第三章 水热与溶剂热合成法

合集下载

第三章-水热法介绍

第三章-水热法介绍
页面 25 2018/10/21
超临界水分子的扩散系数比普通水高10~100倍, 使它的运动速度和分离过程的传质速率大幅度提 高,因而有较好的流动性、渗透性和传递性能, 利于传质和热交换。 总体来看,水在超临界区的行为更像一个中 等极性的有机溶剂,许多在常温常压下不溶的有 机物和气体在超临界水中都有较好的溶解度,有 的可增加几个数量级,像氧气等甚至可与超临界 水无限混溶,这就为超临界水的应用开辟了广阔 的道路。
页面 15
2018/10/21
P 固 A 气 O
B 液
超临界 流体
C
T
图 2.2 超临界流体相图
页面 16
2018/10/21
超临界水(SCW)是指温度和压力分别高于其临界
温度(647K)和临界压力(22.1MPa),而密度高于
其临界密度(0.32g/cm3)的水。
在一般情况下,水是极性溶剂,可以很好的 溶解包括盐在内的大多数电解质,对气体和大多 数有机物则微溶或不溶。但是到达超临界状态 时,这些性质都发生极大的变化:
页面 8
2018/10/21
另外,物相的形成,粒径的大小、形态也能够
有效控制,而且产物的分散性好。
更重要的是通过溶剂热合成出的纳米粉末,能
够有效的避免表面羟基的存在,使得产物能稳 定存在。
作为反应物的盐的结晶水和反应生成的水,相
对于大大过量的有机溶剂,水的量小得可以忽 略。
页面 9 2018/10/21
页面 23 2018/10/21
一般情况下,气体的粘度随温度的升高 而增大,液体的粘度随温度的升高而减小。 标准条件下水的粘度系数是1.05×10-3Pa· s, 而在超临界状态下,例如在 450℃ 与 27MPa 时 , 水 的 粘 度 系 数 为 2.98×10-3Pa· s,在 1000℃时,即使水的密度为 1.0g/cm3时,水 的粘度系数也只有约 45×10-5Pa· s ,与普通 条件下空气的粘度系数 (1.795×10-5Pa· s) 接 近。

第三章-水热和溶剂热法

第三章-水热和溶剂热法

水热、溶剂热反应的基本类型
(1)合成反应
通过数种组分在水热或溶剂热条件下直接化 合或经中间态发生化合反应。 利用此类反应可合成各种多晶或单晶材料。
Nd2O3 + H3PO4 NdP5O14 CaO· nAl2O3 + H3PO4 Ca(PO4)3OH + AlPO4 La2O3 + Fe2O3 + SrCl2 (La, Sr)FeO3 FeTiO3 + KOH K2O· nTiO2 (n = 4, 6)
例如
Cr + H2O Cr2O3 + H2 Zr + H2O ZrO2 + H2 M + n L MeLn (L = 有机配体) 使溶胶、凝胶(so1、gel)等非晶 态物质晶化的反应
(11)晶化反应 例如
CeO2· xH2O CeO2 ZrO2· H2O M-ZrO2 + T-ZrO2 硅铝酸盐凝胶 沸石
四、有机溶剂的性质标度
有机溶剂种类多,性质差异大,需进行溶剂 选择。 溶剂会使反应物溶解或部分溶解,生成溶剂 合物,这会影响化学反应速率。 在合成体系中,反应物在液相中的浓度、解 离程度,及聚合态分布等都会影响反应过程。
§3.2 水热、溶剂热体系的成核与晶体生长
(6)脱水反应
一定温度、压力下物质脱水结晶的反应 例如
(7)分解反应
分解化合物得到结晶的反应
例如 FeTiO FeO + TiO 3 2 ZrSiO4 + NaOH Na2SiO3 + ZrO2 FeTiO3 + K2O FeO + K2O· nTiO2 (n = 4, 6)
(8)提取反应

