《概率统计》期中试卷答案2015.5

合集下载

高中数学(统计概率)综合练习试题含解析

高中数学(统计概率)综合练习试题含解析
故选:D.
考点:频率分布直方图.
13.B
【解析】
试题分析:分层抽样为按比例抽样,则O型血抽取人数为 ;A型血抽取人数为 ;B型血抽取的人数为 ;AB型血抽取人数为 .故本题答案选B.
考点:分层抽样
14.B
【解析】
试题分析:因为 ,所以 = ,故选B.
A.
B.
C.
D.
2.2015年11月19日是“期中考试”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则 ( )
A. B. C. D.
3.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两个样本的下列数字特征相同的是()
考点:变量的相关性以及回归直线方程.
6.D
【解析】
试题分析:由二项分布概念可知得 ,则 = ,故正确选项为D.
考点:二项分布.
7.B
【解析】
试题分析:设中间一个长方形的面积为 ,则其他 个小长方形面积和为 ,则 所以 ,所以中间一组的频数为 ,故选B.
考点:1.频率分布直方图;2.总体估计.
8.B
【解析】
(Ⅰ)求样本容量n和频率分布直方图中y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的人中至少有一个同学的成绩在 的概率.
25.为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(完整word版)2014-2015概率论与数理统计A卷答案 (1)

(完整word版)2014-2015概率论与数理统计A卷答案 (1)

系部 专业班级 学号 姓名 密封线 答题留空不够时,可写到纸的背面 注意保持装订完整,试卷折开无效 装订线二.填空题(每题2分,共10分)1.已知().P A =06, ()|.P B A =03, 则()P A B ⋂= ___0.18_______;2.甲、乙、丙3人独立地译出一种密码,他们能译出的概率分别为1/5,1/3,1/4,则能译出这种密码的概率为35; 3.一种动物的体重X 是一随机变量,设()(),E X D X ==334,10个这种动物的平均体重记作Y ,则()D Y =__ 0.4 _;4. 已知,36)(,25)(==Y D X D X 与Y 的相关系数为4.0=XY ρ,则)(Y X D -= 37 ;5. 设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从2()n χ分布.三.计算下列各题(共80分)1.(10分)例 1.某电子设备制造厂所用的元件是由三家元件制造厂提供的,根据以往的记录三家厂的次品率分别为0.02,0.01,0.03,三家厂所提供的份额分别为0.15,0.80,0.05。

设这三家厂的产品在仓库中是均匀混合的,且无区别的标志.(1)在仓库中随机取一只元件,求它是次品的概率;(2)在仓库中随机取一只元件,若已知取到的是次品,求出此次品由第一家工厂生产的概率是多少?解:设A 表示“取到的是一只次品”,(i=1,2,3)表示“所取到的产品是由第i 家工厂提供的”,则P()=0.15 P()=0.80 P()=0.05P(=0.02 P(=0.01 P(=0.03 (3分)1>.由全概率公式()112233(|)()(|)()(|) ?()A B B A B B B A A B =++P P P P P P P 0.0125= (5分) 2>.由贝叶斯公式P() = = = 0.24 (10分)桂林理工大学考试试卷 (2014--2015 学年度第 一 学期)课 程 名 称:概率统计 A 卷 命 题:基础数学教研室 题 号 一二三总 分得 分一. 单项选择题(每小题2分,共10分)1.如果 1)()(>+B P A P ,则 事件A 与B 必定( C ))(A 独立 )(B 不独立 )(C 相容 )(D 不相容2.设随机变量X 服从二项分布(,)B n p ,且()()2.1 1.47==E X D X ,则二项分布的参数,n p 的值为( A ) ()70.3==A n p ()30.7==B n p ()210.1==C n p ()40.6==D n p3.设随机变量X 服从)1,0(N 分布,12+=X Y ,则~Y ( B ) ()(0,1)()(1,4)()(1,2)()(0,4)A N B N C N D N4. 已知X 服从泊松分布,则()D X 与()E X 的关系为( C ) )(A ()()D X E X > )(B ()()D X E X < )(C ()()D X E X = )(D 以上都不是5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( D ))(A 32112110351ˆX X X ++=μ)(B 3212949231ˆX X X ++=μ)(C 3213216131ˆX X X ++=μ)(D 32141254131ˆX X X ++=μX-1-1 0.12将联合分布表每行相加得-10.6将联合分布表每列相加得-10.30,1,;0θ<<!!n e X , (4分)()1ln !!!n X X θ- n ,令ln 0,d d θ=得1n θ= (10000,0.005b49.75, ()2.84Φ-Φ。

