半导体激光器pi特性测试实验

合集下载

光纤通信实验报告

光纤通信实验报告

XX学号时间地点实验题目半导体激光器P-I特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC-FC单模光跳线 1根4、万用表1台5、连接导线 20根四、实验步骤1、用导线连接电终端模块T68(M)和T94(13_DIN)。

2、将开关BM1拨为1310nm,将开关K43拨为“数字”,将电位器W44逆时针旋转到最小。

3、旋开光发端机光纤输出端口(1310nm T)防尘帽,用FC-FC光纤跳线将半导体激光器与光功率计输入端连接起来,并将光功率计测量波长调整到1310nm档。

4、用万用表测量T97(TV+)和T98(TV-)之间的电阻值(电阻焊接在PCB板的反面),找出所测电压与半导体激光器驱动电流之间的关系(V=IR110)。

5、将电位器W46(阈值电流调节)逆时针旋转到底。

6、打开交流电源,此时指示灯D4、D5、D6、D7、D8亮7、用万用表测量T97(TV+)和T98(TV-)两端电压(红表笔插T97,黑表笔插T98)。

8、慢慢调节电位器W44(数字驱动调节),使所测得的电压为下表中数值,依次测量对应的光功率值,并将测得的数据填入表格中,精确到0.1uW。

9、做完实验后先关闭交流电开关。

10、拆下光跳线与光功率计,用防尘帽盖住实验箱半导体激光器光纤输出端口,将实验箱还原。

五、实验报告结果1、根据测试结果,算出半导体激光器驱动电流,画出相应的光功率与注入电流的关系曲线。

2、根据所画的P-I特性曲线,找出半导体激光器阈值电流的大小。

光源的P-I特性测试

光源的P-I特性测试

光源的P-I特性测试一、实验目的1.了解半导体光源LED与半导体激光器LD的P-I特性。

2.掌握LD光源P-I特性曲线的测试方法。

二、实验内容1.绘制数字光发射机光源的P-I特性曲线。

三、实验仪器1.光纤通信实验系统1台。

2.示波器1台。

3.万用表1部。

4.FC/PC光纤跳线1根。

数字光发射机的指标包括:半导体光源的P-I特性曲线测试、消光比(EXT)测试和平均光功率的测试。

接下来的三个实验我们将对这三个方面进行详细的说明。

半导体激光器的输出光功率与驱动电流的关系如图13-1所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th表示。

在门限电流以下,激光器工作于自发发射,输出荧光功率很小,通常小于100pW;在门限电流以上,激光器工作于受激发射,输出激光,功率随电流迅速上升,基本上成直线关系。

激光器的电流与电压的关系相似于正向二极管的特性。

P-I特性是选择半导体激光器的重要依据。

在选择时,应选阈值电流I th尽可能小,I th对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比大,而且不易产生光信号失真。

且要求P-I曲线的斜率适当。

斜率太小,则要求驱动信号太大,给驱动电路带来麻烦:斜率太大,则会山现光反射噪声及使自动光功率控制环路调整困难。

半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。

将开始出现净增益的条件称为阈值条件。

一般用注入电流值来标定阈值条件,也即阈值电流I th,当输入电流小于I th时,其输出光为非相干的荧光,类似于LED发出光,当电流大于I th时,则输出光为激光,且输入电流和输出光功率成线性关系,该实验就是对该线性关系进行测量,以验证P-I的线性关系.I(mA)图13-1 LD半导体激光器P-I曲线示意图五、实验注意事项1.在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。

实验三 光源静态特性综合实验

实验三 光源静态特性综合实验

实验三光源静态特性综合实验一、实验目的(1)半导体激光器的P-I特性(V-I)特性测试P-I曲线斜率、拐点、阈值电流(阈值电流密度、阈值输出功率)(2)半导体激光器的光谱特性测试峰值波长、中心波长、光谱宽度、边模抑制比(3)半导体激光器的温度特性测试阈值电流的温度依赖性、中心波长的温度依赖性二、实验器材LD/LED、光谱分析仪、直流电压表、万用表三:实验原理LD和普通二极管一样都是半导体光电子器件,其核心部分都是PN结。