水热和溶剂热合成条件

水热和溶剂热合成条件

水热和溶剂热合成条件
水热和溶剂热合成是化学实验中重要的内容,它主要应用于合成有机物质。

水热和溶剂热合成条件包括温度、催化剂、活性剂、溶剂以及熔融温度等。

首先要考虑的是温度,推荐的温度一般在80~90°C。

如果温度太低,反应就会很慢,而且结果不太准确;如果温度太高,反应速度也可能过快,造成合成产物的质量不够。

其次,选择催化剂与活性剂也很重要。

常用的催化剂有吸附硅氧烷型催化剂和挥发性催化剂,例如磷酸、乙醇、甲醇等;活性剂也有各种,如羟基苯甲醛、季铵盐、过氧化氢等,可根据实验要求和反应条件来选择。

最后,就是溶剂的选择。

常用的溶剂可以根据反应物的溶解性特征来选择,比如氢氧化钠水溶液或乙醇水溶液。

另外,仔细协调溶剂的体积也很重要,使用的溶剂总容积应在一定范围内,以便保证反应的有效性和稳定性。

此外,熔融温度也应考虑进去,反应体系中可能出现需要熔融的物质,可选择熔融温度适宜的溶剂,使反应物得以熔融。

综上所述,水热和溶剂热合成条件有多种因素需要考虑,温度、催化剂和活性剂、溶剂以及熔融温度都非常重要。

只有综合这些条件,才能使水热和溶剂热合成实验顺利进行,以及得到质量较好的实验结果。

水热和溶剂热合成实验是一项复杂、繁琐的工作,必须精确控制各种参数,使实验得以完美实施。

为此,首先应熟悉和掌握水热和溶
剂热合成的原理,其次,需要进行大量的试验,来搜集累积合成所需的各种条件参数,以便最终得出最佳的参数组合。

最终,要使水热和溶剂热合成成功,需要考虑以上几个条件,选择合适的温度、催化剂、活性剂、溶剂以及熔融温度,使实验条件做到最佳,以达到最理想的实验结果。

水热与溶剂热合成法的原理

水热与溶剂热合成法的原理

水热与溶剂热合成法的原理水热合成是一种常用的溶剂热合成方法,其原理基于高温高压的条件下,溶剂中的溶质能够发生各种化学反应。

在水热条件下,水作为一种强溶剂,具有较高的介质极化能力和较高的溶解度,对于很多无机和有机物质都能够发挥溶剂作用。

通过水热合成方法,我们可以合成各种无机纳米颗粒、无机纤维、无机薄膜和无机杂化材料。

水热合成的原理主要涉及以下几个方面:1.高温高压条件下的介质极化效应:在高温高压条件下,水分子具有较高的极性和极大的介电常数,能够使得周围的溶质分子发生极化,达到更高的反应速度和较好的反应活性。

2.溶质溶剂间的相互作用:水作为一种强溶剂,对于溶质具有一定的溶解度,能够提高反应物质之间的接触程度,促进反应物质之间的相互作用,进而促进反应的进行。

3.溶液饱和度对反应速率的影响:在水热合成过程中,溶液中的反应物质往往在过饱和状态下存在,当反应物的浓度超过其在饱和溶液中的溶解度时,会发生结晶过程,从而生成所需的产物。

溶剂热合成是一种利用高温高压条件下的溶剂作用,促进反应物质之间发生化学反应的方法。

根据反应的需求,选择适当的溶剂,使得反应物质能够更好地溶解和混合在一起,以提高反应的速率和效率。

溶剂热合成的原理主要包括以下几个方面:1.溶液的扩散和混合效应:高温高压条件下,溶剂分子的动力学能够得到增强,分子的扩散和混合能力也会增强,有利于反应物之间的相互作用和反应的进行。

