环己酮装置生产原理

合集下载

环己烷氧化制备环己酮

环己烷氧化制备环己酮

目录环己烷的氧化制环己酮工艺技术作者:指导教师:摘要:环己酮是制备己内酰胺、己二酸的主要中间体,也是制备各种乙烯树脂漆的主要原料,并且被广泛用作许多高分子聚合物的溶剂,因此,环己酮在有机化工、涂料工业等方面都有着极其重要的作用。

目前世界上环己酮生产工艺路线按原料分主要有3种:环己烷液相氧化法、苯酚加氢法和水合法。

山东方明化工有限公司是由环己烷氧化制环己酮,该工序下同时还生成一些其他物质,如环己醇、X油、轻质油等。

合成和制备环己酮的方法较多,工业化生产方法主要有苯酚加氢法;苯部分加氢法;环己烷氧化法。

其中环己烷氧化法的应用最为普遍,本文对以苯为起始原料的合成环己烷然后氧化成环己酮,对公司生产环己酮的过程及原理做了详细叙述,对于生产中出现的异常现象做出合理的解释,也给出其处理方法。

本论文重点介绍了环己烷氧化制备环己酮工艺技术。

关键词:环己烷;环己酮;氧化;进展引言环己酮是一种重要的有机化工产品,是制造尼龙、己内酰胺和己二酸的主要中间体,具有高溶解性和低挥发性,可以作为特种溶剂,对聚合物如硝化棉及纤维素等是一种理想的溶剂;也是重要的有机化工原料,是制备己内酰胺和己二酸的主要中间体。

1893年A. Bayer采用庚二酸和石灰(庚二酸钙)干馏首先合成了环己酮。

1943年德国I.G.Farben公司建成了苯酚加氢法合成环己酮生产装置。

1960年德国BASF公司采用环己烷氧化法建成大型环己酮生产装置,使环己烷氧化技术得以迅速发展,并导致聚酰胺纤维的大规模发展。

本论文突出详述了环己烷氧化制环己酮生产过程。

项目概述公司概况山东方明化工股份有限公司拥有的8万吨/年环己酮装置是目前国内单套最大的环己酮生产装置,采用先进的工艺,各种消耗特别是苯耗、碱耗是国内乃至世界最低的,具有较强的市场竞争力。