因此LD也具有与普通二极管相类似的V-I特性曲线。

P-I特性测量系统如下图:四、实验过程1、实验注意事项:1)静电很容易导致激光器和发光二极管老化,实验时请佩戴防静电手腕带,不要用手直接接触发光二极管引脚以及与发光二极管连接的任何固定件、测试点和线路,以免损坏器件;2)严禁将任何电源对地短路;3)工作电流不要超过LD的额定值,防止烧坏器件;4)通电之前,确保W301(微调)及W302(粗调)旋钮在最小值位臵,这样可防止冲击电流损坏LD;5)严格按照指导书操作实验,出现任何异常情况,请立即关机断电,并请相关老师加以指导。

2、实验装臵及步骤1)将“光源特性测试模块”的J101、J102及J103分别连接至主台体面板上的“+5V”、“-5V”及“GND1”。

2)将激光器套筒的红色插孔连接至模块的J306(LED+/LD+),将其黑色插孔连接至模块的J307(LED-/LD-),将其黄色插孔连接至模块的J301(PD+)。

将万用表1(“V档”)的红表笔连接至J306,黑表笔连接至J307。

将万用表2(“mA”档)的红表笔连接至J304(Iop+),黑表笔连接至J305(Iop-)。

3)将开关K301拨向“恒流”端,K302拨向“电流源”端。

4)将电流源的W302“粗调”和W301“微调”逆时针旋转到最小。

打开电源开关K101,顺时针缓慢调节W302,使工作电流由0mA逐渐增加到20mA,每隔2mA记录LD的电压值(万用表1)和电流值(万用表2),绘制LD的V-I曲线。

半导体激光器特性测量实验报告

半导体激光器特性测量实验报告

半导体激光器特性测量一、实验目的:1.通过本实验学习半导体激光器原理。

2.测量半导体激光器的几个主要特性。

3.掌握半导体激光器性能的测试方法。

二、实验仪器:半导体激光器装置、WGD-6型光学多道分析器、电脑等。

三、实验原理:WGD-6 型光学多道分析器,由光栅单色仪,CCD 接收单元,扫描系统,电子放大器,A/D 采集单元,计算机组成。

该设备集光学、精密机械、电子学、计算机技术于一体。

光学系统采用C-T 型,如图M1 反射镜、M2 准光镜、M3 物镜、M4 转镜、G 平面衍射光栅、S1 入射狭缝、S2 光电倍增管接收、S3 CCD 接收。

入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm 连续可调,光源发出的光束进入入射狭缝S1、S1 位于反射式准光镜M2 的焦面上,通过S1 射入的光束经M2 反射成平行光束投向平面光栅G 上,衍射后的平行光束经物镜 M3 成像在S2 上。

四、实验内容及数据分析1.半导体激光器输出特性的测量:a)将各仪器按照要求连接好;b)打开直流稳压电源,打开光多用仪;c) 将激光器的偏置电流输入插头接于稳压电源的电流输出端;d) 将激光器与光多用仪的输入端相连并使探头正好对激光器输出端,打开光多用仪; e) 缓慢增加激光器输入电流(0mA~36mA ),注意电流不要超过LD的最大限定电流(实验中不超过38mA )。

从功率计观察输出大小随电流变化的情况; f) 记录数据; g) 绘图绘成曲线。

实验数据及结果分析: I (mA ) 1.02.03.04.05.06.07.0 8.09.010.011.0 12.0 P (uW) 0.40 0.80 1.25 1.75 2.25 2.85 3.54.255.05 5.956.98.0I (mA ) 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 P (uW) 9.310.7512.4514.5517.8522.941.0311.5753.51179.51594.51845.0根据以上实验数据绘制I —P 曲线:半导体激光器输出特性2004006008001000120014001600180020000510152025I(mA)P(uW)实验结果分析:通过半导体激光器的控制电源改变它的工作电流I ,测量对应的发光功率P ,以P 为纵轴,I 为横轴作图,描成曲线。