2015年高考理数专题复习---概率统计(解析版)

2015年高考理数专题复习---概率统计(解析版)

2015年高考理数专题复习---概率统计预测2013年高考中,本节的内容还是一个重点考查的内容,因为这部分内容与实际生活联系比较大,随着新课改的深入,高考将越来越重视这部分的内容,排列、组合、概率、统计都将是重点考查内容,至少会考查其中的两种类型。

(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。

(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。

这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。

复习建议在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.母题一:5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求:(1)甲中奖的概率;(2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.母题二:某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三人该课程考核都合格的概率(结果保留三位小数).母题三:某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01): (1)恰好有两家煤矿必须整改的概率;(2)至少关闭一家煤矿的概率.母题四:袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球扣1分,取得1个黑球得0分.求所得分数 的分布列.母题五:.A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白2,服鼠的只数比服用B有效的多,就称该试验组为甲类组.设每一只小白鼠服用A有效的概率为31. (1)求一个试验组为甲类组的概率;(2)观察3个试验组,用ξ表示这3用B有效的概率为2个试验组中甲类组的个数,求ξ的分布列和数学期望.7 8 99 4 4 6 4 7 3高考模拟1.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )(A )8,8 (B )10,6 (C )9,7 (D )12,4【答案】C2.右图是 2011年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84B. 84,1.6C. 85,1.6D. 85,4【答案】C 【解析】2580855x =+=,244 1.6.5s +== 3.如图,矩形O A B C 内的阴影部分是由曲线()()()sin 0,f x x x π=∈及直线()()0,x a a π=∈与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是( ) A .712π B.23π C .34π D.56π 【答案】B【答案】A6.右图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积约( ) A .523 B .521 C .519 D .516 【答案】A 7.设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于34的概率为( ) A .964 B .964π C .916π D .916【答案】B8.已知椭圆2214x y +=的焦点为12,F F ,在长轴A 1A 2上任取一点M ,过M 作垂直于A 1A 2的直线交椭圆于点P ,则使得120PF PF ⋅< 的点M 的概率为( )A B C D .12【答案】B9.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第五组)的频数为()A.12B.24C.36D.48【答案】C10.盒子中放有编号为1,2,3,4,5的形状和大小完全相同的5个白球和5个黑球,则取出球的编号互不相同的概率为()A.115B.112C.12D.23【答案】D【解析】32352180.33243 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭12.对某种花卉的开放花期追踪调查,调查情况如下:则这种卉的平均花期为__ _天.【答案】16天(15.9天给满分)16.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)4050,,[)5060,,…,[]90100,后得到如下图的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[)4050,与[]90100,两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。