2.溶液中溶质的溶解度:溶剂作为一种溶解介质,能够使得溶质分子得到更好的散布和溶解,有利于反应物之间的接触程度和相互作用。

3.溶液中的离子活性:在高温高压条件下,溶剂分子能够极化溶质分子,使得溶质分子成为带电的离子,在反应过程中有助于离子的迁移和反应的发生。

4.溶液中的饱和度和过饱和度:在溶剂热合成的过程中,溶液的浓度往往超过了其在饱和状态下的溶解度,溶液处于过饱和状态。

当反应物质达到饱和状态时,会发生结晶过程,从而形成所需的产物。

水热与溶剂热合成方法的概念水热法ppt课件

水热与溶剂热合成方法的概念水热法ppt课件
15
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之 间的团聚和联接遭到破坏,从而使微粒自身在水 热介质中溶解,以离子或离子团的形式进入溶 液,进而成核、结晶而形成晶粒;
16
“结晶”是指当水热介质中溶质的浓度高于晶粒 的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于 结晶的物料浓度又变得低于前驱物的溶解度,这 使得前驱物的溶解继续进行。如此反复,只要反 应时间足够长,前驱物将完全溶解,生成相应的 晶粒。
13
水热生长体系中的晶粒形成可分为三种类型:
“均匀溶液饱和析出”机制 “溶解-结晶”机制
“原位结晶”机制
14
“均匀溶液饱和析出”机制
由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应 ,生成相应的配位聚集体(可以是单聚体,也可 以是多聚体)当其浓度达到过饱和时就开始析出 晶核,最终长大成晶粒。
• 用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱
石(祖母绿、海蓝宝石)、及其它多种硅酸盐和钨酸盐等上 百种晶体。
绿柱石(铍铝硅酸盐矿物) 石榴子石(A3B2[SiO4]3 7
水热法(hydrothermal)(高压溶液法)
8
溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
31
热处理反应
利用水热条件处理一般晶体
而得到具有特定性晶体的反 应。
利用水热条件下物质热
力学和动力学稳定性差 异进行的反应。
转晶反应

水热与溶剂热技术

水热与溶剂热技术

• 由于水热与溶剂热化学的可操作性和可调 变性,因此成为衔接合成化学和合成材料 物理性质之间的桥梁。 • 随着水热与溶剂热合成化学研究的深入, 开发的水热与溶剂热合成反应已有多种类 型。基于这些反应而发展起来的水热与溶 剂热合成方法与技术具有其它合成方法无 法替代的特点,显示出广阔的发展前景。
水热与溶剂热合成法的技术特点
• 由于在水热与溶剂热条件下反应物反应性能的改 变、活性的提高,水热与溶剂热合成方法有可能 代替固相反应以及难于进行的合成反应,并产生 一系列新的合成方法。 • 由于在水热与溶剂热条件下中间态、介稳态以及 特殊物相易于生成,因此能合成与开发一系列特 种介稳结构、特种凝聚态的新合成产物。 • 能够使低熔点化合物、高蒸气压且不能在融体中 生成的物质、高温分解相在水热与溶剂热低温条 件下晶化生成。
• 在300°C,dliq. = 0.75 gcm-3, 而dgas = 0.05 gcm-3 随T上升, dliq.逐渐减小, dgas逐渐增 大。当T = TC = 374 °C时, dgas= dliq.= 0.321 gcm-3 (临界水)。当T > TC时,只有气 态水存在,叫做超临界supercritical)水或流 体(fluid)水。T < Tc时的水叫亚临界 (subcritical)水。
实验室常用水热釜
理想水热釜的特点
常用压力容器
常用内衬材料
高压容器的分类
• 按密封方式分类:自紧式高压釜;外紧式高压釜。 • 按密封的机械结构分类:法兰盘式,内螺塞式, 大螺帽式,杠杆压机式。 • 按压强产生分类:内压釜:靠釜内介质加温形成 压强,根据介质填充计算压强。外压釜:压强由 釜外加入并控制。 • 按设计人名分类:Morey釜(莫里釜); Smith釜 (斯密斯釜);Tuttle釜(塔特尔釜或冷封试管 高压釜);Barnes釜(巴恩斯釜或巴恩斯摇摆反 应器)。

