Multisim电路设计与仿真电子仿真5章模拟习题参考答案

合集下载

Multisim电路设计与仿真电子仿真5章模拟习题参考答案

Multisim电路设计与仿真电子仿真5章模拟习题参考答案

习题参考答案:5.1 建立共射放大电路如图1所示。

XSC1图1 共射放大电路(1)静态工作点测量:执行菜单命令Simulation/Analysis ,在列出的可操作分析类型中选择DC Operating Point ,在弹出的对话框中的Output V ariables 选项卡中选择1、2、4节点作为仿真分析节点。

单击Simulate 按钮,得到在图示参数下的静态工作点的分析结果,如图2所示。

图2 静态工作点从结果来看,集电极电流I CQ=1.08722mA,放大电路的U ce=V4—V1=6.45518—1.21295=45.24223V,电源电压为12V,可见该电路的静态工作点合适。

(2)交流放大倍数测量:单击Simulate下的Run按钮,双击示波器XSC1,得到如图3所示的输入输出波形。

图3 单管共射放大电路输入输出波形从图3可以看出,在测试线1处,当输入信号电压幅值为4.998mV时,输出信号幅值为-98.881mV,并且输出电压没有失真,电压放大倍数Au=Uo/Ui=-98.881/4.998≈-19.78 (3)测量输入电阻:删除虚拟双踪示波器,在放大电路的输入回路接电流表XMM1和电压表XMM2。

在放大器的输入端串接一个1k的电阻R7作为信号源的内阻,连接后的电路如图4所示。

图4 输入电阻测量双击虚拟电流表,将它切换在交流电流档,双击虚拟电压表,将它切换在交流电压档,开启仿真开关,测得的数据如图5所示,电压为2.622mA,电流为913.663nA,那么输入电阻为Ri=Ui/Ii≈2.54kΩ。

图5 输入电阻测量结果(4)输出电阻测量:将图1电路中的信号发生器XFG1短路,负载R6开路,在输出端接电压源、电压表和电流表,连接后的电路如图6所示。

图6 输出电阻测量双击虚拟电流表,将它切换在交流电流档,双击虚拟电压表,将它切换在交流电压档,开启仿真开关,测得的数据如图7所示,电压为707.106mV,电流为152.491uA,那么输出电阻为Ro=Uo/Io≈4.64kΩ。