公司隶属山东洪业集团,公司董事长余庆明先生是全国五一劳动奖章获得者、并先后荣获全国优秀企业家、山东省劳动模范等荣誉称号,现为山东省人大代表。

环己烯酯化加氢制备环己酮工艺

环己烯酯化加氢制备环己酮工艺

环己烯酯化加氢制备环己酮工艺一、概述环己烯酯化加氢制备环己酮是一种重要的有机化工工艺,主要用于生产工业上广泛应用的环己酮产品。

在环己酮工业生产中,环己烯酯化加氢工艺具有重要的地位,因此对该工艺的研究和优化具有重要意义。

二、环己烯酯化加氢制备环己酮工艺原理1. 环己烯酯化反应环己烯与一氧化碳在催化剂的作用下发生加成反应,形成环己酮酸酯。

2. 环己酮酸酯加氢反应环己酮酸酯在氢气的作用下发生加氢反应,得到环己酮。

三、环己烯酯化加氢制备环己酮工艺流程1. 原料准备:环己烯、一氧化碳、氢气2. 环己烯酯化反应:将环己烯和一氧化碳在催化剂的作用下进行反应,生成环己酮酸酯。

3. 精制及酯化:对得到的环己酮酸酯进行精制和酯化处理。

4. 环己酮生成:将环己酮酸酯在氢气的作用下进行加氢反应,生成环己酮。

5. 分离及提纯:对生成的环己酮进行分离和提纯处理。

四、环己烯酯化加氢制备环己酮工艺优化1. 催化剂的选择:选择合适的催化剂对环己烯酯化加氢工艺具有重要的影响。

常用的催化剂包括金属催化剂、酸性催化剂等。

对于不同原料和反应条件,需要选择合适的催化剂以提高反应效率和产物质量。

2. 反应条件的优化:反应温度、压力、摩尔比等反应条件对环己烯酯化加氢工艺的影响巨大。

通过对反应条件的优化,可以提高反应效率、降低能耗、减少副反应产物生成。

3. 产品分离和提纯技术:环己酮作为一种重要的有机溶剂和化工中间体,其纯度要求较高。

提高产品分离和提纯技术,可以提高产品质量、降低生产成本。

五、环己烯酯化加氢制备环己酮工艺在工业上的应用环己酮作为一种重要的化工中间体,在有机合成、溶剂、染料、医药等领域有着广泛的应用。

环己烯酯化加氢制备环己酮工艺具有重要的工业应用前景。

六、环己烯酯化加氢制备环己酮工艺发展趋势随着化工技术的不断进步和环保要求的提高,环己烯酯化加氢制备环己酮工艺将朝着低能耗、高效率、环保的方向发展。

未来,更加环保的催化剂、高效的反应条件优化技术将会得到更广泛的应用。

环己烷氧化制备环己酮

环己烷氧化制备环己酮

目录环己烷的氧化制环己酮工艺技术作者:指导教师:摘要:环己酮是制备己内酰胺、己二酸的主要中间体,也是制备各种乙烯树脂漆的主要原料,并且被广泛用作许多高分子聚合物的溶剂,因此,环己酮在有机化工、涂料工业等方面都有着极其重要的作用。

目前世界上环己酮生产工艺路线按原料分主要有3种:环己烷液相氧化法、苯酚加氢法和水合法。

山东方明化工有限公司是由环己烷氧化制环己酮,该工序下同时还生成一些其他物质,如环己醇、X油、轻质油等。

合成和制备环己酮的方法较多,工业化生产方法主要有苯酚加氢法;苯部分加氢法;环己烷氧化法。

其中环己烷氧化法的应用最为普遍,本文对以苯为起始原料的合成环己烷然后氧化成环己酮,对公司生产环己酮的过程及原理做了详细叙述,对于生产中出现的异常现象做出合理的解释,也给出其处理方法。

本论文重点介绍了环己烷氧化制备环己酮工艺技术。

关键词:环己烷;环己酮;氧化;进展引言环己酮是一种重要的有机化工产品,是制造尼龙、己内酰胺和己二酸的主要中间体,具有高溶解性和低挥发性,可以作为特种溶剂,对聚合物如硝化棉及纤维素等是一种理想的溶剂;也是重要的有机化工原料,是制备己内酰胺和己二酸的主要中间体。

1893年A. Bayer采用庚二酸和石灰(庚二酸钙)干馏首先合成了环己酮。

1943年德国I.G.Farben公司建成了苯酚加氢法合成环己酮生产装置。

1960年德国BASF公司采用环己烷氧化法建成大型环己酮生产装置,使环己烷氧化技术得以迅速发展,并导致聚酰胺纤维的大规模发展。

本论文突出详述了环己烷氧化制环己酮生产过程。

项目概述公司概况山东方明化工股份有限公司拥有的8万吨/年环己酮装置是目前国内单套最大的环己酮生产装置,采用先进的工艺,各种消耗特别是苯耗、碱耗是国内乃至世界最低的,具有较强的市场竞争力。

公司隶属山东洪业集团,公司董事长余庆明先生是全国五一劳动奖章获得者、并先后荣获全国优秀企业家、山东省劳动模范等荣誉称号,现为山东省人大代表。

2021届高三化学三轮复习重难点强化 原电池的应用(一)练习

2021届高三化学三轮复习重难点强化 原电池的应用(一)练习

2021届高三化学三轮复习重难点强化 原电池的应用(一)练习1.2-萘酚()在生产环境中主要以粉尘、气溶胶形式存,可采用催化剂(2Ag@AgBr /mp TiO -,其中2mp TiO -为介孔二氧化钛,具有大的比表面积和渗透能力)条件下的光降解法除去环境中的该污染物,工作原理如图。

