第三章经典合成方法1

合集下载

第三章溶胶凝胶法

第三章溶胶凝胶法
中含有分散相(dispersed phase)胶体粒子, 一般分为: A.气溶胶(Aerosol), 分散介质为气体
气-固溶胶 (s/g) 如烟,含尘的空气 气-液溶胶 (l/g) 如雾,云 B.液溶胶, 分散介质为液体 液-固溶胶(Sol, dispersion), (s/l) AlOOH 、AgI溶胶 液-液溶胶(Emusion), (l/l) 牛奶,石油原油等乳状液 液-气溶胶(Foam), (g/l) 泡沫
蒸馏 聚合
OCH3
OCH3
CH3O—Si——O——Si— OCH3
OCH3
OCH3
OCH3
第三章溶胶凝胶法
2、无机盐的水解-缩聚反应
水解反应:Mn+ +nH2O → M(OH)n + nH+
凝胶化
脱水凝胶化 碱性凝胶化
胶粒脱水,扩散层中电解质浓度 增加,凝胶化能垒逐渐减小
xM(H2O)nz+ + yOH- + aA- → MxOu(OH)y-2u(H2O)nAa(xz-y-a)+ + (xn+un)H2O
根据所需获得材料的性能需求,将前驱体进行水 解、溶胶、凝胶、老化和干燥,最终通过热处理工 艺获得材料 。
该方法制备块体材料具有纯度高、材料成分易控 制、成分多元化、均匀性好、材料形状多样化、且 可在较低的温度下进行合成并致密化等优点 。
可以用于制备各种光学透镜、功能陶瓷块、梯度 折射率玻璃等 。
成本较高,生产周期长,故不适宜材料大规模的 生产 。
溶胶 无固定形状
固相粒子自由运动
凝胶 固定形状 固相粒子按一定网架结构固定 不能自由移动
溶液
溶胶
凝胶
溶胶-凝胶法:就是用含高化学活性组分的液体 化合物作前驱体(金属有机醇盐或无机化合物) ,在液相下将这些原料均匀混合,并进行水解、 缩合化学反应,在溶液中形成稳定的透明溶胶体 系,溶胶经陈化胶粒间缓慢聚合,形成三维空间 网络结构的凝胶,凝胶网络间充满了失去流动性 的溶剂。凝胶经过干燥(干凝胶)、烧结固化制 备出分子乃至纳米亚结构的材料。

《合成化学》第三章

《合成化学》第三章

第三章
卤化反应(5学时)
第一节 不饱和烃的卤加成反应(1学时)
-X 等),则不利于该反应的进行。因此,烯烃的反应活性
顺序是:R2C=CR2 > R2C=CHR > R2C=CH2 〉RCH=CH2 > CH2=CH2>
CH2=CHCl 。若烯键碳原子上连接有叔烷基或三芳甲基,则 卤加成反应中常会有重排、消除等副反应伴随发生。
第三章
卤化反应(5学时)
第一节 不饱和烃的卤加成反应(1学时)
多卤乙烯进行自由基加成时,加成方向也取决于取
代基稳定自由基的能力,其次序位:Cl > F > H
F2C
CFCl +
HBr

CF2BrCHFCl 88%
+ : CH2FCF2Br 40
第三章
例如:
H2C CHCN + Cl2
卤化反应(5学时)
第一节 不饱和烃的卤加成反应(1学时)
CCl4 hv , 10oC
ClCH2CHClCN
Br Br2 / CCl4 hv , 0oC , 1小时
H
H Br
第三章
卤化反应(5学时)
第一节 不饱和烃的卤加成反应(1学时)
烯烃与卤素的自由基加成反应历程如下:
a.烯键邻近基团的影响
卤化反应(5学时)
第一节 不饱和烃的卤加成反应(1学时)
与烯键碳原子相连的取代基性质不仅影响着烯键极化方 向,而且直接影响着亲电加成反应的难易程度。烯键碳原子 上接有推电子基团(如HO-、RO-、 C6H5-、 CH3CONH-、R等),则有利于烯烃卤加成反应的进行;反之,若烯键碳原 子上接有拉电子基团(如-NO2、-CN、-CO2H、-CO2R、-SO3H