模拟电子技术第五版基础习题与解答

模拟电子技术第五版基础习题与解答

模拟电子技术第五版基础习题与解答在电子技术领域,模拟电子技术是一门至关重要的基础学科。

对于学习者来说,通过做习题来巩固知识、加深理解是必不可少的环节。

《模拟电子技术第五版》中的基础习题涵盖了丰富的知识点,能够有效地检验我们对这门学科的掌握程度。

接下来,让我们一起探讨其中的一些典型习题及其解答方法。

我们先来看一道关于二极管的习题。

题目是这样的:已知一个二极管在电路中的工作电流为 10 mA,其导通压降为 07 V,求该二极管在电路中消耗的功率。

解答这道题,我们首先要明确功率的计算公式,即功率等于电压乘以电流。

在这个例子中,电压就是二极管的导通压降 07 V,电流为 10 mA(换算为 001 A)。

那么,二极管消耗的功率 P = 07 V × 001 A =0007 W = 7 mW。

再来看一道三极管的习题。

假设一个三极管的放大倍数为 50,基极电流为20 μA,求集电极电流的值。

对于三极管,集电极电流等于放大倍数乘以基极电流。

所以,集电极电流=50 × 20 μA =1000 μA = 1 mA。

下面这道题涉及到放大器的分析。

一个共射极放大器,输入电阻为1 kΩ,输出电阻为5 kΩ,电压放大倍数为-100。

若输入电压为 1 mV,求输出电压。

首先,根据电压放大倍数的定义,输出电压等于电压放大倍数乘以输入电压。

所以,输出电压=-100 × 1 mV =-100 mV。

接下来是一道关于反馈电路的习题。

在一个反馈电路中,反馈系数为 01,输入信号为 5 V,求反馈信号的大小。

反馈信号等于反馈系数乘以输入信号,即 01 × 5 V = 05 V。

在模拟电子技术中,运算放大器的相关习题也非常常见。

比如这样一道题:一个理想运算放大器组成的反相比例放大器,反馈电阻为 10kΩ,输入电阻为1 kΩ,输入电压为 2 V,求输出电压。

根据反相比例放大器的公式,输出电压等于(反馈电阻/输入电阻)×输入电压。

模电电路设计题及multisim仿真

模电电路设计题及multisim仿真

电路设计一、设计I/V变换电路,实现2mA的电流信号转换为5V的电压信号。

1、电路图与仿真结果:如图一,2、电路说明:电路中使用了最简单常见的运放LM324系列,电路结构简单,可以广泛应用,如果对精度要求更高,可以选用精密运放,如OPA系列的运放。

电路原理简单,由理想运放的虚断特性,】广广2mA,由虚短特性u二u二0,所以u=-i X R=-5V,从而实现了将2mA的电流信号转换为5V NPof2的电压信号。

3、参数确定方法:根据u=-i X R,要求输入2m A的电流输出5V的电压,可以确定oi2R=2.5k0。

24、分析总结:由于输出电压仅与i和R有关,改变R电路就可以实现不同电流型号转化i22为要求的电压信号。

同时由于不同场合条件不同,对电路稳定性的要求不同,可以根据实际条件改变运放型号,使电路可以在更广泛的范围里应用。

二、设计精密放大电路,其放大倍数为100倍。

1、电路图与仿真结果:如图二、图三,2、电路说明:电路用OPA系列精密运放实现精密放大,仿真结果如图三,电路为两级放大电路,每级的放大倍数为10。

则经两级放大后放大100倍。

而如果仅用一个运放完成100倍放大,仿真结果如图四,从示波器读数上可以看出放大结果为:A =982.55=98.3并不精密,而两级放大,放大倍数为A =999.3=99.99,精密u 9.997u 9.994程度大大提高,因此选用两级放大电路。

电路图:图二3、参数确定方法:1、电路图与仿真结果:电路图:如图五,各放大电路的放大倍数分别为A 二1+R=10,R1u1RA 二1+負二10,所以只要 R5u2三、设计信号处理电路,完成如下运算Uo=2.5+u : i仿真结图图四仿真结果:如图六,图六其中通过信号源输入一个峰值为I V,频率为1k Hz正弦波,示波器的通道A 接信号源,通道B接信号处理电路输出端。

示波器上的输出波形如图,根据从读数上可以看出,输出电压U 的最大值与最小值分别为3.499V 和1.502V ,满足o设计要求:u =2.5+u 。

大学模拟电路作业部分答案-第5章作业解答 (1)

大学模拟电路作业部分答案-第5章作业解答 (1)

20XX年复习资料大学复习资料专业:班级:科目老师:日期:5.1(1) 估算基极偏置电流||57EE CEQBQ BV U I A R μ--==直流负载方程 3.13900CECE EE c C C U U V i R R ---=-=- 取(0,3.1)和(20XXXX,0)连线,交57B I A μ=于Q 即是静态工作点 1.5CEQ U V =- 2.5CQ I mA =- (2)由图可知,U CE 较大时,100c I A μ= 5B I mA = 所以50β=输入电阻1'26(1)730.42.5be bb mVR r r mAβ==++=Ω输出电阻 3.9O C R R k ==Ω 放大倍数//C LiR R Au R β=- (3) //CE CEc C L CU U i R R R ∆∆∆=>确定直线过Q ,斜率比原来的线陡(4) 当Rb 减小时,I BQ 增大,Q 点向左上方移动Rc 增大时,负载线在-ic 轴的截距下降,Q 点沿同一条输出特性曲线向左移动 当VEE 减小为9V 时,||42EE CEQBQ BV U I A R μ--==由(1)的方法再在图中画出Q ’,可见Q 点向下移动5.2(1) 直流通路交流通路微变等效电路(2)12()()()12BQ CQ C BQ B B BEQ BQ CQ E I I R I R R U I I R ++++++=CQ BQ I I β=联立两个方程得14.61.168 2.325BQ CQ CEQ BEQ CB I A I mAU U U Vμ===+=(3)输入电阻1//420i b be R R r ==Ω 输出电阻 2// 5.714o b C R R R k ==Ω 放大倍数 //1201C obeR R Au r β=-=- (4)产生了截止失真12(1)()CC BEQBQ B B E C V U I R R R R β-=++++为了增大I BQ ,就可以适当减小1B R 和2B R 5.41)直流通路:+12VR B1R B2R ER CVT交流通路+U iR S+U oVTR B2R B1R CR L微变等效电路:+U iR SR B2R B1R bei Bβi BR CER CR L+U o2)设基极电压V B⎪⎪⎩⎪⎪⎨⎧+-=+=-+-=E BEQ B CC BQ EQB B B CC B BQR U V V I I R V R V V I )1(021β解得V B =5.20XXXX7V I BQ =20XXXX1.2μA I CQ =βI BQ =20XXXX.5mAU CEQ =20XXXX-R E (I BQ +I CQ )-R C I CQ =-37.9V 不合理,所以工作在饱和区。