2015概率统计试卷A

2015概率统计试卷A
第1页
2
D. S 是 的极大似然估计量.
2
2
共5页
8. 设 X1 ,
, X n 是 N (, 2 ) 的样本, 未知, X
1 n 1 n 2 X , S ( X i X )2 ,则 2 的置 i n i 1 n 1 i 1
[ ]
信度为 0.95 的置信区间为
2.已知随机变量 X ~ U (2, 2), 且Y X ,求(1)Y的概率密度(2)求 P( Y>X).
2
第3页 共6页
x 1 e ,x 0 3.总体 X 的概率密度函数 f ( x) , 0 。 X1 , 0, x 0
, X n 为 X 的样本,求 的极大似然
A. (
(n 1)S 2 (n 1) S 2 , ) (2n ) (0.025) (2n) (0.975)
S n
B.
(
(n 1)S 2 (n 1)S 2 , ) (2n1) (0.025) (2n1) (0.975)
S n
近似服从 [ ]
C. X t( n1) (0.025)
得分
2.总体 X ~ N (1 , 2 ) , Y ~ N (2 , 2 ) ,且 X 与 Y 相互独立,设 X1 , X 2 ,
, X m 是来自于 X 的样本,
Y1 , Y2 ,
, Yn 是 来 自 于 Y 的 样 本 , S , S 分 别 是 这 两 个 样 本 的 样 本 方 差 , 证 : 对 于 任 意 常 数
2.设袋中有 6 只红球,4 只白球,甲乙两人先后从中任取一只,已知乙取到白球,则甲取到的是红球
3.在区间(0,1)中随机取两个数,两数之和小于 1.4 的概率为 4. 设 X 为随机变量, E( X ) 0, E(2 X 1) 8, D(2 X 1) 2 ,则 E(X)= B.2

2015年概率论考试题答案

2015年概率论考试题答案

2005级建筑工程(本)自考班 概率统计期末考试题(A 卷)参考答案一、填空 1. ABBC AC 或 ABC ABC ABC ABC2. 出现的点数恰为53. r p -A 与B 互斥∴ ()()()P A B P A P B =+ 则 ()()()P B P A B P A r p =-=-4.21 ()22~21124()114412X e EX DX EX DX EX ∴===+=+=,则5. 0.25由题设,可得X sin 的概率分布为{}sin 00.250.250.5P X ==+={}5.021sin =⎭⎬⎫⎩⎨⎧===πX P X P则 ()sin 0.5E X =,()sin 0.50.50.25D X =⨯=二、单项选择 1.D 2. A 3. A利用集合的运算性质可得. 4.DA 与B 互斥()0P AB ∴=故 ()()()()P A B P A P AB P A -=-= 5.BB A ⊂ AB B ∴=故 ()()P AB P B = 6. (C )由已知X 服从二项分布(,)B n p ,则()1DX np p =- 又由方差的性质知,(21)4(1)D X np p -=-7. (B )()04X N 服从,04EX DX ∴==,于是 ()222E X X EX EX -=-⎡⎤⎣⎦()24DX EX EX =+-=28. (A ) 由正态分布密度的定义,有 22()2()()x p x x μσ--=-∞<<+∞24()()x x x ϕ--∞<<+∞⇒由 22242σσ=⇒=9. (D )X EX DX λ==若服从泊松分布,则∴如果EX DX ≠时,只能选择泊松分布. 10. (D )∵ X 为服从正态分布N (-1, 2), EX = -1 ∴ E (2X - 1) = -3三、计算与应用题 1. 解:设 A 表示“取到的两球颜色不同”,则1153A n C C =而样本点总数28C n =故 ()1153281528A C C n P A n C ===2. 解:设 A 表示“能把门锁打开”,则112373A n C C C =+,而210C n = 故 ()1123732108A 15A C C C n P n C +=== 3. 解:设 A 表示“有4个人的生日在同一月份”,则21124611C C n A =而样本点总数为612=n故 412612611()0.007312A C C n P A n === 4. 解:设 A 表示“至少取到一个次品”,因其较复杂,考虑逆事件A =“没有取到次品”则 A 包含的样本点数为A n 346C =。

14-15概率论期中考试试题答案(防灾科技学院)