【高中化学】第三章第5节 有机合成第1课时 高二化学人教版(2019)选择性必修3

【高中化学】第三章第5节 有机合成第1课时 高二化学人教版(2019)选择性必修3

CH3COOC2H5+NaOH (4)醛、酮的还原:
CH3COONa+C2H5OH
一、有机合成的主要任务
2、引入官能团
(3)引入羟基(-OH)的5种方法:
(5)酚盐溶液与CO2、HCl等反应
O
OH
催化剂
CH3 C CH3 + H2
CH3 CH CH3
ONa
OH
+ HCl
+NaCl
ONa + CO2+H2O
浓硫酸 170℃
CH2=CH2↑ + H2O
醇 ②卤代烃的消去: CH3CH2Br +NaOH △
CH2=CH2↑+ NaBr+ H2O
催化剂
③炔烃的不完全加成: CH≡CH 有机合成的主要任务 2、引入官能团 (2)引入碳卤键的三种方法:
①烃与卤素单质的取代反应 CH4 +Cl2 光照 CH3Cl+ HCl
3.卤代烃与炔钠的反应:2CH3C≡CH+Na 液氨 2CH3C≡CNa+H2↑
CH3C≡CNa+CH3CH2Cl→CH3C≡CCH2CH3+NaCl
一、有机合成的主要任务
1、碳骨架的构建 (一)增长碳链:
拓展
4.由格氏试剂与卤代烃、醛、酮反应增长碳链
RCl + Mg 无水乙醚 RMgCl
R’—Cl + RMgCl
(3)伯醇被酸性高锰酸钾溶液氧化的反应:
一、有机合成的主要任务
一、有机合成的主要任务
2、引入官能团
思考与讨论: 我们在各类有机物化学性质的学习中,已经接触了很多有机化学反应。 请你从官能团转化的角度对其进行分类整理,讨论引入常见的官能团(如碳碳双键、碳 卤键、羟基、醛基、酸基、酯基)有哪些方法,并举例说明。

高中化学选择性必修三 第3章 第5节 第1课时 有机合成的主要任务 讲义

高中化学选择性必修三 第3章 第5节 第1课时 有机合成的主要任务 讲义

一、有机合成 1.有机合成的概念有机合成指利用相对简单、易得的原料,通过有机化学反应来构建碳骨架和引入官能团,由此合成出具有特定结构和性质的目标分子的过程方法。

2.有机合成的任务和过程3.有机合成的原则(1)起始原料要廉价、易得、低毒、低污染。

(2)尽量选择步骤最少的合成路线,使得反应过程中副反应少、产率高。

(3)符合“绿色化学”的要求,操作简单、条件温和、能耗低、易实现、原料利用率高、污染少,尽量实现零排放。

(4)按照一定的反应顺序和规律引入官能团,不能臆造不存在的反应事实。

二、有机合成中的碳骨架的构建和官能团的引入 1.构建碳骨架 (1)增长碳链①卤代烃与NaCN 的反应CH 3CH 2Cl +NaCN―→CH 3CH 2CN(丙腈)+NaCl ; CH 3CH 2CN ―――→H 2O 、H+CH 3CH 2COOH 。

①醛、酮与氢氰酸的加成反应CH 3CHO +HCN―→;―――→H 2O 、H +。

①卤代烃与炔钠的反应2CH 3C≡CH +2Na――→液氨2CH 3C≡CNa +H 2;CH 3C≡CNa +CH 3CH 2Cl―→CH 3C≡CCH 2CH 3+NaCl 。