水热与溶剂热合成法

水热与溶剂热合成法

强烈对流,在生长区(低温
区)形成过饱和溶液
成核
形核
9
5.2 纳米晶粒的形成过程 (p7) (1)生长基元与晶核的形成
满足线度和几何构型要求时,生成晶核 (2)生长基元在固-液生长界面上的吸附与运动
生长基元运动到固-液生长界面并被吸附, 在界面上迁移运动 (3)生长基元在界面上的结晶或脱附
10
5.3 水热反应的成核特征 1、成核速率随着过冷程度即亚稳性的增加而增加 2、存在一个诱导期,在此期间不能检测出成核 3、组成的微小变化可引起诱导期的显著变化 4、成核反应的发生与体系的早期状态有关
单晶培育: 从籽晶培养大单晶。
7
【例】水热法制备Ag纳米粒子
5ml 0.02M AgNO3 ag和5mL 0.02M NaCl ag,加入到30mL 蒸馏水中,搅拌生成AgCl胶体,然后将0.2mmol的葡萄糖 溶在上述胶体溶液中,移入内衬Teflon的50mL合成弹中, 在加热炉中180°C下保持一段时间,空气中冷却至室温, 蒸馏水和酒精冲洗银灰色沉淀,真空60 °C干燥2小时。
第三章 水热与溶剂热合成法
1
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理
在特制的密闭反应容器里,采用水溶液作为反应
介质,对反应容器加热,创造一个高温、高压的
反应环境,使通常难溶或不溶的物质溶解并重结
晶。
2
1.2 水热合成的温度范围 常温~1100°C;压强范围: 1~500MPa
(1)低温水热合成:100°C以下; 沸石的合成
(2)中温水热合成:100—300°C; 经济有效的合成区域
(3)高温高压水热合成:300°C以上; 单晶生长、特种结构的化合物

水热溶剂热全解

水热溶剂热全解
升高。
3.1.1 离子积升高
水作为水热反应的介质,其活性增强,会 促进水热反应的进行。
水的离子积随P和T的增加迅速增大。 例如1000 ˚C,1GPa条件下水的离子积 Kw=10-7.85,H3O+和OH-浓度明显增加,几乎 类同于熔融盐.
在高温高压水热条件下,反应速率自然会 增大,根据Arrhenius方程,反应速率常 数随温度的增加呈指数函数,因此,水热 条件下物质的反应性能明显增加的主要原 因是水的电离常数随反应温度压力的上升 而增加,常温常压不溶于水的矿物或有机 物,水热条件下也能诱发离子反应或促进 水解反应。
现为无机功能材料、特种组成与结构的无 机化合物和特种凝聚态材料,如超微粒、 无机膜、单晶等的重要合成途径。
第二节
水热与溶剂热合成基础
2.1 水热法
水热法(Hydrothermal Synthesis) 是在特制的密闭反应容器里(高压釜), 采用水溶液作为反应介质,通过对反应容 器加热,创造一个相对高温(1001000℃)、高压(1-100MPa)的反应环境, 使得通常难溶或不溶的物质溶解并重结晶, 从而进行无机合成与材料处理的一种有效 方法。
一些地质学家采用水热法制备得到了许多 矿物,到1900年已制备出约80种矿物,如 石英,长石,硅灰石等 ;
1900年以后,G.W. Morey和他的同事在华 盛顿地球物理实验室开始进行相平衡研究, 建立了水热合成理论,并研究了众多矿物 系统;
1985年,Bindy首次在“Nature”杂志上发 表文章报道了高压釜中利用非水溶剂合成 沸石的方法,拉开了溶剂热合成的序幕。
简易高压反应釜实物图
带搅拌高压反应釜装置图
工艺流程
釜式
混合搅拌
取 釜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制反应釜下半部(溶解区)温度在360-380°C之
间,上半部(结晶区)在330-350°C之间
釜内压力约1500kg/cm2。 在反应釜的下半部是SiO2的饱和溶液,上升到上
半部时,因温度降低而使SiO2呈过饱和状态,而
导致α-SiO2单晶的生成。
51
四、复合氧化物的合成
降低反应温度,节省能源; 能够以单一反应步骤完成,不需要研磨和焙烧步
15
1.2 超临界流体的特点:

具有液体的溶解特性以及气体的传递特性

• • •
粘度约为普通液体的0.1~0.01;
扩散系数约为普通液体的10~100倍; 密度比常压气体大102~103倍。 电离常数 在不改变化学组成的情况下,SCF性质可由压
力来连续调节
16
二、超临界水(SCW)
温度高于临界温度374°C,
影响反应速度、产物结构、晶化机理
46
5. 搅拌与静止
搅拌能有效的改变扩散过程和晶化动力学。 搅拌体系合成的沸石晶体通常较小 搅拌有时可有选择性地晶化
47
二、纳米材料的水热、溶剂热合成
缺点:不能合成一些遇水分解或在水中不存在的物种
48
研究方向 (1)粉体颗粒形貌的控制;
(2)粉末颗粒度及分散度的控制;

