顶角为∠α,腰长为a;(2)底角为∠α,底边为a;(3)顶角为∠α,底边为a;(4)底角为∠α,腰长为a.((3),(4)暂不作).第3课时1.四种:SSS,SAS,ASA,AAS.2.作线段AB;作∠BAD=∠α,在∠BAD同侧作∠ABE=∠B;AD与BE相交于点C.△ABC即为所求.3.作∠γ=∠α+∠β;作∠γ的外角∠γ′;作△ABC,使AB=c.∠A=∠γ′,∠B=∠α.4.作∠γ=180°-∠β;作△ABC,使BC=a,∠B=∠α,∠C=∠γ.第一章综合练习1.A2.C3.C4.AB=DC或∠ACB=∠DBC或∠A=∠D.5.△ACD≌△BDC,△ABC ≌△BAC.6.△ABC≌△CDE(AAS)7.4分钟8.△BOC′≌△B′OC(AAS)9.略10.相等.△BCF≌△EDF(SAS).△ABF≌△AEF(SSS)检测站1.B2.B3.20°4.∠BCD5.相等.△ABP≌△ACP(SSS),△PDB≌△PEC(AAS).6.略2.11~3.略.4.B5.C6.(1)(2)(4)7.20°;30°.8.略2.2第1课时1~2.略3.C4.D5.略6.66°7.(1)AA′∥CC′∥BB′,且AA′⊥MN,BB′⊥MN,CC′⊥MN.(2)5 cm8.(1)DE⊥AF;(2)略.第2课时1.(-2,-3),(2,3).2.3,-43.(3,2)4.B5~6.略7.(1)(-a,b);(2)当n=4k+1时,在第一象限,n=4k+2时,在第四象限,n=4k+3时,在第三象限,n=4(n+1)时,在第二象限,k为非负整数.2.31~3.略.4.B5.C.6.略.7.4条.8.略.2.4第1课时1.略.2.CM=DM,CE=DE.3.C4.∠A=∠B,∠ACD=∠BCD,∠ADC=∠BDC.5~6.略.7.连接BM,PB<PM+MB,∵MB=MA,∴PB<PA.第2课时1.作一条线段的垂直平分线2.D3~5.略.6.分别作点A关于OM,ON的对称点D,E.连接DE,分别交OM,ON于点B,C.连接AB,AC,则△ABC 的周长最小.2.51.略.2.103.D4.C5.作∠AOB的平分线交MN于点P.则P即为所示.6.(1)DE=DC,AE=BE,BE=BC;(2)7.7.(1)△ADO≌△AEO(AAS),△BOD≌△COE(ASA),OB=OC;(2)∠1=∠2.8.4处.三条直线围成的三角形的三内角平分线的交点,及任一内角平分线与其他两个角的外角平分线的交点.2.6第1课时1.略.2.35°,35°.3.50°,80°或65°,65°.4.C5.B6.∠EBC=36°,∠C=∠BEC=72°.7.△ACD≌ABD(SSS),∠CAG=∠BAG.AG 是等腰三角ABC的顶角平分线.∴AD垂直平分BC.8.99°第2课时1.略.2.△ABE,△ECD,△EBC.3.C4.△DBE是等腰三角形.因为∠B=∠C=∠DEB.5.△AED是等腰三角,因为∠EAD=∠BAD=∠ADE.6~7.略.第3课时1.略.2.1,3.3.C4.△ADE是等边三角形.因为三个角都等于60°.5.略.6.任两边的垂直平分线的交点即为点O.7.BE=DC.因为△ADC≌△ABE(SAS).第二章综合练习1.GH,∠E,EO.1.B(4,-3);C(-4,3);6;8.3.24.45.64°;58°.6.D7.C8.A9.A10.(1)AB=AD,AE=AC,BC=DE,BF=DF,EF=CF;∠BAC=∠DAE,∠B=∠D,∠C=∠E,∠BAE=∠DAC,∠EAF=∠CAF,∠BFE=∠DFC,∠BAF=∠DAF.(2)△AEF与△ACF,△ABF与△ADF都关于直线MN成轴对称.11.△ABC 与△A′B′C′关于y轴对称.12.△ACE≌△DCB(SAS).AE=BD.又∠HGE=∠CGB.∠HEG=∠CBG.∠HGE+∠HEG=∠CGB+∠CBG=90°.∠EHG=90°.AE⊥BD.13.4个.①以BC为底边的等腰三角形可作1个;②以BC为腰的等腰三角形可作3个.检测站1.60°2.AP;PC,AP;∠CAP.3.1;7.4.55°,55°或70°,40°.5.AC,∠C,△ABD.6.B7.B8.B9.D10.A11.略.12.∠BAC=60°,∠C=90°,∠B=30°.13.∵△ABC≌△BAD.∠CAB=∠DBA,∴△EBA是等腰三角形.14.(1)5;(2)80°.15.∠ACD=180°-A2,∠BCE=180°-B2,∠ACB=90°.∴∠ACD+∠BCE=90°+∠DCE.∠DCE=45°.3.1第1课时1.B≠0;B=0;A=0且B≠0.2.≠23.1,0.4.B5.D6.B7.x=-1且y≠08.19.ba-5;400.10.a=-1.11.略.12.n+13n-2第2课时1.略2.(1)2abc2;(2)xy(x+y);(3)a(a+b);(4)2x(x+y).3.A4.C5.B6.x ≠1且x≠07.当a≠0时,a2a=12;当m≠0,n≠0时,n2mn=nm.8.M=-3x(a+x)2;x≠0,-a,a.9.5a2-1030a2-2a3.21.略.2.2a(b-a)3.C4.C5.B6.(1)3y2x;(2)-1(x-y)2;(3)a+22-a;(4)2a2a -3b.7.-78.a-b+ca+b+c9.略.3.31~3.略.4.(1)-1ab;(2)ab18c;(3)4yx;(4)4yx.5.D6.C7.(1)a+1;(2)-b3x;( 3)xy2;(4)aa+b8.-139.略.3.41.略.2.6a2b2,ab,3b,2a.3.(x+2)(x-2)24.D5.D6.2b24a2b2c2,3ac324a2 b2c2;(2)5(a-b)215a(a+b)(a-b),3(a+b)215(a+b)(a-b);(3)3x-2y(3x +2y)(3x-2y),2(3x+2y)(3x-2y);(4)(x+1)2(x-1)(x+1)2,x(x-1)(x+1)(x-1)(x+1)2,x-1(x-1)(x+1)2.7 .(m-n)2m-n,-mnm-n.8.cyz(b-c)(c-a)xyz(a-b)(b-c)(c-a),axz(a-b) (c-a)xyz(a-b)(b-c)(c-a),bxy(a-b)(b-c)xyz(a-b)(b-c)(c-a). 9.(1)把前一个分式的分子,分母同乘-a2b即得下一个分式;(2)-a12b8a13b6.(3)(-1)na2n-2bn+1(-1)n+1a2n-1bn-1.3.5第1课时1.略.2.(1)-b2a;(3)2aa-b.3.C4.D5.(1)y2x;(2)x+2;(3)3.6.(1)2+x;(2)3abb-a.7.x+2.8.原式=1.第2课时1.略.2.b2-4c4a3.-4(x+2)(x-2)4.C5.D6.D7.(1)3c3-4a2b12ab2c2;(2)6x2+xy+7y242x2y2;(3)2mn-m2n2-m2.8.-659.(1)11-a;(2)x2.10.1(x-1)(x-2),1(x-2)(x-3),1(x-3)(x-4),1x-100.第3课时1.C2.D3.B4.(1)a-bb;(2)x+2.5.126.∵ca+b<1.∴c2(a+b)2<ca+b3.6第1课时1.(1)7x4y;(2)b2a;(3)2x-y;(4)a+ba-b2.ala+b,ala+b.3.23;49;13.4.A5.C6.(1)2;(2)2;(3)4.7.68.(1)xyx+y(天);(2)甲:myx+y(元),乙:mxx+y(元).9.(1)ba;(2)b-10a-10,b+10a+10;(3)b-10a-10<ba<b+10a+10.第2课时1.略.2.8∶93.124.245.C6.D7.8a38.a-b=-39.260 mm10.5211.-5.第3课时1.略.2.2∶33.33124.1 m5.10∶15∶216.D7.B8.x∶y∶z=(a+b)2∶(a2-b2)∶(a-b)29.34a,a,54a.10.6,8,10.11.63人,192人,45人.3.7第1课时1.略.2.去分母,将分式方程转化为整式方程求解,然后验根.3.-124.-325.B6.B7.D8.30x-2-30x=12.9.(1)x=4;(2)x=0.10.m=-1 8711.(1)x=5;(2)a=6.第5个方程;(3)1+x2x=n+1x,x=2n+1.第2课时1.略.2.无解3.C4.B5.不正确,错在第3步,没有检验;方程无解.6.(1)x=3;(2)无解;(3)无解;(4)无解.7.a=-58.(1)①x=1;②x=2;③x=3;(2)方程1x-2-1x-3=1x-5-1x-6的解为x=4;方程1x+2-1x+1=1x-1-2x-2的解为x=0.第3课时1.略.2.12010-x-12010=33.16+1x=13.4.D5.(1)设去年每间屋的租金为x元,9.6x=10.2x+500;(2)8 000元.6.4 km/h7.37.5 km/h8.1.5 t9.(1)设预定工期为x天,4x+xx+5=1,x=20(天).(2)采取联合施工4天,然后由乙单独施工的方案省工程费.第三章综合练习1.a≠32;x=-1.2.m=3,m≠1.3.24.125.a∶b=b∶c,c∶b=b∶a,ac=b26.127.3∶4∶58.39.C10.C11.A12.D13.B14.D15.616.a+b=0.17.