①羟醛缩合反应CH 3CHO +――→OH -。

(2)缩短碳链 ①脱羧反应R—COONa +NaOH――→CaO①R—H +Na 2CO 3。

①氧化反应―――――――→KMnO 4H +,aq;R—CH==CH 2―――――――→KMnO 4H +,aqRCOOH +CO 2↑。

①水解反应:主要包括酯的水解、蛋白质的水解和多糖的水解。

①烃的裂化或裂解反应C 16H 34――→高温C 8H 18+C 8H 16;C 8H 18――→高温C 4H 10+C 4H 8。

(3)成环①二烯烃成环反应(第尔斯-阿尔德反应)①形成环酯+浓硫酸①+2H 2O 。

①形成环醚①环酯水解开环①环烯烃氧化开环2.常见官能团引入或转化的方法 (1)碳碳双键 ①醇的消去反应CH 3CH 2OH―――→浓H 2SO 4170 ①CH 2==CH 2↑+H 2O 。

有机合成路线设计 (1)

有机合成路线设计 (1)
含醛基。 ⑤加入Na,产生H2:含羟基或羧基。 ⑥加入NaHCO3溶液,产生气体:含羧基。 ⑦加入溴水产生白色沉淀:含酚羟基。
(2)根据反应中的特殊条件进行推断 ①NaOH的水溶液:卤代烃、酯的水解反应。 ②NaOH的醇溶液:卤代烃的消去反应。 ③浓硫酸,加热:醇的消去、成醚、酯化;苯环的硝化。 ④溴水或溴的CCl4溶液:烯烃、炔烃的加成。 ⑤O2/Cu或Ag,加热:醇的催化氧化。 ⑥新制的Cu(OH)2悬浊液或银氨溶液:醛被氧化为羧酸(或羧酸盐)。 ⑦稀硫酸:酯的水解;糖、蛋白质等的水解。 ⑧H2,催化剂:烯烃、炔烃、苯环、醛、酮的加成。 ⑨卤素,光照:烷烃、苯环侧链烷基上氢原子的取代。 ⑩卤素,催化剂:苯环上氢原子的取代。
【模型构建】 有机合成
合成的任务
构建碳骨架 增长和缩短、成环等过程 官能团的引入、转化、消除及保护
合成路线的设计
原则
成本低、产率高 环境友好、路线短
方法 逆向设计合成路线
【学习评价】 教材P92
分析: 切割法
OH 苯甲酸 H
Cl 苯甲醇
碳氧双键一端补—OH,形成—COOH;另一端补上H,形成—OH。
苯甲酸甲酯的合成路线设计:
KMnO4溶液
Cl
Cl2,光照
OH
苯甲酸
H
NaOH溶液∆
苯甲醇
浓H2SO4 ∆
CCl3
发生在苯环侧 链上的取代
最后一步 引入硝基
取代反应
还原反应
引入酰胺基 逆推得出F的结构
抓住物质的碱性,讨论物质的碱性对该反应产生的影响。
(3)合成路线分析
目标产物
模仿第⑤步
NH2
原料反应物
1. CH2=CH2 +H2O

第三章(2)合成氨-1

第三章(2)合成氨-1

—到十九世纪末叶,物理化学得到蓬勃发展,建立了 化学热力学、反应动力学的概念,大力开展基础 理论研究后,才使氨的合成在正确的理论指导下 进行。
—1901年,吕·查得利第一个提出氨的合成条件是高压、 高温,并采用适当的催化剂。
—1904—1905年,哈伯研究氨的合成和分解,并且计 算了不同压力和温度下的氨平衡含量。
—首先在原料构成上,由于以气体、液体燃料为原料 生产合成氨不论从工程投资、能量消 耗、生产 成本来看,都有着明显优越性。因此,很快得到 各国的重视;
—开始由固体燃料转移到以气体和液体燃料为主;
—其中天然气所占的比重不断上升;
—随着石脑油蒸汽转化催化剂试制成功;在这期间、 缺乏天然气的国家发展了以石脑油为原料生产合 成氨的方法;
(5 )
主反应是我们所希望的,副反应是需抑制的。这
就要从热力学和动力学出发,寻求生产上所需的最
佳工艺条件。
(1)烃类蒸汽转化是吸热可逆反应、在
高温下进行反应有利。但即使在1000℃的反应速 率也很慢,必须用催化剂来加快反应。
烃类蒸汽转化催化剂要求:
——耐高温性能好; ——活性高; ——强度好; ——抗析碳性能优。
30
目前工业转化催化剂都采用镍催化剂,镍是其唯 一的活性组分。
在制备好的镍催化剂中.镍是以NiO状态存在, 含量以4%~30%为宜。一般镍含量高的催化剂活性 也愈高。
为使镍晶体尽量分散、达到较大的比表面积及阻 止镍晶体的熔结,常用A12O3、MgO、CaO等作为载 体,这些组分同时还有助催化剂作用,可进一步改善 催化剂的性能。
——氨溶解时放出大量的热; ——氨的水溶液是弱碱性,易挥发; ——液氨或干燥的氨气对大部分物质没有腐蚀性,但在
有水的条件下,对铜、银、锌等金属有腐蚀作用; ——氨自燃点为630℃,在空气中燃烧分解为氮气和水;