下列判断正确的是( )A.该除去方法中的能量转化只有化学能转化为电能B.2mp TiO -可加快2O 的失电子速率C.负极反应:D.该法降解144 g 2-萘酚时,装置吸收空气约为1288 L2.金属(M)-空气电池(如图)具有原料易得、能量密度高等优点,有望成为新能源汽车和移动设备的电源。

该类电池放电的总反应方程式为224M O 2H O4M(OH)n n n ++。

已知:电池的“理论比能量”指单位质量的电极材料理论上能释放出的最大电能。

下列说法中不正确的是( )A.采用多孔电极的目的是提高电极与电解质溶液的接触面积,并有利于氧气扩散至电极表面B.比较Mg 、Al 、Zn 三种金属-空气电池,Al-空气电池的理论比能量最高C.M-空气电池放电过程的正极反应式:224M O 2H O 4e 4M(OH)n n n n n +-+++D.在M-空气电池中,为防止负极区沉积2Mg(OH),宜采用中性电解质及阳离子交换膜3.热激活电池可用作火箭、导弹的工作电源。

一种热激活电池的基本结构如图所示,其中作为电解质的无水LiCl -KCl 混合物受热熔融后,电池即可瞬间输出电能,此时硫酸铅电极处生成Pb 。

下列有关说法正确的是( )A. 输出电能时,外电路中的电子由硫酸铅电极流向钙电极B. 放电时电解质LiCl -KCl 中的Li +向钙电极区迁移C. 电池总反应为4242Ca PbSO 2LiClPb Li SO CaCl ++++D. 每转移0.2 mol 电子,理论上消耗42.5 g LiCl 4.一种热激活电池的基本结构如图所示,总反应为4224PbSO +2LiCl+CaCaCl +Li SO +Pb 。

环己酮的制备实验报告思考题

环己酮的制备实验报告思考题

环己酮的制备实验报告思考题环己酮的制备实验报告思考题引言:环己酮,也被称为己内酮,是一种常用的有机溶剂和化学原料。

在工业上,环己酮的制备主要通过氧化环己烷来实现。

本文将围绕环己酮的制备实验展开讨论,并提出一些思考题,以加深对实验的理解和应用。

实验目的:本实验的目的是通过氧化环己烷来制备环己酮,并了解反应机理和条件对反应结果的影响。

实验原理:环己酮的制备主要通过氧化环己烷得到,反应方程式如下所示:环己烷 + 氧气→ 环己酮 + 水实验步骤:1. 在实验室条件下,将适量的环己烷和催化剂加入反应瓶中。