(1)-5y2ax;(2)-x3y ;(3)2xy;(4)3x+1;(5)1681x4y4;(6)2a2b2;(7)a-3a2-13;(8)-1a+1.18.(1)-715;(2)310.19.S1∶S2=1∶220.21821.(1)无解;(2)x=1912;(3)x=-2;(4)无解.22.应提高60 km/h23.(1)x ≠-1,0,1;(2)原式=1.24.1次清洗.残留农药比为11+y;分两次清洗后,残留农药比为:4(2+)2,11+y-4(2+y)2=y2(1+y)(2+y)2>0.第2种方案好.检测站1.x≠32,x=-23.2.x≠0且x≠-53.164.295.326.D7.C8.B9.B10.相等11.(1)mn-m;(2)ab;(3)2x-1x.12.11-x;-1.13.(1)x=4;(2)无解;(3)x=2.14.a=-115.14516.3617.28天4.1第1课时1~2.略.3.3.44.C5.B6.总产量1 757 t;平均产量8.53 t.7.9 000 m3 8.a·10%+b·15%+c·5%a+b+c (a,b,c为甲、乙、丙三种汽油原价) 第2课时1.820,920,320.2.86 km/h3.C4.(1)甲;(2)乙.5.9.9%6.(1)1.84 kg;(2)3 312 kg.4.21.略.2.94.53.C4.x=225.平均数:1 626,中位数1 680.6.26 cm7.9或108.(1)85.5;(2)41人;(3)高低分悬殊大.4.3第1课时1.2;1与2.2.7与83.B4.平均数、中位数、众数都是21岁5.平均数为2,中位数是3,众数是1.6.(1)3个;(2)32 000个.7.(1)甲组:平均数80,中位数80,众数90;乙组:平均数80.2,中位数80,众数70;(2)略.第2课时1.72.A3.平均数13千瓦时,中位数22.5千瓦时,众数10千瓦时.4.(1)众数55 min,中位数55 min;(2)平均数为55 min.符合学校的要求.5.甲当选4.41~2.略.3.(1)平均直径都是20 mm;(2)小明.4.乙地;甲地温差比乙地大.5.(1)平均身高都是178 cm;(2)图略.甲队整齐.6.(1)x甲=1.69 m,x乙=1.68 m;(2)图略.甲比较稳定.4.5第1课时1.1.22.10,26.3.10,1.8.4.A5.D6.S2甲=0.055,S2乙=0.105;果农甲.7.(1)x=3,S2=2;(2)x=13,S2=2;(3)x=30,S2=200.8.(1)xA=0,S2A=2.29;(2)取-2,-1,0,3,0;xB=0,S2B=2.8.第2课时1.乙2.D3.(1)略;(2)大刚的平均数为13.35,方差为0.004;小亮的平均数为13.3,方差为0.02.大刚成绩好.4.(1)x苹果=8,x香蕉=8,S2苹果=9,S2香蕉=1.333;(2)略;(3)9月份多进苹果.5.S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]=1n[x21+x22+…+x2n-2x(x1+x2+…+xn)+nx2]=1n[x21+x22+…+x2n-2nx(x1+x2+…+xnn+nx2)]=1n[x21+x22+…+x2n-nx2].4.61.C2.略3.甲4.相差75.x甲=178,S2甲=0.6;x乙=178,S2乙=1.8.6.(1)x甲=200.8,S2甲=7.96;x乙=201.5,S2乙=38.05;(2)甲. 第四章综合练习1.1.62 m2.8,8,8,1.23.20,18,184.4,3.5.b>a>c6.C7.D8.C9.(1)甲组:x甲=3.中位数2,众数1,S2甲=7.67;乙组:x乙=3,中位数3,众数3,S2乙=1.67;(2)乙组.10.(1)x=2 135.7(元),众数为800元,中位数为1 600元;(2)略.11.(1)x=2,众数为3,中位数为2;(2)68人.12.(1)22℃;(2)20.8℃;(3)146天.13.乙成绩稳定检测站1.2.12元2.23.64.31.8℃,4.965.D6.C7.D8.90.6分9.(1)x甲=5.6 cm,S2甲=1.84,x乙=5.6 cm,S2乙=1.04.(2)乙苗长的比较整齐.10.(1)x甲=7,S2甲=0.4,x乙=7,S2乙=2.8;(2)甲.11.612.(1)甲班:平均分24,方差5.4;乙班中位数24,众数21,方差19.8;(2)甲班42人,乙班36人;(3)甲班.综合与实践略.5.11~2.略.3.面积相等的三角形,是全等三角形,假.4.D5.D6.B7~9.略.5.21.略.2.不正确.如正方形与菱形.3.小亮不对;小莹说法正确.4.不正确.如2≠-2,但22=(-2)2.5.不正确;t=20t1+30t220+30.5.31~3.略.4.C5.直角定义;余角定义;对顶角相等;等量代换;余角定义.6.(1)C,E,F,G;(2)E;(3)K;(4)略.7.C5.41.B2.C3.(1)∠D;内错角相等,两直线平行;(2)∠DEC;AB∥DE.同位角相等,两直线平行.4.已知:∠CBE;两直线平行,同位角相等;已知,∠CBE;等量代换;内错角相等,两直线平行.5.略.6.(1)如果两个角相等,那么这两个角是同角或等角的补角.真命题;(2)如果三角形中有两个角是锐角,那么第三个角是钝角,假命题,如∠A=80°,∠B=70°,∠C=30°.7.(1)延长AE与CD相交于点G.∵AB∥EF.∴∠A+∠AEF=180°.∵AB∥CD,∴∠A+∠G=180°.∴∠A+∠AEF=∠A+∠G,∠AEF=∠G.∴EF∥CD;(2)360°.5.5第1课时1.略.2.C3.D4.∠B=∠C,∠AOB=∠DOC.5.∠1>∠ACB>∠26.略.7.(1)∠A逐渐减小,∠B,∠C逐渐变大;若点A向下运动,变化相反;(2)α=β+γ.5.5第2课时1.(1)∠B=∠DAC;(2)∠A=∠D;∠CGE+∠B=180°.2.D3.B4.略.5.∠1=∠C+∠CDE,∠2=∠C+∠CED,∠1+∠2=180°.6.(1)∠EFD=90°-∠FED=12(∠A+∠B+∠C)-(∠B+12∠A)=12(∠C-∠B);(2)不变.5.6第1课时1.D2.C3.(1)BC=EF或BE=CF;(2)∠A=∠D;(3)∠C=∠F.4.(1)△ABE≌△DCF(SAS),△ABF≌△DCE(SAS),△BEF≌△CFE;(2)略.5.△AFC≌△BED(ASA)6.取EF的中点M,连接GM,并延长交FH于点N.GN 分别交AD,BC于点P,Q.△PEM≌△QFM.沿GN将道路取直即可.第2课时1.平行2.90°3.B4.D5.∵∠ABD=∠ADB,∴∠CBD=∠CDB.∴BC=DC.6.△ABD与△ACD都是等腰三角形,BD=AD=DC.7.△ABD≌△ACE(SAS).∠A=∠CAE=60°.∴△ADE为等边三角形.8.∵△AEB≌△BDA(ASA).∴AE=BD,EB=DA,CE=CD,EF=DF.AF=BF.第3课时1.=2.①②③3.A4.略.5.△ABD≌△AED(SAS),∴AB=AE.DC=AB+BD=AE+DE,DC=DE+EC,∴AE=EC.∴点E在线段AC的垂直平分线上.6.(1)∠A≠∠C.因为△ABD与△CBD不全等;(2)∠A>∠C.因为AB <BC,在BC上取BA′=BA.△ABD≌△A′BD.∠A=∠BA′D.∠BA′D>∠C,∴∠A>∠C;(3)当AB=CB时.∠A=∠C;当AB<BC时,∠A>∠C;当AB>BC时,∠A<∠C.第4课时1.OA=OB.2.=.三角形的三内角平分线相交于一点.3.B4.B5.△ADE≌△ADF.AE=AD.△AEF为等腰三角形.6.△BEO≌△BFO(AAS),△BED≌△BFD(SAS).△EOD≌△FOD(SSS)或(SAS).7.DE=BD-CE.由DE∥BC.∠BOD=∠OBC=∠OBD.∴BD=OD.又∠OCE=∠OCF=∠BOC+∠OBC=∠BOC+∠BOE=∠COE.∴CE=OE.DE=OD-OE=BD-CE.第5课时1.AB=AD或BC=DC(HL)2.D3.B4.作直线MN,过MN上一点D作MN的垂线l;在直线l上截取DA=h;以A为圆心,a为半径画弧交MN于点B,C两点;连接AB,AC.△ABC即为所求.5.连接AC.Rt△ABC≌RtADC(HL).∴BC=DC.Rt△BCE≌Rt△DCF(HL).6.连接AF,BF.△AEF≌△BEF△AFC≌△BFD(SAS).7.(1)Rt△OBD≌Rt△OCE(HL);(2)Rt△OBD≌△OCE(HL);(3)相等.第五章综合练习1.A2.C3.D4.B5.D6.略.7.120°8.∠2=∠1.∴∠2=∠C,AB∥CD.9.延长EF交BC于点G.∵∠2=∠4,∴AB∥EF.∠3=∠B=∠EGC.∴DE∥BC.∴∠AED=∠ACB.10.∠ABE=∠FBD,∠ABE+∠AEB=90°,∠FBD+∠AFE=90°.∴∠AEB=∠AFE.∴AE=AF.11.△ACE≌△BDE(AAS),∴EC=ED.12.