流动性、渗透性和传递性能好,利于传质和热交换
20
三、超临界水的特点:
①完全溶解有机物
②完全溶解空气或氧气
③完全溶解气相反应的产物
④对无机物溶解度不高
⑤具有很好的传质、传热性能
总体来看,水在超临界区的行为更像一个 中等极性的有机溶剂
21
超临界水热合成无机功能材料
22
四、超临界水热合成技术的优点
(1)制备具有亚稳态结构的材料
(2)制备相对简单;
(3)易于控制物相及产物的分散性
56
二、溶剂热法优点
抑制产物的氧化过程或水中氧的污染;
扩大原料的范围、制备目标产物的范围;
有机溶剂的低沸点,有利于产物的结晶; 较低的反应温度 机理探讨
57
三、溶剂热法分类
(1) 溶剂热结晶
(2) 溶剂热还原(InCl3和AsCl3 被Zn 同时还原,生成InAs
3
二、水热合成与固相合成的比较
反应机理上的差异:
固相反应的反应机理:以界面扩散为其特点
水热反应:以液相反应为其特点
反应机理
固相反应 水热反应 界面扩散 液相
合成温度
高 低
反应时间
短 长
4
三、水热法的特点: 相对低的温度
加速重要离子间的反应
制备具有亚稳态结构的材料
(体系高于平衡态自由能的一种非平衡状态)
三、合成程序


选择反应物料
确定合成物料的配方


配料序摸索及混料搅拌
装釜封釜


确定反应温度、时间与状态
取釜冷却


开釜取样
过滤干燥
29
3.1 反应物料的选择 种类:
可溶性金属盐溶液
胶体
固体粉末
胶体和固体粉末混合物
选择原则: 前驱物与最终产物一定的溶解度差; 前驱物不与衬底反应; 杂质的影响; 制备工艺因素
骤;
控制产物的理想配比及结 构形态
52
53
五、低维化合物的合成
低维磷酸锆
一维乙二醇钛
54
六、无机有机复合材料的合成
无机有机复合材料具有生物催化、生物制药、主
客体化学以及光电磁性能等性质
55
第五节 溶剂热合成法
一、原理 用有机溶剂或非水溶媒(例如:有机胺、醇、氨、 四氯化碳或苯等)代替水作介质,采用类似水热 合成的原理制备纳米微粉。 特点
物质结构 物质凝聚态
反应机理 水热与 溶剂热反应 液相反应 高温、 高压溶液
物质稳定性
固相反应
结晶性好,纯净, 无需热处理
均匀性、扩散快速、 温和、可控性好
新物质、难制备物质、 高压相、特殊凝聚态、 介稳态、异价
界面扩散

溶液化学
39
第四节 水热合成方法的应用

介稳材料 超细(纳米)粉末
1 w k
f (T , )
超临界态水的离子积常数是10-6
2.4 SCW的粘度η
1
T
19
与普通条件下空气的粘度系数接近
2.5 SCW的扩散系数D:
D
1

高密度水:T D , p D 低密度水:T D , p D

SCW的扩散系数比普通水高10~100倍
工艺简单易行,能量消耗相对较低; 产品微粒的粒径易于控制 “绿色环保” 反应时间很短
23
第三节 水热法合成工艺 反应装置
24
一、反应釜 1.按密封方式: 自紧式高压釜 外紧式高压釜 2.按密封的机械结构分类:
内螺旋塞式
大螺帽式
杠杆压机式
外压釜
3.按压强产生分类 : 内压釜
4.按加热条件分类: 外热高压釜 内热高压釜
压力高于临界压力22.1MPa
密度高于临界密度0.32g/cm3
17
2.1 SCW的密度:

f (T , p)
压强的微小变化引起密度的大幅度改变
2.2 SCW的介电常数ɛ
p T

有利于溶解一些低挥发性物质
18
2.3 SCW的离子积常数kw
34
反应时间
研究不同水热反应时间下产物的形貌,了解最终
产物的形貌演化过程。
相同摩尔比(Pb2+/S2O32- = 1:4)和反应温度(100°C), 不同反应时间下所得产物的SEM照片: A) 1h, B)3h, C) 5h, D) 10h
35
反应物浓度:
当起始浓度是原来的2倍时,产物为花形晶体, 起始浓度是原来的1/2时,产物为立方块状晶体;
合成新材料、新结构和亚稳相
制备薄膜

低温生长单晶
40
一、介稳材料
1.1 结构特点
纳米孔径(约为2~50 nm) 超大比表面积(>1000 m2/g) 孔道尺寸可控
沸石分子筛是一类典型的介稳微孔晶体材料
具有分子尺寸周期性排布的孔道结构
41
1.2 沸石的性质 吸附性 离子交换性
1.3 沸石的应用
SEM image of samples obtained at 180°C after a reaction time of A)6h, B)9h, C)12h
8
五、水热法合成原理 5.1 反应过程的驱动力 可溶的前驱体(中间产物)与最终稳定产物之间
的溶解度差
反应物质溶解后以离子、分
子团的形式进入溶液
(3)温和条件下粉体材料的水热合成; (4)避免水热合成中杂质对产物的污染
49
三、水热条件下的单晶生长 水热法是目前制备适用于光学仪器和压电晶体元件
的大块优质水晶的唯一方法。
水热法生长的水晶的单晶
50
【例】石英晶体的制备
将一定量的SiO2和1.0-1.2mol/L NaOH(矿化试剂
溶液装入高压釜中(80-85%)
32
【例】PbS微晶的制备
反应物配比的影响
Pb2+/S2O32- = 1:1时产物的形貌为三棱柱; 1:2时则为立方体; 1:3时魔方结构开始形成;
1:4时形成完美的魔方结构
状晶体
33
反应温度
相同摩尔比(Pb2+/S2O32- = 1:4)和反应时间(5h) 不同温度下所得产物的SEM照片: (A) 80°C, (B) 120°C,150°C
pH升高,缩短成核时间,加快晶化速度, pH升高,降低产率 改变无机物种(如硅铝酸根阴离子)在溶液中的聚
合态分布:
硅酸根的聚合能力随着碱度升高而减弱
铝酸根的聚合能力则基本上不随pH改变
45
4. 水量与稀释
一般的,水量的变化对合成影响不大 稀释降低晶化速度,生长快于成核,有利于大晶体
生成
水量过大,影响反应物在溶液中的聚合态和浓度,
30
四、水热合成反应影响因素
温度:反应温度越高
晶体生长速率加快 晶粒平均粒度越大,粒度分布范围越宽
压强
增加分子间的碰撞机会加快反应速度 影响反应物的溶解度,生成物的形貌和粒径
31
pH值:
影响过饱和度、动力学、形态、颗粒大小
反应时间:
晶粒粒度随着水热反应时间的延长而逐渐增大
杂质
改变晶体的结构和颜色 影响晶体的形貌。
第三章 水热与溶剂热合成法
1
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理 在特制的密闭反应容器里,采用水溶液作为反应 介质,对反应容器加热,创造一个高温、高压的 反应环境,使通常难溶或不溶的物质溶解并重结 晶。
2
1.2 水热合成的温度范围 常温~1100°C;压强范围: 1~500MPa (1)低温水热合成:100°C以下; 沸石的合成 (2)中温水热合成:100—300°C; 经济有效的合成区域 (3)高温高压水热合成:300°C以上; 单晶生长、特种结构的化合物
作为化学组分起化学反应; 反应和重排的促进剂; 起压力传递介质的作用; 起溶剂作用; 起低熔点物质的作用; 提高物质的溶解度; 有时与容器反应
14
第二节 超临界水热合成
一、超临界水热合成
1.1超临界流体(SCF) 温度及压力都处于临界温度(Tc)和临界压力(pc)之上
的流体。
相关文档
最新文档