2. 向反应瓶中通入氧气,并控制反应温度和时间。

3. 反应结束后,收集生成的环己酮,并进行纯化和分离。

实验结果与讨论:在实验中,我们可以通过气相色谱仪等仪器来检测和分析反应产物。

根据实验结果,我们可以得到环己酮的产量和纯度,并进一步讨论实验条件对反应结果的影响。

1. 催化剂选择:在实验中,我们可以尝试不同的催化剂,如过渡金属盐类或有机过氧化物等,以探究不同催化剂对反应的影响。

我们可以比较不同催化剂下环己酮的产率和选择性,并分析其原因。

2. 反应温度:反应温度是影响反应速率和产物分布的重要因素。

我们可以调节反应温度,并观察环己酮产率和纯度的变化。

通过分析实验结果,我们可以确定最适宜的反应温度,并解释其原因。

3. 反应时间:反应时间也是影响反应结果的关键因素。

我们可以在不同的反应时间下进行实验,并比较不同反应时间对环己酮产率和纯度的影响。

通过实验结果,我们可以确定最佳的反应时间,并探讨其背后的化学原理。

4. 反应条件优化:通过对不同反应条件的比较和分析,我们可以优化环己酮的制备方法,提高产率和纯度。

我们可以综合考虑催化剂选择、反应温度、反应时间等因素,找到最佳的反应条件,并解释其优化原理。

结论:通过对环己酮制备实验的讨论和思考,我们可以深入理解反应机理和条件对反应结果的影响。

同时,我们也可以通过实验结果的分析和比较,优化反应条件,提高环己酮的产率和纯度。

己内酰胺工艺简述

己内酰胺工艺简述
(3)苯汽提
含微量苯己内酰胺水溶液经过苯汽提塔换热器后温度加热到93℃送入苯汽提塔,经汽提可达到去除己水溶液中微量苯的目的。在塔底加热器的作用下,苯汽提塔顶操作条件为温度96℃,塔底为103℃。
汽化的微量苯从苯汽提塔顶排出,含苯的水蒸汽经冷凝液汽提塔进料预热器和冷凝液汽提塔后冷凝器冷凝,并在冷凝液汽提塔冷却器中冷却,冷凝液自流进入苯水分离器,分离出的苯流入苯泵槽并循环到苯贮罐。苯水分离器底部的水相排入冷凝液汽提塔汽提,汽提出的塔顶含少量苯的水蒸气回流至苯汽提塔。
己内酰胺水溶液送入装有阴离子交换树脂的离子交换器,溶液自上而下流经后,再流入装有阳离子交换树脂的离子交换器中,液体是自上而下流过该塔,然后进入另一个阴离子交换树脂的离子交换器。流经三个离子交换器后,己内酰胺经过滤器送入高位槽,再送至加氢工序。经运行一定时间后,阴、阳离子交换树脂废弃,形成固废(S2、S3)。
2、反应溶剂蒸馏工段
含肟反应液送到溶剂(叔丁醇)回收塔,回收的叔丁醇从该塔顶抽出,然后送回肟化反应器。塔底肟和水则送到一个两级萃取系统,用适当萃取溶剂进行萃取。
3、双级萃取系统
用适量甲苯作萃取剂,通过一个双级系统萃取肟。通过第一级萃取(萃取罐),水溶液中的残余肟降至2%左右(重பைடு நூலகம்百分比)。通过第二级萃取(水萃取塔),水溶液中的残余肟可以降低到约100ppmw(重量百分比)。
含有不溶于苯的杂质残液(水相),从己内酰胺萃取塔底分离出来,送入冷凝液汽提塔中,冷凝液汽提塔底部的再沸器中通入蒸汽,通过加热方式,使残存在残液的少量溶剂和水分离出来,进入苯汽提塔,塔底废液进入废液浓缩塔。冷凝液汽提塔底的残液(S5)由冷凝液汽提塔出料泵送入废液浓缩装置。
(2)己内酰胺反萃取
把己内酰胺从苯己溶液中反萃取到工艺冷凝水(脱盐水)中,可使己内酰胺与油溶性杂质分离。

环己酮工艺规程

环己酮工艺规程

3.1 苯 项目
名称 比重 色度(Pt—Co) 凝固点
指标 石油纯苯 0.882~0.886
≤20 ≥5.4℃
4
总硫 1~96%馏程(包括 80.1℃) H2S 试验 溴指标 酸洗色度 甲苯+甲基环己烷 正庚烷
≤1mg/kg ≤1℃ 阴性 ≤10 ≤1#
≤300mg/kg ≤50mg/kg
3.2 氢气
环己酮生产工艺规程
1. 范围 本标准规定了产品概述、生产原理、物料衡算、产品所需的原料、中间产品、
工艺过程、岗位安全操作法、安全技术、三废处理、以及产品的包装和运输的特殊 要求等内容。
本标准适用于环己酮生产工艺过程。 2. 产品概述 2.1 产品名称:环己酮 2.1.1 化学分子式:C6H10O 2.1.2 分子量:98.15 2.2 产品规格 2.2.1 物理性质
μ s/Cm
max
H2 CL2 H2S CO CO2 温度 压力
项目
指标 ≥99.5% ≤0.1mg/Nm3 ≤0.1mg/Nm3 ≤10mg/Nm3 ≤10mg/Nm3 ≤40℃ ≥78KPa
3.3 液碱 NaOH NaCl
Fe(以 Fe2O3 计)
30%wt~32% 最大 400mg/kg NaOH, 平均 200mg/kg NaOH
≤50mg/kg NaOH
5
3.4 中间产品环己烷
环己烷作为中间产品,产品质量按企业内部质量标准控制。
序号
项目
指标
1
凝固点(℃)≥
6.0
2
馏程(℃)
80.0~81.0
3
芳烃含量(%)≤
0.1
4
非挥发物(g/kg)≤
10
5