(1)∠D=∠AEC(同角的余角相等).△ACE≌△CBD.∴AE=CD;(2)BD=CE=12AC=6 cm.13.(1)Rt△ADE≌Rt△ADF;(2)DB=DC,Rt△DBE≌Rt△DCF(HL).14.(1)略;(2)连接BD.∠DBC=12∠B=30°.∵∠CDE=∠CED.∴∠CED=12∠ACB=30°.∴△DBE为等腰三角形.∵DM⊥BE,∴BM=EM.15.△BPD≌△BDC(SAS),△BCD≌△ACD(SSS).∠P=∠BCD=∠ACD=12∠ACB=30°.16.(1)作DF⊥AB,垂足为点E.AC=AE,DE=DC.∵∠B=∠A=45°,∴BE=DE.∴AB=AE+BE=AC+CD.(2)(1)中的等量关系仍成立.∵∠ACB>∠B,∴AB >AC.在AB上截取AG=AC.分别作DF⊥AC,DE⊥AB.△DCF≌△DGE.∵∠EGD=∠C=2∠B.∴∠B=∠BDG.BG=DG=DC.∴AB=AG+GB=AC+CD.检测站1.A2.C3.C4.三;△ODG≌△OEG,△DPG≌△EPG;△ODP≌△OEP,HL或AAS.5.略.6.FA=FD,∠ADF=∠DAF=∠DAC+∠CAF.∵∠DAC=∠BAD.∴∠B=∠ADF-∠BAD=∠DAF-∠DAC=∠CAF.7.(1)略;(2)∵CA=CE,∴∠CAE=∠E.∵∠ACB=∠CAE+∠E=2∠E,∠ACB=2∠BCD,∴∠E=∠BCD.CD∥AE.8.(1)①③或②③;(2)略.9.(1)△ABQ≌△PBC;(3)∠MBN=60°,△ABM≌△PBN(ASA).BM=BN.∴△BMN为等边三角形.∠MNB=∠QBC.MN∥AC.总复习题1.(3,4),等腰2.-53.50°,60°,70°.4.略.5.5,5.6.D7.C8.D9.B10.D11.(1)11-x;(2)x2-xy-2y23xy2;(3)-(1-m)2;(4) 1-a.12.32°13.-314.设每天修x m,3 600x-3 6001.8x=20.x=80 m.15.(1)中位数12℃,众数11℃;(2)1.143.16.分别作FG⊥BC,FM⊥AD,FN⊥AE,垂足分别为点G,M,N.FM=FG=FN.17.∵∠BAD=∠BDA,∴AB=DB=CD.∵BE=DE,∴△ABE≌△ADE.AB=AD,△ABD为等边三角形.连接CF.△AEC≌△FEC.∵∠ACF=60°,∴△AFC为等边三角形.∴AF=AC,AE=12AC.18.延长BO交AC于点D.∠BOC=110°.19.作CF⊥AC,交AD延长线于点 F.∵∠BAC=90°,AD⊥BM.∴∠ABM=∠MAE.∵AB=AC,∴△ABM≌△CFA.∠1=∠F.AM=CF.∵AM=CM,∴CF=CM.∠FCD=45°=∠MCD.∴△FCD≌△MCD(SAS).∠2=∠F=∠1.总检测站1.a-12.(1)SSS;(2)SAS;(3)HL.3.5,5,5.25.4.4,3.5.△ABC≌△ABD,△ACE≌△ADE,△CEB≌△DEB.6.C7.D8.D9.D10.B11.113 850 kg 12.(1)x=-2;(2)无解.13.30 m14.∵△ABE≌△ACE,∴BE=CE,BD=CD.△BDE≌△CDE(SSS).15.(1)①②③④,①③②④,①④②③,②③①④,②④①③.(2)略.≤≥<>×≠÷′△∠°αβ⊥∥∵∴△≌△S△ACC′1.2.3.4.5.6.7.8.9.10.。
最新青岛版数学八年级上册5.6.1几何证明举例(同步练习)及答案.docx

5.6.1 几何证明举例1. 如图,玻璃三角板摔成三块,现在到玻璃店在配一块同样大小的三角板,最省事的方( )A. 带①去B. 带②去C. 带③去D.带①②③去2. 如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( )A. AB=ACB. BD=CDC. ∠B=∠CD.∠BDA=∠CDA3. 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,;③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组4.如图,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =; ③FAN EAM ∠=∠; ④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个第1题图 第2题图 第3题图5. 如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC6. 如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是7.如图,△ABC中,BD=EC,∠ADB=∠AEC,∠B=∠C,则∠CAE= .8. 如图,点B、E、F、C在同一直线上,已知∠A =∠D,∠B =∠C,要使△ABF≌△DCE,以“AAS”需要补充的一个条件是(写出一个即可).9. 已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC AEFBCDMN10.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:_______________,并给予证明.参考答案1. C2. B3.C4.C5.D6.乙和丙7. ∠BAD8. AF=DE 或BF=CE 或BE=CF9. 证明:在△ABC 与△DCB 中(ABC DCB ACB DBCBC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩已知)(公共边) ∴△ABC ≌△DCB∴AB=DC10. 解法一:添加条件:AE =AF ,证明:在△AED 与△AFD 中,∵AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△AED ≌△AFD (SAS ).解法二:添加条件:∠EDA =∠FDA ,证明:在△AED 与△AFD 中,∵∠EAD =∠FAD ,AD =AD ,∠EDA =∠FDA∴△AED ≌△AFD (ASA ).。
青岛版数学配套练习册答案八上

青岛版数学配套练习册答案八上【练习一:数与式】1. 计算下列各题:(1) (-2) × 3 = -6(2) (-3)² = 9(3) 5 - (-3) = 8(4) 4 × (-2) - 3 = -112. 化简下列各题:(1) 3x - 2x + 5 = x + 5(2) 4y + 3y - 2y = 5y3. 求下列方程的解:(1) 2x - 3 = 7,解得 x = 5(2) 3x + 4 = 2x - 1,解得 x = -5【练习二:方程与不等式】1. 解一元一次方程:(1) x + 6 = 11,解得 x = 5(2) 3x - 9 = 6,解得 x = 72. 解一元一次不等式:(1) 2x + 5 > 3,解得 x > -1(2) 4 - 3x ≥ 1,解得x ≤ 1【练习三:函数】1. 根据函数的定义域,求下列函数的值域:(1) f(x) = x²,值域为[0, +∞)(2) g(x) = 2x - 3,值域为 (-∞, +∞)2. 判断下列函数的单调性:(1) f(x) = x³,为增函数(2) g(x) = -x² + 2,为减函数在(0, +∞),增函数在 (-∞, 0)【练习四:几何】1. 已知三角形ABC,∠A = 60°,AB = 8,AC = 6,求BC的长度:BC = √(8² + 6² - 2 × 8 × 6 × cos(60°)) = √(64 + 36 - 48) = √522. 已知圆的半径为5,求圆的面积:面积= π× 半径² = 25π【练习五:统计与概率】1. 某班级有50名学生,随机抽取5名学生进行数学测试,求这5名学生的平均分超过90分的概率。
(此题需要具体数据,无法给出具体答案)2. 抛一枚均匀硬币两次,求正面朝上的次数为1的概率。
青岛版八年级数学上册同步练习附答案4.5 方差