人教版必修一 第三章:相互作用——简明实用笔记(知识要点)

人教版必修一 第三章:相互作用——简明实用笔记(知识要点)

第三章:相互作用一、力1.概念:力是物体间的相互作用力是物体对物体的作用,不能离开施力物体和受力物体而独立存在。

有力就一定有“施力”和“受力”两个物体,互为,二者缺一不可。

2.性质:①物质性:力不能脱离物体而独立存在,施力物体与受力物体同时存在②相互性:力的作用是相互的,力总是成对出现③同时性④瞬时性⑤矢量性:(合成和分解)遵循平行四边行定(不在于方向例I,Φ)⑥独立性:每个力各自独立地产生效果,好像其它力不存在一样。

用牛顿第二定律表示时,则有合力产生的加速度等于几个分力产生的加速度的矢量和。

(积累引起一些变化)⑦积累性:时间积累I=ΔP 空间积累W=ΔEK3.力的作用效果:①形变②改变运动状态(产生加速度)4.力的三要素:大小、方向、作用点(描述单位图示示意图)测量:测力计单位:N注:同一题中选同一标度5. 力的分类:(注:效果不同的力,性质可能相同;性质不同的力,效果可能相同)①按性质分:重力(万有引力)、弹力、摩擦力、电场力、磁场力、分子力、核力……②按效果分:拉力、压力、支持力、动力、阻力、向心力、回复力、推力、浮力……③按作用方式分:场力(非接触力)、接触力。

④研究对象分:内力外力(方法:整体、隔离)注:按现代物理学理论,物体间的相互作用分四类:长程相互作用有引力相互作用、电磁相互作用;短程相互作用有强相互作用(距离增大强相互作用急剧减小作用范围只有约10-15m,超出就不存在了,存在于相邻的核子之间)和弱相互作用(强度只有强相互作用的10-12倍)。

宏观物体间只存在前两种相互作用。

宏观物体间只存在前两种相互作用。

二重力1、产生:由于地球的吸引而产生的(严格的说不等于地球的吸引力)说明:①地球表面附近的物体都受到重力的作用.②重力的施力物体就是地球.注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。