模拟电子技术第五版基础习题与解答

模拟电子技术第五版基础习题与解答

模拟电子技术第五版基础习题与解答在电子技术的领域中,模拟电子技术一直占据着重要的地位。

它是电子信息工程、通信工程、自动化等专业的基础课程之一。

《模拟电子技术第五版》作为一本经典教材,其中的基础习题对于学生理解和掌握这门课程的知识具有至关重要的作用。

首先,让我们来看看一些关于半导体基础知识的习题。

半导体器件是模拟电子技术的基石,理解其工作原理和特性是学好这门课程的关键。

例如,有这样一道习题:“解释为什么在纯净的半导体中掺入少量杂质可以显著改变其导电性能?”对于这道题,我们需要明白,纯净的半导体中载流子浓度很低,而掺入杂质后会形成施主能级或受主能级,从而增加了载流子的浓度,使得导电性能得到改善。

再比如,“比较 N型半导体和 P 型半导体在导电机制上的差异。

”这道题要求我们清楚 N型半导体中主要是电子导电,P 型半导体中主要是空穴导电,并且要能够详细阐述其形成原因和导电过程。

在二极管这一章节,也有不少具有代表性的习题。

“分析二极管在正向偏置和反向偏置时的电流特性,并解释其原因。

”在解答这道题时,我们要知道在正向偏置时,二极管的 PN 结变薄,电阻减小,电流容易通过;而在反向偏置时,PN 结变厚,电阻增大,只有极小的反向饱和电流。

还有“利用二极管的单向导电性,设计一个简单的整流电路,并计算其输出电压和电流。

”这样的题目则需要我们将理论知识应用到实际电路设计中,通过计算来确定电路的性能参数。

三极管是模拟电子技术中的核心器件,相关的习题更是复杂多样。

“阐述三极管的放大作用原理,以及如何判断三极管的工作状态。

”这道题要求我们深入理解三极管的结构和工作原理,知道三极管通过控制基极电流来实现对集电极电流的放大作用。

判断工作状态时,需要根据基极电流、集电极电流和发射极电流之间的关系,以及各极之间的电压来确定。

又如“设计一个共射极放大电路,计算其电压放大倍数、输入电阻和输出电阻。

”这就需要我们综合运用三极管的放大原理、电路分析方法以及相关的计算公式来完成。

模拟电路第五章课后习题答案

模拟电路第五章课后习题答案

模拟电路第五章课后习题答案案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

模拟电子技术教程课后习题答案大全

模拟电子技术教程课后习题答案大全

第1章习题答案1. 判断题:在问题的后面括号中打√或×。

(1)当模拟电路的输入有微小的变化时必然输出端也会有变化。

(√)(2)当模拟电路的输出有微小的变化时必然输入端也会有变化。

(×)(3)线性电路一定是模拟电路。

(√)(4)模拟电路一定是线性电路。

(×)(5)放大器一定是线性电路。

(√)(6)线性电路一定是放大器。

(×)(7)放大器是有源的线性网络。

(√)(8)放大器的增益有可能有不同的量纲。

(√)(9)放大器的零点是指放大器输出为0。

(×)(10)放大器的增益一定是大于1的。

(×)2 填空题:(1)放大器输入为10mV电压信号,输出为100mA电流信号,增益是10S。

(2)放大器输入为10mA电流信号,输出为10V电压信号,增益是1KΩ。

(3)放大器输入为10V电压信号,输出为100mV电压信号,增益是0.01 。

(4)在输入信号为电压源的情况下,放大器的输入阻抗越大越好。

(5)在负载要求为恒压输出的情况下,放大器的输出阻抗越大越好。

(6)在输入信号为电流源的情况下,放大器的输入阻抗越小越好。

(7)在负载要求为恒流输出的情况下,放大器的输出阻抗越小越好。

(8)某放大器的零点是1V,零漂是+20PPM,当温度升高10℃时,零点是 1.0002V 。

(9)某放大器可输出的标准正弦波有效值是10V,其最大不失真正电压输出+U OM是14V,最大不失真负电压输出-U OM是-14V 。