4.5 方差一、选择题1.在方差的计算公式:s 2=101[(x 1-15)2+(x 2-15)2+…+(x 10-15)2]中,10,15分别表示()A.数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.数据的方差和平均数2.如果一组数据:3,4,5,6,5,7,那么这组数据的方差是() A.35 B. 21 C.34D.323.下列选项能够反映一组数据离散程度的统计量是()A.平均数B.中位数C.众数D.方差4.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是()A.s 2甲<s 2乙B.s 2甲>s 2乙C.s 2甲=s 2乙D.不能确定5.要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩 的()A.方差B.众数C.平均数D.中位数6.某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们平均亩产量分别是x 甲=610千克,x 乙=608千克,亩产量的方差分别是s 2甲=29.6,s 2乙=2.7,则下列推广种植两种小麦的最佳决策是()A.甲的平均亩产量较高,推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙7. 若一组数据x 1,x 2,…,x n 的方差是3,则另一组数据x 1+5,x 2+5,…,x n +5的方差是()A.3B.8C.9D.14二、填空题8.已知甲、乙两个品种棉花的纤维长度的平均数相等,若甲种棉花的纤维长度的方差 s 2甲=1.327 5,乙种棉花的纤维长度的方差s 2乙=1.877 5,则甲、乙两种棉花质量较好的 是_______种.9.市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是_______.10. 甲、乙、丙三人进行飞镖比赛,如果他们每人五次投得的成绩如图,那么三人中成绩最稳定的是_______.(第10题图)11. 如果一组数据5,8,10,x,9的众数是8,那么这组数据的方差是_______.三、解答题12. 为了考察甲、乙两种玉米的生长情况,在相同的时间,将它们种在同一块实验田里,经过一段时间后,分别抽取了10株幼苗,测得苗高如下(单位:cm):甲:8,12,8,10,13,7,12,11,10,9;乙:11,9,7,7,12,10,11,12,13,8.(1)哪种玉米的高度相对较高?(2)哪种玉米的幼苗长得比较整齐?13. 已知A组数据如下:0,1,-2,-1,0,-1,3.(1)求A组数据的平均数;(2)从A组数据中选取5个数据,记这5个数据为B组数据.要求B组数据满足两个条件:①它的平均数与A组数据的平均数相等;②它的方差比A组数据的方差大.你选取的B组数据是__________,请说明理由.14. 七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答问题.(1)分别求一班和二班选手进球数的平均数、众数和中位数.(2)如果要从这两个班中选出一个班代表年级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?答案一、1.C 2.A 3.D 4.A 5.A 6.D 7.A二、8.甲 9.丙 10.乙 11.2.8三、12. 解:(1)甲组数据的平均数=101×(8+12+8+10+13+7+12+11+10+9)=10; 乙组数据的平均数=101×(11+9+7+7+12+10+11+12+13+8)=10. 则两种玉米的高度相当.(2)s 2甲=101×[(8-10)2+(12-10)2+…+(9-10)2]=3.6; s 2乙=101×[(11-10)2+(9-10)2+…+(8-10)2]=4.2. 因为s 2甲<s 2乙,所以甲玉米幼苗长得比较整齐.13. 解:(1)x A =71×(0+1-2-1+0-1+3)=0. (2)1,-2,-1,-1,3. 因为x B =51×(1-2-1-1+3)=0,所以x A =x B . 因为s 2A =71×(02+12+22+12+02+12+32)=716,s 2B =51×(12+22+12+12+32)=516, 所以s 2B >s 2A .即数据1,-2,-1,-1,3符合题意.14. 解:(1)一班:7,7,7;二班:7,7,7.(2)一班的方差s 21=2.6,二班的方差s 22=1.4.如果想夺得团体第一名,二班选手水平发挥更稳定,那么应该选择二班;一班前三名选手的成绩更突出,如果要争取个人进球数进入学校前三名,那么应该选择一班.。
八年级上册青岛版数学配套练习册答案

八年级上册青岛版数学配套练习册答案Prepared on 21 November 2021青岛版数学练习册八年级上册参考答案1.11.略.2.DE,∠EDB,∠E.3.略.4.B5.C6.AB=AC,BE=CD,AE=AD,∠BAE=∠CAD7.AB∥EF,BC∥∠ADB=∠AEC.4.∠1=∠25.△ABC≌△FDE(SAS)6.AB∥CD.因为△ABO≌△CDO(SAS).∠A=∠△ABE≌△ACD(SAS).第2课时∠ADE=∠ACB;(2)∠E=∠B.4.△ABD≌△BAC(AAS)5.(1)相等,因为△ABE≌△CBD(ASA);(2)DF=EF,因为△ADF≌△CEF(ASA).6.相等,因为△ABC≌△ADC(AAS).7.(1)△ADC≌△AEB;(2)AC=AB,DC=EB,BD=EC;∠ABE=∠ACD,∠BDO=∠CEO,∠BOD=∠COE.第3课时°4.BC的中点.因为△ABD≌△ACD(SSS).5.正确.因为△DEH≌△DFH(SSS).6.全等.因为△ABD≌△ACD(SSS).∠BAF=∠CAF.7.相等,因为△ABO≌△ACO(SSS).1.3第1课时1~6(略).7.作∠AOB=∠α,延长BO,在BO上取一点C,则∠AOC即为所求.8.作∠AOB=∠α,以OB为边,在∠AOB的外部作∠BOC=∠β;再以OA为边,在∠AOC的内部作∠AOD=∠γ,则∠DOC即为所求.第2课时1.略.2.(1)略;(2)全等(SAS).3.作BC=a-b;分别以点B、C为圆心,a为半径画弧,两弧交于点A;连接AB,AC,△ABC即为所求.4.分四种情况:(1)顶角为∠α,腰长为a;(2)底角为∠α,底边为a;(3)顶角为∠α,底边为a;(4)底角为∠α,腰长为a.((3),(4)暂不作).第3课时1.四种:SSS,SAS,ASA,AAS.2.作线段AB;作∠BAD=∠α,在∠BAD同侧作∠ABE=∠B;AD与BE相交于点C.△ABC即为所求.3.作∠γ=∠α+∠β;作∠γ的外角∠γ′;作△ABC,使AB=c.∠A=∠γ′,∠B=∠α.4.作∠γ=180°-∠β;作△ABC,使BC=a,∠B=∠α,∠C=∠γ.第一章综合练习∠ACB=∠DBC或∠A=∠D.5.△ACD≌△BDC,△ABC≌△BAC.6.△ABC≌△CDE(AAS)7.4分钟8.△BOC′≌△B′OC(AAS)9.略10.相等.△BCF≌△EDF(SAS).△ABF≌△AEF(SSS)检测站°4.∠BCD5.相等.△ABP≌△ACP(SSS),△PDB≌△PEC(AAS).6.略2.1°;30°.8.略2.2第1课时°7.(1)AA′∥CC′∥BB′,且AA′⊥MN,BB′⊥MN,CC′⊥MN.(2)5 cm8.(1)DE⊥AF;(2)略.第2课时1.(-2,-3),(2,3).2.3,-43.(3,2)4.B5~6.略7.(1)(-a,b);(2)当n=4k+1时,在第一象限,n=4k+2时,在第四象限,n=4k+3时,在第三象限,n=4(n+1)时,在第二象限,k 为非负整数.2.32.4第1课时∠A=∠B,∠ACD=∠BCD,∠ADC=∠BDC.5~6.略.7.连接BM,PB<PM+MB,∵MB=MA,∴PB<PA.第2课时1.作一条线段的垂直平分线2.D3~5.略.6.分别作点A关于OM,ON的对称点D,E.连接DE,分别交OM,ON于点B,C.连接AB,AC,则△ABC的周长最小.2.5∠AOB的平分线交MN于点P.则P即为所示.6.(1)DE=DC,AE=BE,BE=BC;(2)7.7.(1)△ADO≌△AEO(AAS),△BOD≌△COE(ASA),OB=OC;(2)∠1=∠2.6第1课时1.略.2.35°,35°.3.50°,80°或65°,65°.4.C5.B6.∠EBC=36°,∠C=∠BEC=72°.7.△ACD≌ABD(SSS),∠CAG=∠BAG.AG 是等腰三角ABC的顶角平分线.∴°第2课时1.略.2.△ABE,△ECD,△△DBE是等腰三角形.因为∠B=∠C=∠DEB.5.△AED是等腰三角,因为∠EAD=∠BAD=∠ADE.6~7.略.第3课时△ADE是等边三角形.因为三个角都等于60°△ADC≌△ABE(SAS).第二章综合练习1.GH,∠°;58°∠BAC=∠DAE,∠B=∠D,∠C=∠E,∠BAE=∠DAC,∠EAF=∠CAF,∠BFE=∠DFC,∠BAF=∠DAF.(2)△AEF与△ACF,△ABF与△ADF都关于直线MN成轴对称.11.△ABC与△A′B′C′关于y轴对称.12.△ACE≌△DCB(SAS).AE=BD.又∠HGE=∠CGB.∠HEG=∠CBG.∠HGE+∠HEG=∠CGB+∠CBG=90°.∠EHG=90°.AE⊥①以BC为底边的等腰三角形可作1个;②以BC为腰的等腰三角形可作3个.检测站1.60°2.AP;PC,AP;∠°,55°或70°,40°.5.AC,∠C,△10.A11.略.12.∠BAC=60°,∠C=90°,∠B=30°.13.∵△ABC≌△BAD.∠CAB=∠DBA,∴△EBA是等腰三角形.14.(1)5;(2)80°.15.∠ACD=180°-A2,∠BCE=180°-B2,∠ACB=90°.∴∠ACD+∠BCE=90°+∠DCE.∠DCE=45°.3.1第1课时1.B≠0;B=0;A=0且B≠0.2.≠≠10.a=-1.11.略.12.n+13n-2第2课时≠1且x≠07.当a≠0时,a2a=12;当m≠0,n≠≠3.28.a-b+ca+b+c9.