由于重力远大于向心力,一般情况下近似认为重力等于万有引力。

第三章1 经典合成方法

第三章1 经典合成方法

因此,碘钨灯(或溴钨灯)管工作时不断发 生的化学输运过程就是由低温向高温方向进 行的。
3.2

高温合成


高温的获得和测量 高温合成反应类型 高温还原反应 化学转移反应 高温固相反应
3.2.1 高温的获得和测量
1、高温的获得
高温是无机合成的一个重要手段,为了进行高温无机合成, 就需要一些符合不同要求的产生高温的设备和手段。这些手段 和它们所能达到的温度,见下表。
二、化学气相沉积的技术原理
CVD技术是原料气或蒸气通过气相反应沉积出固态物质,因此 CVD技术用于无机合成材料有以下特点 1、沉积反应如在气固界面上发生则沉积物将按照原有基底(又称衬底) 的形状包复一层薄膜。 实例:涂层刀具 2、采用CVD技术也可以得到单一的无机合成物质,并 用以作为原材料 制备。 实例:气相分解硅多晶硅。 3、如果采用基底材料,在沉积物达到一定厚度以后又容易与基底分离, 这样就可以得到各种特定形状的游离沉积物器具。 实例:碳化硅器皿合金刚石膜部件。 4、在CVD技术中也可以沉积生成集体或细粉状物质。例如生成银朱或丹 砂或者使沉积反应发生在气相中而不是在基底的表面上,这样得到的 无机合成物质可以是很细的粉末,甚至是纳米尺度的微粒称为纳米超 细粉末。这也是一项新兴的技术。纳米尺度的材料往往具有一些新的 特性或优点。例如生成比表面极大的二氧化硅(俗称白碳黑)用于作为 硅橡胶的优质增强填料,或者生成比表面大、具有光催化特性的二氧 化铁超细粉末等。
目前光纤芯预制棒制备技术四种工艺共存, 这四种工艺分别为管外沉积法(OVPO)、 气相轴向沉积法(VAD)、改进汽相沉积法 也叫管内沉积法(MCVD)和等离子体化学 汽相沉积工艺(PCVD)。光纤芯棒的光学 特性主要取决于芯棒制造技术,而光纤预制 棒的成本取决于外包层技术。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30
举例:石英光纤预制棒的制法
管内沉积法(MCVD),管外沉积法(OVPO), 轴向沉积法(VAD),等离子体激活化学气相 沉积法(PCVD)
20世纪60年代初,由美国学者John M. Blocher Jr.(” Sir CVD”) 首先提出CVD这一 名称。
5
6
7
8
9
10
CVD 对原料、产物及反应类型的要求
• 反应物在室温下最好是气态,或在不太高温度就
有相当的蒸汽压,且容易获得高纯品
• 能够形成所需要的材料沉积层,反应副产物均易
广泛用于提纯物质、研制新晶体、沉积各种单晶、 多晶或玻璃态无机薄膜材料。可以是氧化物、硫化物、 氮化物、碳化物,也可以是某些 二元(如GaAs)或多 元(如GaAs1-xPx)化合物。其他名称:化学气相淀积
CVD简史
• 古老原始形态:远古人类在取暖或烧烤时熏在岩
洞壁或岩石上的黑色碳层
• 中国古代的炼丹术(“升炼“):早期的化学气相沉
单氨配合物已用于热解制备氮化物。
22
3.1.2 CVD反应体系-化学合成反应
化学合成反应,不受源的性质影响,适应性强.
23
Байду номын сангаас
工业制备半导体 级超纯硅(9个9)
24
化学合成反应示例-同一材料GaN有多种合成路线
25
Ga 气相外延砷化镓单晶薄膜
26
光纤剖面示意图
光纤由纤芯、包层和 被覆层组成,导光的部 分是处于轴线上的实心 纤芯,包层的作用是提 供一个圆柱形的界面, 以便把光线束缚在纤芯 之中。被覆层是一种弹 性耐磨的塑料材料,它 增强了光纤的强度和柔 软性。
27
光导纤维
制造光纤时先要制做出光纤预制棒,预制棒一般直 径为几毫米至几十毫米。光纤的内部结构就是在预制 棒中形成的。通过拉丝机拉出来的裸纤就包括了纤芯 和包层。有些光纤品种为了保护裸玻璃光纤,使其不 受光和水汽等外部物质的污染,在光纤拉成的同时, 就给它涂上弹性涂料(被覆层)。
28
光纤的拉制
29
积技术。李时珍引用胡演《丹药秘诀》中从汞和
硫作用生成硫化汞的一段论述是人类历史上对 CVD技术迄今发现的最古老的文字记载。