光纤通信实验报告1-光源的P-I特性测试

光纤通信实验报告1-光源的P-I特性测试
实验接线与结果显示图:
在主控&信号源模块,选择光纤通信菜单,在其中选择选择第一个实验,光源的P-I特性测试。
2实验结果记录
测得参数填入表格如下:
P(uW)
413.7
387.0
309.6
239.8
172.5
97.84
13.62
u(V)
0.64
0.60
0.51
0.43
0.34
0.27
0.16
I(A)
0.019
LD半导体激光器P-I曲线示意图
半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用Ith表示。在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。激光器的电流与电压的关系类似于正向二极管的特性。该实验就是对该线性关系进行测量,以验证P-I的线性关系。
0.018
0.0155
0.013
0.0103
0.0081
0.0049
P(uW)
7.576
1.318
1.040
0.700
0.5120
0.3750
0.1922
u(V)
0.15
0.14
0.13
0.12
0.11
0.09

实验一半导体激光器pi特性曲线测量

实验一半导体激光器pi特性曲线测量

实验四半导体激光器光谱测量与模式分析一、实验目的:1.了解半导体激光器的工作原理和相关特性;2.掌握半导体激光器模式参数的测量方法;二、实验原理:半导体激光器的模式分为空间模和纵模(轴模)。

空间模描述围绕输出光束轴线某处的光强分布,或者是空间几何位置上的光强(或光功率)的分布,也称远场分布;纵模则表示一种频谱,它反映所发射的光束其功率在不同频率(或波长)分量上的分布。

二者都可能是单模或者出现多个模式(多模)。

边发射半导体激光器具有非圆对称的波导结构,而且在垂直于异质结平面方向(称横向)和平行于结平面方向(称侧向)有不同的波导结构和光场限制情况。

横向上都是异质结构成的折射率波导,而在侧向目前多是折射率波导,但也可采取增益波导,因此半导体激光器的空间模式又有横模与侧模之分。

图1表示这两种空间模式。

图1 半导体激光器横模与侧模由于有源层厚度很薄(约为0.15μm),都能保证在单横模工作;而在侧向,则其宽度相对较宽,因而视其宽度可能出现多侧模。

如果在这两个方向都能以单模(或称基模)工作,则为理想的TEM00模,此时出现光强峰值在光束中心且呈“单瓣”。

这种光束的光束发散角最小、亮度最高,能与光纤有效地耦合,也能通过简单的光学系统聚焦到较小的斑点,这对激光器的应用是非常有利的。

相反,若有源区宽度较宽,则发光面上的光场(称近场)在侧向表现出多光丝,好似一些并行的发光丝,在远场的侧向则有对应的光强分布,如图2所示。

这种多侧模的出现以及它的不稳定性,易使激光器的P-I特性曲线发生“扭折”(kink),使P-I线性变坏,这对信号的模拟调制不利;同时多侧模也影响与光纤高效率的耦合,侧模的不稳定性也影响出纤功率的稳定性;不能将这种多侧模的激光束聚焦成小的光斑。

图2 有多侧模的半导体激光器的近场和远场由于半导体激光器发光区几何尺寸的不对称,其远场呈椭圆状,其长、短轴分别对应于横向与侧向。

在许多应用中需用光学系统对这种非圆对称的远场光斑进行圆化处理。

光纤通信实验报告光源的PI特性测试

光纤通信实验报告光源的PI特性测试
y=[,387,,,,,,,,,,,,];
plot(x,y)
xlabel('I/mA');ylabel('P/uW');
title('实验得LD半导体激光器P-I特性曲线')
gridon;
对实验结果曲线图的阈值电流部分进行局部放大,如图所示:
实验结果及分析:
通过进行了光源的P-I特性测试实验,结合了书本上的知识,我对半导体激光器LD的P-I特性有了进一步的了解,同时也掌握了光源P-I特性曲线的测试方法。
(3)用同轴电缆线将25号光收发模块P4(光探测器输出)连至23号模块P1(光探测器输入)。
2、将25号光收发模块开关J1拨为“10”,即无APC控制状态。开关S3拨为“数字”,即数字光发送。
3、将25号光收发模块的电位器W4和W2顺时针旋至底,即设置光发射机的输出光功率为最大状态;
4、开电,设置主控模块菜单,选择主菜单【光纤通信】→【光源的P-I特性测试】功能。
在做实验的过程中,也因为是初次接触,还有些不习惯,从这第一个实验开始对实验箱的每个模块进行熟悉,中间在读数的时候,我们测得的数据波动的很厉害,不能稳定地读数,所以只能取中间值进行采集。
在实验的过程中,我们对多组数据进行了测量。我们首先由u=(V)测量至u=(V),发现了P-I大致的规律,后又估计在u=(V)左右对应有阈值电流,故又在此范围附近多测量了几组,使最终结果更精确。最后根据我们的数据绘出了实验测得的LD光源P-I特性曲线,曲线与理想情况还有些偏差,我认为造成误差的原因,主要可能有实验温度的影响和测量过程中读数与记录的误差等,但在误差允许的范围内,实验结果与理论基本吻合。可以从曲线上看出,阈值电流在左右,阈值功率在左右。
实验步骤:

试验二半导体激光器P―I特性曲线的绘制

试验二半导体激光器P―I特性曲线的绘制

实验二半导体激光器P―I特性曲线的绘制一、实验目的1、学习半导体激光器的发光原理。

2、了解半导体激光器输出光功率与注入电流的关系。

3、掌握半导体激光器P-I特性曲线的测试及绘制方法。

二、实验内容测量半导体激光器的输出光功率和注入电流,并画出P-I关系曲线。

三、实验原理半导体激光器的输出光功率与驱动电流的关系如图2-1所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th表示。

在阈值电流以下,激光器工作于自发发射,输出荧光,光功率很小。

在门限电流以上,激光器工作于受激发射,输出激光,光功率随驱动电流迅速上升,基本成线性关系;激光器的电流与电压的关系类似于正向二极管的特性,如图2-2所示。

图2-1 激光器的功率特性图2-2 激光器的伏安特性阈值条件就是光谐振腔中维持光振荡的条件。

设受激发射所产生的光介质的平均增益系数(单位长度上的增益)为g,光介质的平均损耗系数为a,则光谐振腔产生和维持光振荡的条件为光子在光谐振腔中来回反射一次所产生的光能增益大于或等于光能的损耗,用公式表示为:(2-1)式中L 为光谐振腔的长度,r1、r2分别为光谐振腔两端镜面的反射系数(O<rl<1;O<r2<1)。

门限状态下的增益系数为th g 为:(2-2)式中J th 为门限状态下注入有源区的电流密度,β为平均增益因子,其值取决于激光器的材料与结构,从电流密度J th 按下式可决定门限电流I th 为:(2-3)式中b 为有源区宽度,ξ>1为电流侧向扩展因子,可使ξ接近1,故能获得小的门限电流。

激光器功率特性的线性程度对模拟光纤传输系统的非线性失真指标影响很大。

半导体激光二极管(LD)或简称半导体激光器与发光二极管LED 不同,它通过受激辐射发光,是一种阈值器件。

由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄(垂直发散角为30—50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄,适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太原理工大学现代科技学院
课程实验报告
专业班级
学号
姓名
指导教师
实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩
一、 实验目的
1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理
2. 了解半导体激光器平均输出光功率与注入驱动电流的关系
3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法
二、 实验仪器
1. ZY12OFCom13BG 型光纤通信原理实验箱 1台
2. 光功率计
1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表
1台
5. 连接导线
20根
三、 实验原理
半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。

所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。

)是一种阈值器件。

由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。

P-I 特性是选择半导体激光器的重要依据。

在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大,
……………………………………装………………………………………订…………………………………………线………………………………………
而且不易产生光信号失真。

并且要求P-I曲线的斜率适当。

斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。

半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。

将开始出现净增益的条件称为阈值条件。

一般用注入电流值来标定阈值条件,也即阈值电流I th,当输入电流小于I th时,其输出光为非相干的荧光,类似于LED 发出的光,当电流大于I th时,输出光为激光,且输入电流和输出光功率成线性关系。