略.3.33.49.(1)把前一个分式的分子,分母同乘-a2b即得下一个分式;(2)-a12b8a13b6.(3)(-1)na2n-2bn+1(-1)n+1a2n-1bn-1.3.5第1课时第2课时7.(1)3c3-4a2b12ab2c2;(2)6x2+xy+7y242x2y2;(3)2mn-m2n2-m2.8.-659.(1)11-a;(2)x2.10.1(x-1)(x-2),1(x-2)(x-3),1(x-3)(x-4),1x-100.第3课时6.∵ca+b<1.∴c2(a+b)2<ca+b3.6第1课时1.(1)7x4y;(2)b2a;(3)2x-y;(4)a+ba-b2.ala+b,ala+b.8.(1)xyx+y(天);(2)甲:myx+y(元),乙:mxx+y(元).9.(1)ba;(2)b-10a-10,b+10a+10;(3)b-10a-10<ba<b+10a+10.第2课时1.略.2.8∶8.a-b=-39.260 mm10.5211.-5.第3课时1.略.2.2∶33.33124.1 m5.10∶15∶∶y∶z=(a+b)2∶(a2-b2)∶3.7第1课时11.(1)x=5;(2)a=6.第5个方程;(3)1+x2x=n+1x,x=2n+1.第2课时(4)无解.7.a=-58.(1)①x=1;②x=2;③x=3;(2)方程1x-2-1x-3=1x-5-1x-6的解为x=4;方程1x+2-1x+1=1x-1-2x-2的解为x=0.第3课时1.略.2.12010-x-12010=33.16+1x=13.4.D5.(1)设去年每间屋的租金为x元,9.6x=10.2x+500;(2)8 000元.6.4 km/h7.37.5 km/h8.1.5 t9.(1)设预定工期为x天,4x+xx+5=1,x=20(天).(2)采取联合施工4天,然后由乙单独施工的方案省工程费.第三章综合练习1.a≠≠5.a∶b=b∶c,c∶b=b∶a,ac=b26.127.3∶4∶∶S2=1∶220.21821.(1)无解;(2)x=1912;(3)x=-2;(4)无解.22.应提高60km/h23.(1)x≠检测站1.x≠32,x=-23.2.x≠0且x≠4.1第1课时8.a·10%+b·15%+c·5%a+b+c (a,b,c为甲、乙、丙三种汽油原价)第2课时4.24.3第1课时第2课时4.41~2.略.3.(1)平均直径都是20 mm;(2)小明.4.乙地;甲地温差比乙地大.5.(1)平均身高都是178 cm;(2)图略.甲队整齐.6.(1)x甲=1.69 m,x乙=1.68 m;(2)图略.甲比较稳定.4.5第1课时第2课时1.乙2.D3.(1)略;(2)大刚的平均数为13.35,方差为0.004;小亮的平均数为13.3,方差为0.02.大刚成绩好.4.(1)x苹果=8,x香蕉=8,S2苹果=9,S2香蕉=1.333;(2)略;(3)9月份多进苹果.5.S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]=1n[x21+x22+…+x2n-2x(x1+x2+…+xn)+nx2]=1n[x21+x22+…+x2n-2nx(x1+x2+…+xnn+nx2)]=1n[x21+x22+…+x2n-nx2].4.6第四章综合练习℃;(2)20.8℃;(3)146天.13.乙成绩稳定检测站℃12.(1)甲班:平均分24,方差5.4;乙班中位数24,众数21,方差19.8;(2)甲班42人,乙班36人;(3)甲班.综合与实践略.5.15.21.略.2.不正确.如正方形与菱形.3.小亮不对;小莹说法正确.4.不正确.如2≠-2,但22=(-2)2.5.不正确;t=20t1+30t220+30.5.31~3.略.4.C5.直角定义;余角定义;对顶角相等;等量代换;余角定义.6.(1)C,E,F,G;(2)E;(3)K;(4)略.7.C5.4∠D;内错角相等,两直线平行;(2)∠DEC;AB∥DE.同位角相等,两直线平行.4.已知:∠CBE;两直线平行,同位角相等;已知,∠CBE;等量代换;内错角相等,两直线平行.5.略.6.(1)如果两个角相等,那么这两个角是同角或等角的补角.真命题;(2)如果三角形中有两个角是锐角,那么第三个角是钝角,假命题,如∠A=80°,∠B=70°,∠C=30°.7.(1)延长AE与CD相交于点G.∵AB∥EF.∴∠A+∠AEF=180°.∵AB∥CD,∴∠A+∠G=180°.∴∠A+∠AEF=∠A+∠G,∠AEF=∠G.∴EF∥CD;(2)360°.5.5第1课时∠B=∠C,∠AOB=∠DOC.5.∠1>∠ACB>∠26.略.7.(1)∠A逐渐减小,∠B,∠C逐渐变大;若点A向下运动,变化相反;(2)α=β+γ.5.5第2课时1.(1)∠B=∠DAC;(2)∠A=∠D;∠CGE+∠B=180°∠1=∠C+∠CDE,∠2=∠C+∠CED,∠1+∠2=180°.6.(1)∠EFD=90°-∠FED=12(∠A+∠B+∠C)-(∠B+12∠A)=12(∠C-∠B);(2)不变.5.6第1课时∠A=∠D;(3)∠C=∠F.4.(1)△ABE≌△DCF(SAS),△ABF≌△DCE(SAS),△BEF≌△CFE;(2)略.5.△AFC≌△BED(ASA)6.取EF的中点M,连接GM,并延长交FH于点N.GN分别交AD,BC于点P,Q.△PEM≌△QFM.沿GN将道路取直即可.第2课时1.平行2.90°∵∠ABD=∠ADB,∴∠CBD=∠CDB.∴BC=DC.6.△ABD与△ACD都是等腰三角形,BD=AD=DC.7.△ABD≌△ACE(SAS).∠A=∠CAE=60°.∴△ADE为等边三角形.8.∵△AEB≌△BDA(ASA).∴AE=BD,EB=DA,CE=CD,EF=DF.AF=BF.第3课时1.=2.①②③3.A4.略.5.△ABD≌△AED(SAS),∴AB=AE.DC=AB+BD=AE+DE,DC=DE+EC,∴AE=EC.∴点E在线段AC的垂直平分线上.6.(1)∠A≠∠C.因为△ABD与△CBD不全等;(2)∠A>∠C.因为AB<BC,在BC上取BA′=BA.△ABD≌△A′BD.∠A=∠BA′D.∠BA′D >∠C,∴∠A>∠C;(3)当AB=CB时.∠A=∠C;当AB<BC时,∠A>∠C;当AB>BC时,∠A<∠C.第4课时△ADE≌△ADF.AE=AD.△AEF为等腰三角形.6.△BEO≌△BFO(AAS),△BED≌△BFD(SAS).△EOD≌△FOD(SSS)或(SAS).7.DE=BD-CE.由DE∥BC.∠BOD=∠OBC=∠OBD.∴BD=OD.又∠OCE=∠OCF=∠BOC+∠OBC=∠BOC+∠BOE=∠COE.∴CE=OE.DE=OD-OE=BD-CE.第5课时△ABC即为所求.5.连接AC.Rt△ABC≌RtADC(HL).∴BC=DC.Rt△BCE≌Rt△DCF(HL).6.连接AF,BF.△AEF≌△BEF△AFC≌△BFD(SAS).7.(1)Rt△OBD≌Rt△OCE(HL);(2)Rt△OBD≌△OCE(HL);(3)相等.第五章综合练习°8.∠2=∠1.∴∠2=∠C,AB∥CD.9.延长EF交BC于点G.∵∠2=∠4,∴AB∥EF.∠3=∠B=∠EGC.∴DE∥BC.∴∠AED=∠ACB.10.∠ABE=∠FBD,∠ABE+∠AEB=90°,∠FBD+∠AFE=90°.∴∠AEB=∠AFE.∴AE=AF.11.△ACE≌△BDE(AAS),∴EC=ED.12.(1)∠D=∠AEC(同角的余角相等).△ACE≌△CBD.∴AE=CD;(2)BD=CE=12AC=6 cm.13.(1)Rt△ADE≌Rt△ADF;(2)DB=DC,Rt△DBE≌Rt△DCF(HL).14.(1)略;(2)连接BD.∠DBC=12∠B=30°.∵∠CDE=∠CED.∴∠CED=12∠ACB=30°.∴△DBE为等腰三角形.∵DM⊥BE,∴BM=EM.15.△BPD≌△BDC(SAS),△BCD≌△ACD(SSS).∠P=∠BCD=∠ACD=12∠ACB=30°.16.(1)作DF⊥AB,垂足为点E.AC=AE,DE=DC.∵∠B=∠A=45°,∴BE=DE.∴AB=AE+BE=AC+CD.(2)(1)中的等量关系仍成立.∵∠ACB>∠B,∴AB>AC.在AB上截取AG=AC.分别作DF⊥AC,DE⊥AB.△DCF≌△DGE.∵∠EGD=∠C=2∠B.∴∠B=∠BDG.BG=DG=DC.∴AB=AG+GB=AC+CD.检测站△ODG≌△OEG,△DPG≌△EPG;△ODP≌△OEP,HL或AAS.5.略.6.FA=FD,∠ADF=∠DAF=∠DAC+∠CAF.∵∠DAC=∠BAD.∴∠B=∠ADF-∠BAD=∠DAF-∠DAC=∠CAF.7.(1)略;(2)∵CA=CE,∴∠CAE=∠E.∵∠ACB=∠CAE+∠E=2∠E,∠ACB=2∠BCD,∴∠E=∠BCD.CD∥AE.8.(1)①③或②③;(2)略.9.(1)△ABQ≌△PBC;(3)∠MBN=60°,△ABM≌△PBN(ASA).BM=BN.∴△BMN为等边三角形.∠MNB=∠QBC.MN∥AC.总复习题1.(3,4),等腰2.-53.50°,60°,70°°13.-314.设每天修x m,3 600x-3 6001.8x=20.x=80 m.15.(1)中位数12℃,众数11℃⊥BC,FM⊥AD,FN⊥AE,垂足分别为点G,M,N.FM=FG=FN.17.∵∠BAD=∠BDA,∴AB=DB=CD.∵BE=DE,∴△ABE≌△ADE.AB=AD,△ABD为等边三角形.连接CF.△AEC≌△FEC.∵∠ACF=60°,∴△AFC为等边三角形.∴AF=AC,AE=12AC.18.延长BO交AC于点D.∠BOC=110°.19.作CF⊥AC,交AD延长线于点F.∵∠BAC=90°,AD⊥BM.∴∠ABM=∠MAE.∵AB=AC,∴△ABM≌△CFA.∠1=∠F.AM=CF.∵AM=CM,∴CF=CM.∠FCD=45°=∠MCD.∴△FCD≌△MCD(SAS).∠2=∠F=∠1.总检测站△ABC≌△ABD,△ACE≌△ADE,△CEB≌△12.(1)x=-2;(2)无解.13.30 m14.∵△ABE≌△ACE,∴BE=CE,BD=CD.△BDE≌△CDE(SSS).15.(1)①②③④,①③②④,①④②③,②③①④,②④①③.(2)略.≤≥<>×≠÷′△∠°αβ⊥∥∵∴△≌△S△ACC′。