(10)某放大器在输入频率0~200KHZ的范围内,增益是100V/V,在频率增加到250KHZ时增益变成约70V/V,该放大器的下限截止频率f L是0HZ,上限截止频率f H是250KHZ,通频带f BW是250KHZ。

3. 现有:电压信号源1个,电压型放大器1个,1K电阻1个,万用表1个。

如通过实验法求信号源的内阻、放大器的输入阻抗及输出阻抗,请写出实验步骤。

五 Multisim仿真习题

五 Multisim仿真习题

Multisim 仿真习题一、运放电路仿真习题1 反相放大电路如图1-1所示,运放采用741,电源电压V +=+12V ,V -=-12V ,R 1=10k Ω,R 2=100k Ω。

(1)当v i =0.5 sin(2π×50t )V 时,绘出输入电压v i 、输出电压v O1和输入电流i o 的波形;当v i =1.5 sin(2π×50t ) V 时,绘出v i 、v O 的波形;(2)作出该电路的传输特性v O =f (v i )。

v O图1-12 电路如图1-2(a )所示,设电路中R 1=12k Ω,R 2=5k Ω,C =4μF ,反相输入端与输出端之间并联一电阻R 3=1M Ω,运放采用LF411。

电容C 的初始电压v C (0)=0,输入电压v i 幅度为+5~-5V ,占空比为50%,频率为10Hz 的方波,如图1-2(b )所示。

试画出电压v O 的波形;当R 3=∞时,画出电压v O 的波形。

(a)v i /+-(b)图 1-2二、二极管电路仿真习题1 电路如图2-1所示,R = 1k Ω,V REF = 5V ,且I S = 10nA ,n = 2。

试分析电路的电压传输特性v O = f (v I );若输入电压v I = v i = 10sin ωt V ,求v O 的波形。

(D为1N4148)。

图 2-12 电路如图2-2所示,稳压管选用1N4733(V Z = 5.1V,I Z(max) = 178mA,I ZT=49mA),若输入直流电压V I = 10V,R = 30Ω,输出稳压值V O = 5.1V,试分析稳压电路的电压不小于5V时,输出电流的范围。

R L图2-2三、MOSFET放大电路仿真习题1 CMOS共源放大电路如图3-1所示,将电流源I REF换成电阻R REF。

设所有MOS管的|V T|=0.8V,λ=0.01V-1。

NMOS管的K′= 80μA/V2,(W/L)T1 =15;PMOSn管的K′= 40μA/V2,(W/L)T2、T3=30,V DD=5V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题参考答案:
5.1 建立共射放大电路如图1所示。

XSC1
图1 共射放大电路
(1)静态工作点测量:执行菜单命令Simulation/Analysis ,在列出的可操作分析类型中选择DC Operating Point ,在弹出的对话框中的Output V ariables 选项卡中选择1、2、4节点作为仿真分析节点。

单击Simulate 按钮,得到在图示参数下的静态工作点的分析结果,如图2所示。

图2 静态工作点
从结果来看,集电极电流I CQ=1.08722mA,放大电路的U ce=V4—V1=6.45518—1.21295=45.24223V,电源电压为12V,可见该电路的静态工作点合适。

(2)交流放大倍数测量:单击Simulate下的Run按钮,双击示波器XSC1,得到如图3所示的输入输出波形。

图3 单管共射放大电路输入输出波形
从图3可以看出,在测试线1处,当输入信号电压幅值为4.998mV时,输出信号幅值为-98.881mV,并且输出电压没有失真,电压放大倍数Au=Uo/Ui=-98.881/4.998≈-19.78 (3)测量输入电阻:删除虚拟双踪示波器,在放大电路的输入回路接电流表XMM1和电压表XMM2。