该实验就是对该线性关系进行测量,以测试半导体激光器的P-I线性关系。

在实验中所用到半导体激光器输出波长为1310nm,带尾纤及FC型接口。

半导体激光器作为光纤通信中应用的主要光源,其性能指标直接影响到系统传输数据的质量,因此P-I特性曲线的测试了解激光器性能是非常重要的。

半导体激光器驱动电流的确定是通过测量串联在电路中的R110上电压值。

电路中的驱动电流在数值上等于R110两端电压与电阻值之比。

为了测试更加精确,实验中先用万用表测出R110的精确值(将BM1、BM2都拨到中档,用万用表的欧姆档测T103、T104之间的电阻),计算得出半导体激光器的驱动电流,然后用光功率计测得一定驱动电流下半导体激光器发出激光的功率,从而完成P-I特性的测试。

并可根据P-I特性得出半导体激光器的斜率效率。

I(mA)
图1-1 LD半导体激光器P-I曲线示意图
四、实验内容
1.测量半导体激光器输出功率和注入电流,并画出P-I关系曲线。

2.根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率。

五、实验步骤及结果
1.将光发模块中的可调电阻W101逆时针旋转到底,使数字驱动电流达到最小值。

2.用万用表测得R110电阻值,找出所测电压与半导体激光器驱动电流之间的关系(V=IR110)。

经实验测得R110=1.8Ω
3.拨动双刀三掷开关,BM1选择到半导体激光器数字驱动,BM2选择到1310。

4.旋开光发端机光纤输出端口(1310nm T)防尘帽,用FC-FC光纤跳线将半导体激光器与光功率计
输入端连接起来,并将光功率计测量波长调整到1310nm档。

5.连接导线:将T502与T101连接。

6.连接好实验箱电源,先开交流电源开关,再开直流电源开关,即按下K01,K02 (电源模块),并打
开光发模块(K10)和数字信号源(K50)的直流电源。

7.用万用表测量R110两端电压(红表笔插T103,黑表笔插T104)。

8.慢慢调节电位器W101,使所测得的电压为下表中数值,依次测量对应的光功率值,并将测得的数
据填入下表。

9.做完实验后先关闭光发模块电源(K10),然后依次关掉各直流开关(电源模块),以及交流电开关。

10.拆下光跳线及光功率计,用防尘帽盖住实验箱半导体激光器光纤输出端口,将实验箱还原。

11.将各仪器设备摆放整齐。

六、实验报告
1.根据实验记录数据,算出半导体激光器驱动电流,画出相应的光功率与注入电流的关系曲线。

(测得电阻为1.7Ω)
2.根据所画的P-I特性曲线,找出半导体激光器阈值电流I th的大小。

3.根据P-I特性曲线,求出半导体激光器的斜率效率。

七、注意事项
1.半导体激光器驱动电流不可超过40mA,否则有烧毁激光器的危险。

2.由于光功率计,光跳线等光学器件的插头属易损件,使用时应轻拿轻放,切忌
用力过大。

八、思考题
1.试说明半导体激光器发光工作原理。

半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。

半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射
2,环境温度的改变对半导体激光器P-I特性有何影响?
随着温度的上升,阈值电流越来越大,功率随电流变化越来越缓慢。

,,3,分析以半导体激光器为光源的光纤通信系统中,半导体激光器P-I特性对系统传输性能的影响。

当注入电流较小时,激活区不能实现粒子束反转,自发发射占主导地位。

,激光器发射普通的荧光。

随着注入电流的增加,激活器里实现了粒子束反转,受激辐射占主导地位。

但当注入电流小于阈值电流时,谐振腔内的增益还不足以克服如介质的吸收、镜面反射不完全等引起的谐振腔的损耗时,不能在腔内建立起振荡,激光器只发射较强荧光。

只有当注入电流大于阈值电流时,才能产生功率很强的激光。

九、实验感想
在这次实验中,我学到很多东西,加强了我的动手能力,并且培养了我的独立思考能力。

在实验的过程中我们要培养自己的独立分析问题,和解决问题的能力。

本次得到的数据还需要一些实际情况的修正,还有需提到的是本次设计未涉及到具体的施工以及天线部分具体的架设,网络传输系统的具体结构以及线路的铺设上。

最后再次我深深体会到科研的艰苦,理论上虽然成功,但实践不一定能成功,心中不由自主的对我国广大的科研人员生出无限的敬佩之情。

相关文档
最新文档