4
• 胡演《丹药秘诀》中关于“银朱”(HgS)
的升炼法的描述:
“用石亭脂1000克在新锅中熔化,次下水 银500克炒作青砂头,至不见水银星珠时研 末罐盛,石板盖住,铁丝绊定,盐泥固济, 大火煅之,待冷取出。贴罐者为银朱,贴 口者为丹砂。”
挥发
• 沉积装置简单,操作方便。工艺上有良好的重现
性,适于批量生产,成本低廉
11
CVD的特点
• 原子/分子水平上化学合成材料-高度适应性和创
新性
• 高纯度材料-基于CVD源可以通过气相过程得到高
纯度的原料和产品
• 组成和结构可控性-制备工艺重现性 • 广泛的适应性与多用性 • 材料制备与器件制作的一致性 • 设备较简单、操作简易、易于实现自动控制
第三章 经典合成方法
常规合成方法: 指普通的常用的成熟的合成方法 包括:化学气相沉积(CVD),高温,高压,低 温,低压等条件下的合成方法
1
热力学在无机化合物制备中的应用
无机化合物制备反应的判据
△rGm=△rHm -T△rSm
对于封闭体系恒温恒压过程,其制备反应方向判 据:
(△rGm)T,p<0 制备反应能够进行 (△rGm)T,p=0 制备反应达平衡态
14
CVD的化学反应体系-热解反应
金属有机化合物:金属的烷基化合物,其M-C键能一 般小于C-C键能[E(M-C)<E(C-C)],可用于淀积金 属膜。元素的烷氧基化合物,由于E(M-O)>E(O- C),所以可用来沉积氧化物。
MOCVD (Metal-Organic CVD):金属有机化合 物(含M-C键),金属的有机配合物(含金属的有机 化合物,无M-C键)---较大的挥发性
(△rGm)T,p>0 制备反应不能进行
如果制备反应在热力学上是可行的,但若反应进行 很慢,则该反应在实际上亦不可用,所以必须同时 考虑热力学和动力学这两个因素。
2
3.1化学气相沉积法(CVD)
(Chemical Vapor Deposition)
CVD:是利用气态或蒸汽态的物质在气相或气固界 面上发生化学反应,生成固态沉积物的技术
16
CVD的化学反应体系-热解反应
氢化物和金属有机化合物体系,已成功地制备出多 种化合物半导体
17
18
19
CVD的化学反应体系-热解反应
其它气态配合物和复合物这一类化合物中的羰基化物 和羰基氯化物多用于贵金属(铂族)和其它过渡金属 的沉积。
20
Fe2O3薄膜制备工艺
21
CVD的化学反应体系-热解反应
12
CVD的分类
根据从气相产生固相时所选用的加热源不同,或选用 的原料不同,或压力、温度不同:
高压化学气相沉积(HP-CVD),低压化学气相沉积 (LP-CVD) ,等离子体化学气相沉积(P-CVD) ,激 光化学气相沉积(L-CVD) ,金属有机化合物气相沉
积(MO-CVD),高温化学气相沉积(HT-CVD) ,中温
• 从产业链的角度来看,上游原材料光纤预制
棒、光纤、光缆的利润比例大约是7:2:1,因 此,预制棒厂商拿走了整个行业70%的利润, 在产业链中占优势地位。按统计的2006年底 全球光纤预制棒产能计算,全球光纤预制棒 产能约为18000万芯公里,日本信越、美国 康宁是第一梯队,产能为1000吨,德拉克、 日本住友、藤仓、古河、中国长飞属于第二 阵营,产能为500-700吨不等。
15
MOCVD 以金属有机化合物作为前驱物,前驱物经历分解或 热解反应生成薄膜。适合制备单组分、多组分半导 体材料、光电材料、氧化物、金属等薄膜材料。 特点: 降低沉积温度,减小高温对衬底及薄膜表面的破坏。 缺点: 前驱物价格昂贵,合成、提纯过程困难。 多数前驱物为挥发性液体,采用水浴、油浴或气体 鼓泡的方式供给,需要精确控制压强。 对前驱物的要求高(挥发性、稳定性、分解)。
化学气相沉积(MT-CVD) ,低温化学气相沉积(LT-
CVD)等
从化学反应的角度看,CVD包括热分解反应、 化学合成反应、化学输运反应三种类型
13
3.1.1 CVD的化学反应体系-热解反应
选择反应源物质和分解温度,考虑键能数据 氢化物M-H键的离解能、键能都比较小,热解温度 低,唯一副产物是没有腐蚀性的氢气。
相关文档
最新文档