环己酮的制备1

环己酮的制备1

环己酮的制备1一、实验目的1、学习由醇氧化法制备酮的实验室方法;2、进一步了解醇和酮之间的联系和区别;3、进一步熟练掌握分液漏斗的使用方法。

二、实验原理用次氯酸钠作氧化剂,将环己醇氧化成环己酮。

三、主要试剂的物理性质以及规格和用量试剂:环己醇、冰醋酸、次氯酸钠溶液、饱和亚硫酸氢钠溶液、氯化铝、淀粉碘化钾试纸、无水碳酸钠、精制氯化钠、无水硫酸镁。

表1、主要试剂及物理性质名称环己醇环己酮表2、主要试剂规格及用量试剂环己醇冰醋酸次氯酸钠溶液规格化学纯分析纯(CP)生产上海展试剂瓶有限公清楚司化学纯上海展云化工有限公司饱和亚无水氯硫酸氢化铝钠溶液实验室分析纯(AR)上海展云化工有限公司____无(AR)(CP)自制无水碳酸钠 ____分析纯(AR)杭州瓶窑和顺化工试剂厂分析纯(AR)天津市博迪化工有限公司氯化钠无水硫酸镁分子量 100﹒16 98﹒14性状熔点(℃)沸点(℃) 161﹒5 155﹒65溶解度(水) 5﹒67g/ml 2﹒4 g/ml无色液体 22~25 无色液体 ___厂家云化工上看不用量 5﹒2ml 25ml38ml 10ml 3g ____ 适量适量四、仪器装置250ml三颈烧瓶、自动搅拌器、滴液漏斗、温度计、冷凝管、接收器、滴液漏斗、筒、烧杯、皮管、电磁炉、待铁圈的铁架台、玻璃棒、石棉网。

机械搅拌器恒压滴液漏斗回流冷凝管三颈瓶图1、拌装置搅图2、蒸馏装置五、实验步骤及现象1、向装有搅拌器,滴液漏斗和温度计的250ml三颈烧瓶中依次加入5g(5﹒2ml)环己醇和25ml冰醋酸;2、开动搅拌器,将38ml的次氯酸钠(约1﹒8mol/L)滴入三颈烧瓶中,维持温度在30-35℃加完后搅拌5min;3、用碘化钾淀粉试纸检验呈蓝色,使氧化亚反应完全;4、然后撤去冷水,在室温下继续搅拌30分钟,观察温度计,温度保持在18℃左右;5、加入饱和亚硫酸氢钠溶液,直至淀粉碘化钾试纸不变蓝色;6、向反应液中加入30mL水、3g氧化铝和几粒沸石,在石棉网中加热蒸馏至流出液无油珠滴出为止;7、在搅拌下向流出液分批加入无水碳酸钠至反应液呈中性为止,然后加入精制食盐使之变成饱和溶液;8、将反应液倒入分液漏斗,分出有机层,用无水硫酸镁干燥,蒸馏收集150-155℃馏分,计算产率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生产原理简述1苯加氢1.1反应原理苯分子在一定的温度、压力和催化剂存在的条件下,与氢分子发生加成反应,生成环己烷,并放出大量的反应热。