在放大器的输入端串接一个1k的电阻R7作为信号源的内阻,连接后的电路如图4所示。

图4 输入电阻测量
双击虚拟电流表,将它切换在交流电流档,双击虚拟电压表,将它切换在交流电压档,开启仿真开关,测得的数据如图5所示,电压为2.622mA,电流为913.663nA,那么输入电阻为Ri=Ui/Ii≈2.54kΩ。

图5 输入电阻测量结果
(4)输出电阻测量:将图1电路中的信号发生器XFG1短路,负载R6开路,在输出端接电压源、电压表和电流表,连接后的电路如图6所示。

图6 输出电阻测量
双击虚拟电流表,将它切换在交流电流档,双击虚拟电压表,将它切换在交流电压档,开启仿真开关,测得的数据如图7所示,电压为707.106mV,电流为152.491uA,那么输出电阻为Ro=Uo/Io≈4.64kΩ。

图7 输出电阻测量结果
5.2 创建差分放大电路如图8所示:
图8 差分放大电路
该差分放大电路是单端输入单端输出电路,输入的信号为100Hz、10mV的正弦波信号,示波器“XSC1”的Channel-A、Channel-B分别接输入信号和差分放大器的反相输出端,运行Simulate,得到输入输出信号如图9所示。

图9 输入输出信号
由图9可见,放大倍数为A=1.673V/19.974mV≈84,输入输出信号反相。

5.3 创建集成运放差动电路如图10所示。

运行Simulate,观察XSC1,如图11所示。

图11 输出波形图
理论分析:02122()(1.50.5)211R k V V V R k
=
-=-=V 从图11中可以看出输出波形幅度为1.999V ,与理论计算值相符合。

5.4 创建有源带阻滤波器,如图12所示。

其中,运放接为电压跟随器形式,通带增益为1,特征频率和品质因数为: 01
33.92f RC
π=
=Hz
1
0.52(2)
up Q A =
=-
R3
图1,2 带阻滤波器
选择Simulate中的Analysis,然后选择AC Analysis子命令,在Frequency Parameters选项中将起止频率设置为1Hz和10MHz,在Output V ariable选项中将结点3作为分析结点,单击Simulate按钮,得到频率特性如图13所示。

由频率特性可以看出,阻带的中心频率为32.6805Hz,与理论计算值相近,阻带的带宽大约为2(83.0050-32.6805)≈100.6Hz,通带特性较平坦。

图13 频率特性
5.5 建立乙类互补功率放大器如图14。

图14 乙类互补功率放大器
运行Simulate按钮,得到输出波形如图15所示,从图中可以看到输出信号有明显的交越失真。

当输入信号较小时,达不到三极管的开启电压,三极管不导电,因此在正负半周交替
过零处会出现非线性失真即交越失真。

图15 乙类功放输出信号
进行直流扫描分析,运行Simulate/Analysis/DC Sweep,设置StartV alue和StopValue的值分别为-5V和5V,Increment为0.1V,在Output variables标签中,选定节点1作为测试节点,其他项默认设置,得到如图16所示结果,由此可以确定交越失真的范围为-639.8104mV到781.9905mV。

图16 交越失真范围
然后,重新设置参数扫描范围,把StartV alue和StopValue的值设置为为-20V和20V,其他参数不变,仿真得到如图17所示结果。

可以看出最大电压输出范围为-12.0071V到11.9754V。

图17 最大电压输出范围
5.6 针对乙类功放电路的交越失真问题,可以采用甲乙类互补功率放大器如图18所示,
输出信号如图19所示,可见交越失真已经消除。

图18 甲乙类互补功放
图19甲乙类互补功放输出结果
进行直流扫描分析,运行Simulate/Analysis/DC Sweep,设置StartV alue和StopValue的值分别为-10V和10V,Increment为0.1V,在Output variables标签中,选定节点1作为测试节点,其他项默认设置,得到如图20所示结果,观察到输出信号范围为-4.7344V到4.6655V。

图20甲乙类互补功放输出信号范围。

相关文档
最新文档