青岛版八年级数学上册同步练习附答案3.6 比和比例

3.6 比和比例一、选择题1.如果43=y x ,那么下列等式不成立的是( ) A .73=+y x x B .41=-y y x C .4343=++y x D .4x =3y 2.如果a ,b 是不等于0的实数,2a =3b ,那么下列等式正确的是( )A .32=b aB .23=b aC .34=+b b aD .35=+b b a 3.如果5x =6y ,那么下列结论正确的是( )A .x :6=y :5B .x :5=y :6C .x =5,y =6D .x =6,y =54.下列线段能成比例的是( )A .3cm ,6cm ,8cm ,9cmB .3cm ,5cm ,6cm ,9cmC .3cm ,6cm ,7cm ,9cmD .3cm ,6cm ,9cm ,18cm5.已知线段a ,b ,c ,d ,如果ab =cd ,那么下列式子一定正确的是 ( )A .d b c a =B .c b d a =C .d b c a =D .dc b a = 二、填空题6.若a ,b ,c 满足643c b a ==,a ,b ,c 都不为0,则b c b a -+= . 7.若32===f e d c b a ,则fd be c a 3232+-+-= . 8.已知线段a =4,b =1,如果线段c 是线段a ,b 的比例中项,那么c = .三、解答题9.已知032≠=b a ,求b ab ab a b a 2222---的值. 10.已知非零实数a ,b ,c 满足13125c b a ==,且a +b =34,求c 的值. 11.已知线段x ,y ,z 满足x +y +z =54,且432z y x ==,求x ,y ,z 的值. 12.已知线段a =0.3m ,b =60cm ,c =12dm .(1)求线段a 与线段b 的比.(2)如果线段a ,b ,c ,d 成比例,求线段d 的长.(3)b 是a 和c 的比例中项吗?为什么?答案一、1.B 【分析】A .∵43=y x ,∴73=+y x x ,故此选项不符合题意;B .∵43=y x ,∴41-=-y y x ,故此选项符合题意;C .∵43=y x ,∴4343=++y x ,故此选项不符合题意;D .∵43=y x ,∴4x =3y , 故此选项不符合题意.故选B .2.B 【分析】A .由32=b a 得,3a =2b ,故此选项错误;B .由23=b a 得,2a =3b ,故此选项正确;C .由34=+b b a 得,3(a +b )=4b ,整理得,3a =b ,故此选项错误;D .由35=+b b a 得,3(a +b )=5b ,整理得,3a =2b ,故此选项错误.故选B .3.A 【分析】∵5x =6y ,∴56y x =,故选项A 正确.故选A . 4.D 【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,那么四条线段叫成比例线段.所给选项中,只有D 符合,3×18=6×9.故选D .5.C 【分析】∵ab =cd ,且c ≠0,b ≠0,∴d b c a =.故选C . 二、6.27【分析】设643c b a ===k ,则a =3k ,b =4k ,c =6k .把a =3k ,b =4k ,c =6k 代入,得b c b a -+=k k k k 4643-+=27. 7.32【分析】∵32===f e d c b a ,∴b =1.5a ,d =1.5c ,f =1.5e .∴f d b e c a 3232+-+-=e c a e c a 5.435.132+-+-=32. 8.2【分析】根据比例中项的概念结合比例的基本性质,得比例中项的平方等于两条线段的乘积.则c 2=4×1,解得c =±2(线段是正数,负值舍去),故c =2.三、9.解:∵032≠=b a , ∴设a =2x ,b =3x ,则原式=x x x x x x x x 932322223222-⨯⨯⨯-⨯⨯-=-1+4=3. 10.解:设13125c b a ===k (k ≠0), 则a =5k ,b =12k ,c =13k .∵a +b =34,∴5k +12k =34,解得k =2.∴c =13k =13×2=26.11.解:设432z y x ===k (k ≠0),则x =2k ,y =3k ,z =4k .∵x +y +z =54,∴2k +3k +4k =54,解得k =6. ∴x =2×6=12,y =3×6=18,z =4×6=24.12.解:(1)∵a =0.3m=30cm ,b =60cm , ∴a :b =30:60=1:2.(2)∵线段a ,b ,c ,d 是成比例线段, ∴dc b a =. ∵c =12dm=120cm , ∴d12021=,∴d =240cm . (3)是.理由如下:∵b 2=3600,ac =30×120=3600, ∴b 2=ac ,∴b 是a 和c 的比例中项.。
青岛版八年级数学上册同步练习附答案2.6 等腰三角形

2.6 等腰三角形一、选择题1. 下列说法正确的是()A. 等腰三角形的高、中线、角平分线互相重合B. 顶角相等的两个等腰三角形全等C. 等腰三角形一边不可以是另一边的两倍D. 等腰三角形的两个底角相等2. 已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OB对称,P2与P关于OA对称,则P,P1,P2三点构成的三角形是()A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形3. 等腰三角形的对称轴,最多可以有()A. 1条B. 3条C. 6条D. 无数条4. 下列判断不正确的是()A. 等腰三角形的两底角相等B. 等腰三角形的两腰相等C. 等边三角形的三个内角都是60°D. 两个内角分别为120°,40°的三角形是等腰三角形5. 下列轴对称图形中对称轴最多的是()A. 等腰直角三角形B. 正方形C. 有一个角为60°的等腰三角形D. 圆二、填空题6. 若等腰三角形的一个角是110°,则它的底角为_______°.7. 若等腰三角形的腰长是6,底边长为3,则周长为__________.8. 若等腰三角形的一个底角为50°,则此等腰三角形的顶角为_________.9. 在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A=________°.10. 若等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰长为_____cm.11. 若等腰三角形一腰上的中线把这个三角形的周长分成15和12,则这个三角形的底边长为_________.12. 腰长为12㎝,底角为15°的等腰三角形的面积为________cm2.答案一、1. D【分析】A.等腰三角形的高、中线、角平分线互相重合,错误;B.顶角相等的两个三角形全等,错误;C.等腰三角形一边不可以是另一边的两倍,错误,D.等腰三角形的两个底角相等,正确.故选D.2. D【分析】根据轴对称的性质,进行轴对称变换时对应线段相等,对应角相等,即OP1= OP=OP2,∠P1OB=∠BOP,∠POA=∠AOP2,则∠P1OP2=∠P1OB+∠BOP+∠POA+∠AOP2= 2(∠BOP+∠POA)=2∠AOB=60°.已知两边相等且一个内角为60°的三角形为等边三角形.故选D.3. B【分析】一般等腰三角形有一条,即底边上的中线所在直线;若是特殊的等腰三角形即等边三角形,则有三条,即每条边上的中线所在直线.故选B.4. D【分析】根据等腰三角形的性质可知,等腰三角形的两腰相等,两底角相等;根据等边三角形的性质可知,三个内角都相等,都等于60°;根据三角形的内角和为180°可知,两个内角分别为120°,40°的三角形的第三个角为20°,不是等腰三角形.