Ni-Al2O3C6H6+3H2————→ C6H12+△H,△H=-216.5KJ/mol135~180℃Ni-Al2O3C7H8+3H2 ————→ C7H14+△H,△H=-204KJ/mol180℃该反应为体积缩小放热的平衡反应,高压低温有利于反应向右进行。

以Al2O3为载体的镍催化剂,具有六方晶体结构,镍原子之间的距离为 2.48A。

,具有满足使氢活化的最佳晶格参数,因而可与苯环结构相适应,使苯加氢具有满意的效率和良好的选择性。

在苯加氢过程中,首先是氢分子在催化剂表面受到两个距离适中的活性中心吸附而变形,造成氢原子之间键的断裂,从而发生氢的离解。

↓NiH2 =====2H++2e苯分子在镍表面上,由于结构上的适应,苯环上的碳原子被催化剂表面的活化中心吸引,在活化中心拉力的作用下,使苯环上的三个键减弱而活化,并接受表面氢所放出的电子而使苯环离子化,带上负电。

这样,在催化剂的表面上,被吸引的和活化了的苯分子随着活化中心移动,带有两种相反电荷的离子彼此吸引而中和各自的电性,同时活化了的π键,被活性氢原子所饱和,从而完成了苯环上的加氢反应。

苯与氢在催化剂表面进行加氢反应的过程,一般有以下几个步骤:①苯和氢的气体主流扩散到催化剂颗粒的外表面。

②苯氢组分从颗粒外表面通过微孔扩散到催化剂颗粒的内表面。

③苯、氢组分在内表面上被吸附。

④被吸附的苯、氢组分在内表面上进行加氢反应,生成环己烷。

⑤环己烷组分在内表面脱附。

⑥环己烷组分从催化剂颗粒内表面通过微孔扩散到催化剂颗粒外表面。

⑦反应生成物环己烷从催化剂颗粒外表面扩散到气体主流中。

在以上过程中,关键是被吸引的和活化了的苯分子在催化剂颗粒内表面活化中心的吸附、移动和反应,这一反应过程与一般的气固相催化反应过程是一致的。

1.2影响因素1.2.1反应器结构的影响苯加氢反应是在固定床列管反应器中进行的放热反应,以管间热水汽化的方式移出反应热。

反应器列管管径过大时,管中心气流的反应热将很难及时地传递给金属管壁,管径越大,管中心与管壁温差就越大,即径向温度梯度越大,就容易造成列管中心局部过热,造成副反应增多,并且容易烧坏触媒。

为了保证径向温度的均匀,管径应越小越好,但填装一定数量的催化剂,就需要增加列管数,也就增加了设备制造的材料和费用。

所以,必须综合考虑,以确定最佳管径。

1.2.2氢苯比的影响苯加氢反应理论上氢、苯摩尔比为3∶1,反应物浓度越大,有利于反应向生成物(环己烷)方向进行。

实际生产中,为使苯反应完全,提高转化率,往往采用使氢气过量的方法,提高氢气用量也有利于移走反应热和移出产物,但是氢苯比过大,会造成气流速度大,减少反应物与触媒层的接触时间使反应不完全,同时也增加了氢气的消耗,另外尾气中带走的环己烷也增多。

1-尾气含氢%注:氢苯比=————————————————×3×新氢含氢% 新氢含氢%-尾气含氢%氢氮气流量氢气含氢%-尾气含氢%苯流量=—————————×———————————(m3/h)757.292 1-尾气含量%1.2.3反应温度的影响根据所选用的催化剂不同,苯加氢反应温度也有所不同,本装置所有NCG-6型最佳使用温度130~200℃,温度过低,反应速度慢,同样的催化剂层和接触时间下,反应不完全;温度过高,副反应增多还会影响催化剂的使用寿命,温度高于220℃时,就易生成副产物甲基环戊烷,而且苯在高温下易分解成氢和胶状物质,温度超过260℃时,会烧坏触媒,使触媒粉碎失去活性。

1.2.4压力的影响苯加氢反应是体积缩小的反应,升高压力对反应有利,使反应更趋于完全,而且提高压力使反应物分子浓度增高,强化反应过程,加快反应速度,提高氢气利用率,且能缩小设备尺寸,但压力太高,对设备要求也将提高,增加设备投资。

因此应综合考虑,以选择适当的压力进行苯加氢反应。

本装置苯加氢反应压力为0.7MPa左右。

1.2.5原料纯度及毒物的影响原料中硫和氯的存在对催化剂影响很大。

它与金属镍生成稳定的硫化镍氯化镍,造成催化剂永久性中毒;氯对催化剂的毒害作用比硫化物更大。

为了确保催化剂活性和装置操作人员的安全,必须严格控制氢气中的CO含量,CO含量过高,一则会造成催化剂中毒,二则易在低温下生成易爆的危及操作人员生命安全的羰基镍。

同时,催化剂对苯及氢气中的氧、氯、CO2等也非常敏感,也会使催化剂中毒生成氧化镍、氯化镍等。

但CO、CO2等的中毒系临时性中毒,在氢气流中,在一定温度下,还可使镍还原,重新恢复活性。

液态水也会使催化剂短时失活,因此必须及时排除原料中的水。

注:烷凝固点与烷纯度之间关系的经验公式如下:X%=100-0.412(6.54-P1)此式只能作参考X —烷百分含量 P1 —实测烷凝固点甲苯加氢制甲基环己烷的反应机理及影响因素与苯加氢制环己烷相似。

2环己烷氧化2.1反应原理液相环己烷与空气中的氧在 1.0~1.15MPa,163~180℃条件下发生氧化反应,生成环己基过氧化氢(CHHP)、醇、酮、酸、酯等多种产物。

环己烷氧化反应过程十分复杂,通常认为,环己烷液相氧化与其它烃类液相氧化一样,属于退化支链反应,可按链引发、增长、退化分支、终止四步骤进行。

引发阶段是产生足够的自由基来维持高浓度的自由基,因此要达到高产量,必须使反应物中有较高浓度的容易氧化的化合物存在。

如环己酮、环己醇、己二酸、戊醇、环己基过氧化氢等。

氧化反应主要反应如下:C6H12 +O2→ C6H11OOH -113.5KJ/molC6H12 + 1/2O2→ C6H11OH -201KJ/molC6H12+O2→ C6H10O + H2O -355.9KJ/mol此外还有副反应:C6H11OH + 2O2 → HOOC(CH2)4COOH + H2O -842.4KJ/molC6H10O + 2/3O2 → HOOC(CH2)4COOH -703.0KJ/mOl氧化反应产生大量的反应热,反应热是通过蒸发一部分未转化的环己烷而移出,使反应温度适宜。

氧化反应过程分为诱导期和反应期,诱导期即链引发阶级,这一阶段空气中的氧气被己烷缓慢吸收,诱导期时间的长短与反应温度、原料组成、催化剂有无等条件有关。

本装置无催化氧化工艺,在没有催化剂存在的情况下要经过长达60~70分钟的诱导期,才开始达到显著的吸氧速率。

环己醇、环己酮对氧化反应有催化作用,为了缩短诱导期,本装置在开车阶段用粗醇酮作氧化反应的引发剂,以缩短诱导期。

因为诱导期内氧气消耗速度很慢,所以在初开车时为确保安全,向氧化釜内通气必须采用贫氧通气,即通入氧化釜的压缩空气中配有一定量的高压N2,以降低通入气体中O2的浓度,以免形成爆炸性混合物。

2.2影响因素2.2.1温度的影响氧气的消耗速率随温度的变化而变化,温度升高,反应速度加快,但是由于CHHP的热稳定性差,温度升高,加快了反应产物CHHP的热分解,降低了反应的选择性,导致副产物增加,收率降低。

此外,提高反应温度也要相应提高反应的进料温度,这样,加热进料所需的蒸汽消耗也增加,显得不经济;降低温度会降低氧气吸收率(这样产率也会下降),氧化反应最终会完全停止。