故选D.5. D【分析】根据轴对称图形的特点可知,等腰直角三角形只有一条对称轴,是底边上的中线所在的直线;正方形有四条对称轴,是两条对角线所在直线和两对边的中点所在的直线;有一个角为60°的等腰三角形是等边三角形,则有三条对称轴,是三边的中垂线;圆有无数条对称轴,是直径所在的直线.故选D.二、6. 35【分析】①当这个角是顶角时,底角=(180°-110°)÷2=35°;②当这个角是底角时,另一个底角为110°.因为110°+110°=240°,不符合三角形的内角和定理,所以舍去.7. 15【分析】根据等腰三角形的特点可知,其三边长分别为6,6,3,因此周长为6+6+3=15.8. 80°【分析】先根据等腰三角形的两底角相等可知,两底角分别为50°,50°.再根据三角形的内角和可得等腰三角形的顶角为80°.9. 4或3 【分析】当5cm是等腰三角形的底边长时,则其腰长是(13-5)÷2=4(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是13-5×2=3(cm),能够组成三角形.10. 36°【分析】如答图,设∠A=x.∵AD=BD,∴∠ABD=∠A=x.∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x.∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x.∵x+2x+2x=180°,∴x=36°,∴∠A=36°.(第10题答图)11. 7或11【分析】设这个等腰三角形为△ABC,AB,AC是腰,BC是底边,BD是AC上的中线,如答图.分两种情况:①AB+AD =15,CD+BC=12.∵AD=CD=AC=AB,∴AB+AB =15,∴AB=10,∴10×+BC =12,∴BC=7.∵10+10=20 >17,∴可以构成三角形(三角形两边之和大于第三边),此时底边长为7.②AB+AD =12,CD+BC =15.∵AD=CD=AC=AB,∴AB+AB=12,∴AB=8,∴8×+BC=15,∴BC=11.∵8+8=16>11,∴可以构成三角形(三角形两边之和大于第三边),此时底边长为11.(第11题答图)12. 36【分析】如答图,△ABC是等腰三角形,且∠BAC=∠B=15°,AC=BC=12cm.过点A 作DA⊥BC的延长线于点D.因为在Rt△ADC中,∠DCA=30°,AC=12cm,所以DA=AC= 6(cm).所以根据三角形的面积公式,得S△ABC=BC DA=36(cm2).(第12题答图)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版数学练习册八年级上册参考答案1.11.略.2.DE,∠EDB,∠E.3.略.4.B5.C6.AB=AC,BE=CD,AE=AD,∠BAE=∠CAD7.AB∥EF,BC∥∠ADB=∠AEC.4.∠1=∠25.△ABC≌△FDE(SAS)6.AB∥CD.因为△ABO≌△CDO(SAS).∠A=∠△ABE≌△ACD(SAS).第2课时∠ADE=∠ACB;(2)∠E=∠B.4.△ABD≌△BAC(AAS)5.(1)相等,因为△ABE≌△CBD(ASA);(2)DF=EF,因为△ADF≌△CEF(ASA).6.相等,因为△ABC ≌△ADC(AAS).7.(1)△ADC≌△AEB;(2)AC=AB,DC=EB,BD=EC;∠ABE=∠ACD,∠BDO=∠CEO,∠BOD=∠COE.第3课时°4.BC的中点.因为△ABD≌△ACD(SSS).5.正确.因为△DEH≌△DFH(SSS).6.全等.因为△ABD≌△ACD(SSS).∠BAF=∠CAF.7.相等,因为△ABO≌△ACO(SSS).1.3第1课时1~6(略).7.作∠AOB=∠α,延长BO,在BO上取一点C,则∠AOC即为所求.8.作∠AOB=∠α,以OB为边,在∠AOB的外部作∠BOC=∠β;再以OA为边,在∠AOC的内部作∠AOD=∠γ,则∠DOC即为所求.第2课时1.略.2.(1)略;(2)全等(SAS).3.作BC=a-b;分别以点B、C为圆心,a为半径画弧,两弧交于点A;连接AB,AC,△ABC即为所求.4.分四种情况:(1)顶角为∠α,腰长为a;(2)底角为∠α,底边为a;(3)顶角为∠α,底边为a;(4)底角为∠α,腰长为a.((3),(4)暂不作).第3课时1.四种:SSS,SAS,ASA,AAS.2.作线段AB;作∠BAD=∠α,在∠BAD同侧作∠ABE=∠B;AD与BE相交于点C.△ABC即为所求.3.作∠γ=∠α+∠β;作∠γ的外角∠γ′;作△ABC,使AB=c.∠A=∠γ′,∠B=∠α.4.作∠γ=180°-∠β;作△ABC,使BC=a,∠B=∠α,∠C=∠γ. 第一章综合练习∠ACB=∠DBC或∠A=∠D.5.△ACD≌△BDC,△ABC≌△BAC.6.△ABC≌△CDE(AAS)7.4分钟8.△BOC′≌△B′OC(AAS)9.略10.相等.△BCF≌△EDF(SAS).△ABF≌△AEF(SSS)检测站°4.∠BCD5.相等.△ABP≌△ACP(SSS),△PDB≌△PEC(AAS).6.略2.1°;30°.8.略2.2第1课时°7.(1)AA′∥CC′∥BB′,且AA′⊥MN,BB′⊥MN,CC′⊥MN.(2)5 cm8.(1)DE⊥AF;(2)略.第2课时1.(-2,-3),(2,3).2.3,-43.(3,2)4.B5~6.略7.(1)(-a,b);(2)当n=4k+1时,在第一象限,n=4k+2时,在第四象限,n=4k+3时,在第三象限,n=4(n+1)时,在第二象限,k为非负整数.2.32.4第1课时∠A=∠B,∠ACD=∠BCD,∠ADC=∠BDC.5~6.略.7.连接BM,PB<PM+MB,∵MB=MA,∴PB<PA.第2课时1.作一条线段的垂直平分线2.D3~5.略.6.分别作点A关于OM,ON的对称点D,E.连接DE,分别交OM,ON于点B,C.连接AB,AC,则△ABC的周长最小.2.5∠AOB的平分线交MN于点P.则P即为所示.6.(1)DE=DC,AE=BE,BE=BC;(2)7.7.(1)△ADO≌△AEO(AAS),△BOD≌△COE(ASA),OB=OC;(2)∠1=∠2.6第1课时1.略.2.35°,35°.3.50°,80°或65°,65°.4.C5.B6.∠EBC=36°,∠C=∠BEC=72°.7.△ACD≌ABD(SSS),∠CAG=∠BAG.AG是等腰三角ABC的顶角平分线.∴°第2课时1.略.2.△ABE,△ECD,△△DBE是等腰三角形.因为∠B=∠C=∠DEB.5.△AED是等腰三角,因为∠EAD=∠BAD=∠ADE.6~7.略.第3课时△ADE是等边三角形.因为三个角都等于60°△ADC≌△ABE(SAS). 第二章综合练习1.GH,∠°;58°∠BAC=∠DAE,∠B=∠D,∠C=∠E,∠BAE=∠DAC,∠EAF=∠CAF,∠BFE=∠DFC,∠BAF=∠DAF.(2)△AEF与△ACF,△ABF与△ADF都关于直线MN成轴对称.11.△ABC与△A′B′C′关于y轴对称.12.△ACE≌△DCB(SAS).AE=BD.又∠HGE=∠CGB.∠HEG=∠CBG.∠HGE+∠HEG=∠CGB+∠CBG=90°.∠EHG=90°.AE⊥①以BC为底边的等腰三角形可作1个;②以BC为腰的等腰三角形可作3个.检测站1.60°2.AP;PC,AP;∠°,55°或70°,40°.5.AC,∠C,△10.A11.略.12.∠BAC=60°,∠C=90°,∠B=30°.13.∵△ABC≌△BAD.∠CAB=∠DBA,∴△EBA是等腰三角形.14.(1)5;(2)80°.15.∠ACD=180°-A2,∠BCE=180°-B2,∠ACB=90°.∴∠ACD+∠BCE=90°+∠DCE.∠DCE=45°.3.1第1课时1.B≠0;B=0;A=0且B≠0.2.≠≠10.a=-1.11.略.12.n+13n-2第2课时≠1且x≠07.当a≠0时,a2a=12;当m≠0,n≠≠3.28.a-b+ca+b+c9.略.3.33.49.(1)把前一个分式的分子,分母同乘-a2b即得下一个分式;(2)-a12b8a13b6.(3)(-1)na2n-2bn+1(-1)n+1a2n-1bn-1.3.5第1课时第2课时7.(1)3c3-4a2b12ab2c2;(2)6x2+xy+7y242x2y2;(3)2mn-m2n2-m2.8.-659.(1)11-a;(2)x2.10.1(x-1)(x-2),1(x-2)(x-3),1(x-3)(x-4),1x-100.第3课时6.∵ca+b<1.∴c2(a+b)2<ca+b3.6第1课时1.(1)7x4y;(2)b2a;(3)2x-y;(4)a+ba-b2.ala+b,ala+b.8.(1)xyx+y(天);(2)甲:myx+y(元),乙:mxx+y(元).9.(1)ba;(2)b-10a-10,b+10a+10;(3)b-10a-10<ba<b+10a+10.第2课时1.略.2.8∶8.a-b=-39.260 mm10.5211.-5.第3课时1.略.2.2∶33.33124.1 m5.10∶15∶∶y∶z=(a+b)2∶(a2-b2)∶3.7第1课时11.(1)x=5;(2)a=6.第5个方程;(3)1+x2x=n+1x,x=2n+1.第2课时(4)无解.7.a=-58.(1)①x=1;②x=2;③x=3;(2)方程1x-2-1x-3=1x-5-1x-6的解为x=4;方程1x+2-1x+1=1x-1-2x-2的解为x=0.第3课时1.略.2.12010-x-12010=33.16+1x=13.4.D5.(1)设去年每间屋的租金为x元,9.6x=10.2x+500;(2)8 000元.6.4 km/h7.37.5 km/h8.1.5 t9.(1)设预定工期为x天,4x+xx+5=1,x=20(天).(2)采取联合施工4天,然后由乙单独施工的方案省工程费.第三章综合练习1.a≠≠5.a∶b=b∶c,c∶b=b∶a,ac=b26.127.3∶4∶∶S2=1∶220.21821.(1)无解;(2)x=1912;(3)x=-2;(4)无解.22.应提高60 km/h23.(1)x≠检测站1.x≠32,x=-23.2.x≠0且x≠4.1第1课时8.a·10%+b·15%+c·5%a+b+c (a,b,c为甲、乙、丙三种汽油原价)第2课时4.24.3第1课时第2课时4.41~2.略.3.(1)平均直径都是20 mm;(2)小明.4.乙地;甲地温差比乙地大.5.(1)平均身高都是178 cm;(2)图略.甲队整齐.6.(1)x甲=1.69 m,x乙=1.68 m;(2)图略.甲比较稳定.4.5第1课时第2课时1.乙2.D3.(1)略;(2)大刚的平均数为13.35,方差为0.004;小亮的平均数为13.3,方差为0.02.大刚成绩好.4.(1)x苹果=8,x香蕉=8,S2苹果=9,S2香蕉=1.333;(2)略;(3)9月份多进苹果.5.S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]=1n[x21+x22+…+x2n-2x(x1+x2+…+xn)+nx2]=1n[x21+x22+…+x2n-2nx(x1+x2+…+xnn+nx2)]=1n[x21+x22+…+x2n-nx2].4.6第四章综合练习℃;(2)20.8℃;(3)146天.13.乙成绩稳定检测站℃12.(1)甲班:平均分24,方差5.4;乙班中位数24,众数21,方差19.8;(2)甲班42人,乙班36人;(3)甲班.综合与实践略.5.15.21.略.2.不正确.如正方形与菱形.3.小亮不对;小莹说法正确.4.不正确.如2≠-2,但22=(-2)2.5.不正确;t=20t1+30t220+30.5.31~3.略.4.C5.直角定义;余角定义;对顶角相等;等量代换;余角定义.6.(1)C,E,F,G;(2)E;(3)K;(4)略.7.C5.4∠D;内错角相等,两直线平行;(2)∠DEC;AB∥DE.同位角相等,两直线平行.4.已知:∠CBE;两直线平行,同位角相等;已知,∠CBE;等量代换;内错角相等,两直线平行.5.略.6.(1)如果两个角相等,那么这两个角是同角或等角的补角.真命题;(2)如果三角形中有两个角是锐角,那么第三个角是钝角,假命题,如∠A=80°,∠B=70°,∠C=30°.7.(1)延长AE与CD相交于点G.∵AB∥EF.∴∠A+∠AEF=180°.∵AB∥CD,∴∠A+∠G=180°.∴∠A+∠AEF=∠A+∠G,∠AEF=∠G.∴EF∥CD;(2)360°.5.5第1课时∠B=∠C,∠AOB=∠DOC.5.∠1>∠ACB>∠26.略.7.(1)∠A逐渐减小,∠B,∠C逐渐变大;若点A向下运动,变化相反;(2)α=β+γ.5.5第2课时1.(1)∠B=∠DAC;(2)∠A=∠D;∠CGE+∠B=180°∠1=∠C+∠CDE,∠2=∠C+∠CED,∠1+∠2=180°.6.(1)∠EFD=90°-∠FED=12(∠A+∠B+∠C)-(∠B+12∠A)=12(∠C-∠B);(2)不变.5.6第1课时∠A=∠D;(3)∠C=∠F.4.(1)△ABE≌△DCF(SAS),△ABF≌△DCE(SAS),△BEF≌△CFE;(2)略.5.△AFC≌△BED(ASA)6.取EF的中点M,连接GM,并延长交FH于点N.GN分别交AD,BC于点P,Q.△PEM≌△QFM.沿GN将道路取直即可.第2课时1.平行2.90°∵∠ABD=∠ADB,∴∠CBD=∠CDB.∴BC=DC.6.△ABD 与△ACD都是等腰三角形,BD=AD=DC.7.△ABD≌△ACE(SAS).∠A=∠CAE=60°.∴△ADE为等边三角形.8.∵△AEB≌△BDA(ASA).∴AE=BD,EB=DA,CE=CD,EF=DF.AF=BF.第3课时1.=2.①②③3.A4.略.5.△ABD≌△AED(SAS),∴AB=AE.DC=AB+BD=AE+DE,DC=DE+EC,∴AE=EC.∴点E在线段AC的垂直平分线上.6.(1)∠A≠∠C.因为△ABD与△CBD不全等;(2)∠A>∠C.因为AB<BC,在BC上取BA′=BA.△ABD≌△A′BD.∠A=∠BA′D.∠BA′D>∠C,∴∠A>∠C;(3)当AB=CB时.∠A=∠C;当AB<BC时,∠A>∠C;当AB>BC时,∠A<∠C.第4课时△ADE≌△ADF.AE=AD.△AEF为等腰三角形.6.△BEO≌△BFO (AAS),△BED≌△BFD(SAS).△EOD≌△FOD(SSS)或(SAS).7.DE=BD-CE.由DE∥BC.∠BOD=∠OBC=∠OBD.∴BD=OD.又∠OCE=∠OCF=∠BOC+∠OBC=∠BOC+∠BOE=∠COE.∴CE=OE.DE=OD-OE=BD-CE.第5课时△ABC即为所求.5.连接AC.Rt△ABC≌RtADC(HL).∴BC=DC.Rt△BCE≌Rt△DCF(HL).6.连接AF,BF.△AEF≌△BEF△AFC≌△BFD(SAS).7.(1)Rt△OBD≌Rt△OCE(HL);(2)Rt△OBD≌△OCE(HL);(3)相等.第五章综合练习°8.∠2=∠1.∴∠2=∠C,AB∥CD.9.延长EF交BC于点G.∵∠2=∠4,∴AB∥EF.∠3=∠B=∠EGC.∴DE∥BC.∴∠AED=∠ACB.10.∠ABE=∠FBD,∠ABE+∠AEB=90°,∠FBD+∠AFE=90°.∴∠AEB=∠AFE.∴AE=AF.11.△ACE≌△BDE(AAS),∴EC=ED.12.(1)∠D=∠AEC(同角的余角相等).△ACE≌△CBD.∴AE=CD;(2)BD=CE=12AC=6 cm.13.(1)Rt△ADE≌Rt△ADF;(2)DB=DC,Rt△DBE≌Rt△DCF(HL).14.(1)略;(2)连接BD.∠DBC=12∠B=30°.∵∠CDE=∠CED.∴∠CED=12∠ACB=30°.∴△DBE为等腰三角形.∵DM⊥BE,∴BM=EM.15.△BPD≌△BDC(SAS),△BCD≌△ACD(SSS).∠P=∠BCD=∠ACD=12∠ACB=30°.16.(1)作DF⊥AB,垂足为点E.AC=AE,DE=DC.∵∠B=∠A=45°,∴BE=DE.∴AB=AE+BE=AC+CD.(2)(1)中的等量关系仍成立.∵∠ACB >∠B,∴AB>AC.在AB上截取AG=AC.分别作DF⊥AC,DE⊥AB.△DCF≌△DGE.∵∠EGD=∠C=2∠B.∴∠B=∠BDG.BG=DG=DC.∴AB=AG+GB=AC+CD.检测站△ODG≌△OEG,△DPG≌△EPG;△ODP≌△OEP,HL或AAS.5.略.6.FA=FD,∠ADF=∠DAF=∠DAC+∠CAF.∵∠DAC=∠BAD.∴∠B=∠ADF-∠BAD=∠DAF-∠DAC=∠CAF.7.(1)略;(2)∵CA=CE,∴∠CAE=∠E.∵∠ACB=∠CAE+∠E=2∠E,∠ACB=2∠BCD,∴∠E=∠BCD.CD∥AE.8.(1)①③或②③;(2)略.9.(1)△ABQ≌△PBC;(3)∠MBN=60°,△ABM≌△PBN(ASA).BM=BN.∴△BMN为等边三角形.∠MNB=∠QBC.MN∥AC.总复习题1.(3,4),等腰2.-53.50°,60°,70°°13.-314.设每天修x m,3 600x-3 6001.8x=20.x=80 m.15.(1)中位数12℃,众数11℃⊥BC,FM⊥AD,FN⊥AE,垂足分别为点G,M,N.FM=FG=FN.17.∵∠BAD=∠BDA,∴AB=DB=CD.∵BE=DE,∴△ABE≌△ADE.AB=AD,△ABD为等边三角形.连接CF.△AEC≌△FEC.∵∠ACF=60°,∴△AFC为等边三角形.∴AF=AC,AE=12AC.18.延长BO交AC于点D.∠BOC=110°.19.作CF⊥AC,交AD延长线于点F.∵∠BAC=90°,AD⊥BM.∴∠ABM=∠MAE.∵AB=AC,∴△ABM≌△CFA.∠1=∠F.AM=CF.∵AM=CM,∴CF=CM.∠FCD=45°=∠MCD.∴△FCD≌△MCD(SAS).∠2=∠F=∠1.总检测站△ABC≌△ABD,△ACE≌△ADE,△CEB≌△12.(1)x=-2;(2)无解.13.30 m14.∵△ABE≌△ACE,∴BE=CE,BD=CD.△BDE≌△CDE(SSS).15.(1)①②③④,①③②④,①④②③,②③①④,②④①③.(2)略.≤≥<>×≠÷′△∠°αβ⊥∥∵∴△≌△S△ACC′。