实验结果表明150℃左右时,氧化反应就会终止。

因此,要选择适宜的反应温度。

2.2.2系统压力的影响环己烷在160℃左右进行液相氧化反应,该温度下环己烷的饱和蒸汽压力700kPa,所以反应压力至少必须高于此压力。

反应系统压力越高,尾气中环己烷中的分压就越小,损失的环己烷也相应减小,但对设备要求高,投资增加,空压机能耗也相应要增加,系统压力低,环己烷的蒸发量增加;这样就会增加热回收系统和尾气吸收系统的负荷。

系统压力升高,氧在环己烷中溶解度增大,可加快氧化反应,但是,易发生深度氧化,降低氧化收率。

因此,综合考虑选择的操作压力为1.0~1.15MPa。

2.2.3转化率转化率提高时,环己烷氧化的选择性就下降。

这是由于转化率越高,氧化产物更进一步深度氧化的机会越高,因而有用产物在总产物中比例越低。

一般转化率每增加1%,收率将下降4%。

因此要有高收率,就只有采取低转化率,以降低烷耗;但转化率太低,相应增加了未反应物料的循环量,公用工程消耗和设备投资将相应增加。

因此,转化率的确定要综合考虑。

注:环己烷氧化摩尔转化率%=0.84×醇%+0.8571×酮%+0.575×酸%+0.8129×酯%+0.7241×过%。

2.2.4气液比的影响在环己烷液相氧化中,烷加入量与空气必须有一定的比例(气液比),方能保证一定的转化率和收率,气液比偏大,转化率就偏高,收率降低;气液比偏小,氧化釜内空气供应不足,出现“贫氧”现象,这对原料的使用率不利。

贫氧状况时,氧化尾气中CO2和CO的含量会明显上升,同时氧化尾气含氧会变得极低。

正常状况下,尾氧应为1~2%(干基),各氧化釜的气液比不同,位号大的氧化釜的气液比大于位号小的氧化釜的气液比,这是因为各氧化釜氧化液对氧气吸收速率随转化率增加而增加。

对每个氧化釜而言,其空气分布器小孔气速必须大于8m/s,即有最小通气量,否则会发生“爆震”现象。

2.2.5气泡运动和内循环环己烷氧化反应釜为气升式内循环反应釜,空气通过分布器小孔鼓泡通入环己烷液体。

气泡在液体中的运动状态直接影响到氧化反应的速度和氧气吸收。

气泡在液体中运动快,气泡外膜更新速度就快。

在气泡周围所形成的反应生成物能及时传入液相,减少了生成物中醇、酮深度氧化的几率,氧化液内循环是通过氧化釜中导流筒外液体的气含率差造成液体中的静压差,从而产生液体环流运动,内循环起到了搅拌液体的作用,使气液接触更充分。

同时,增加反应釜的抗干扰能力。

一般地,循环倍率宜大于20。

2.2.6原料的影响当原料环己烷或空气带水时,会抑制氧化反应,导致尾氧升高,反应终止。

在反应器升温之前应将反应器底部水排尽,否则当通入空气时会造成压力波动。

同时,影响空气通入的速度。

氧化釜内有较多水时,氧化釜温度很难提高至所需温度,在装置开车时对进度有很大影响。

原料中苯含量大于5%时,会降低反应速度。

当原料中醇、酮含量高时,易发生深度氧化,降低氧化收率。

2.2.7气量分配的影响各氧化釜的气量分布主要以其单釜尾气含氧为基准(控制各单釜尾气含氧在指标规定范围内,各釜之间的尾气含氧值应基本持平,不宜差别过大),同时参考各氧化釜的温度呈一定的梯度,顺流程递减。

在生产过程中,应根据不同的负荷来调整通气的氧化釜的个数,在负荷较小时,可将1~3#氧化釜不通气,此时不通气的氧化釜相当于管道,但注意通气的氧化釜不得低于最低气速,防止“爆震”。

相关文档
最新文档