14-15概率论期中考试试题答案(防灾科技学院)
0 y 8 4, 2 其它,
1 y 8 1 ) , y 8 y 8 ( fY ( y) f X ( )( ) 8 2 2 2 2 0 , y 8 , 8 y 16, 32 其它. 0 ,
„(5 分)
1, 0 x 1, (2)因 X ~ U (0,1) ,故 f X ( x) 0, 其他;
1 4 1 „(3 分) 4
(3)因为 X 为连续型随机变量, P{1 X 3} F (3) F (1) 1 (1 )
3. (10 分)设随机变量 X 在 [ 2, 5 ]上服从均匀分布, 现对 X 进行三次独立观测 ,试求至 少有两次观测值大于 3 的概率. 1 答:X 的概率密度函数为 , 2 x 5,
0
„„„(3 分)
4. (20 分) (1)设随机变量 X 具有概率密度 f X ( x) 8
0 x4 其它
,求 Y=2X+8 的概率
密度。 (2)设随机变量 X ~ U (0,1) ,求 Y e
2X
的密度函数 f Y ( y) 。
y 8
解: (1)
y 8 FY ( y) P(Y y) P(2 X 8 y) P( X ) 2 f X ( x)dx „ (5 分) 2
3
1 2 dx , 3 3
„„„(2 分)
因而有 P{Y 2}
3 2 2 3
2
2 3 2 1 3 3 3
3
20 2 1 . 3 27
x , 0,
„„„(2 分)
(1) 由全概率公式 P( B) P( A1 ) P( B A1 ) P( A2 ) P( B A2 ) P( A3 ) P( B A3 ) „„ (3 分) =0.25×0.05+0.35×0.04+0.40×0.02=0.0345; (2)由贝叶斯公式 P( A1 B)

(完整版)概率统计综合测验(3套题)

(完整版)概率统计综合测验(3套题)

概率统计综合测验(一)一、选择填空题(每小题3分,共18分)1. 箱中有5个白球3个红球,任取2个,则两个都是红球的概率为( )A.15/28B.13/28C.5/28D.3/282. 设X〜N(,2),则随增加,概率P(|X | )( )A.单调增加B.单调减少C. 保持不变D.与有关3. 设总体错误!未找到引用源。

X : N(u, 2),X!,X2,X3是总体X的样本,贝U以下的无偏估计中,最有效的估计量是().A. 2X X1B. 1 2 X2 1 X2 3 6D. 2 4 1C. X X X2 X5 5 54. ________________________________________________________ 设P(A) 0.5, P(AUB) 0.8,且A与B互斥,则P(B) _________________________5. 设随机变量X在(1,6 )服从均匀分布,则P(2 X 4) __________________6. 若总体X ~ N( , 2),其中2未知,则对总体均值进行区间估计时选择的枢轴量为_________二、计算题(每小题10分,共30分)1. 某保险公司把投保人分成三类:“谨慎的”、“一般的”、“冒险的”,占的比例分别为20%、50%、30%。

一年中他们出事故的概率分别为0.05、0.15、0.30.(1)求一年中投保人出事故的概率;(2)现有一投保人出了事故,求他是“谨慎的”客户的概率.2. 设随机变量X(1)求E(X) ; (2)求D(X).3.设随机变量X的概率密度为f(x)3x 小ce , x 00, 其他(1)求常数c;(2)求P(X 1).三、计算题(每小题10分,共40分) 1. 设二维随机变量(X,Y)具有联合分布律求(1)X 的边缘分布律;(2)P(X 2 Y 2 1). 2. 设二维随机变量(X,Y)的联合概率密度为f(x,y) (1) 求X 与Y 的边缘概率密度; (2) 判断X 与丫是否独立?(说明理由)1…、x 0x13.设总体X 的概率密度为f(x, ),0 x [错误!未找到引用0,其他源。

2013-2015概率统计试题及解答

2013-2015概率统计试题及解答

(2) 设 Y 为 150h 内烧坏的电子管数,则 Y ~ B(3, p) , p = P{X < 150} = F (150) = 1 。(3 分)
3
所求为 P{Y ≥ 2} = C32 (1 3)2 (2 3) + (1 3)3 = 7 27 。(2 分)
∫ ∫ ∫ ∫ ∫ 三、1. (1) 由
姓名:
2014~2015 学年 第一学期试卷 课程名称:概率统计 考试形式:闭卷 试卷: A
题号
一 二 三 四 总分
标准分 24 16 30 30
得分
注 请填写清楚左侧装订线内的所有信息,并在交卷时保持三页试卷装订完好。
A 一、填空题和选择题 (每题 3 分,共 24 分)
1. 已知 P(A) = 0.5 , P(B) = 0.6 , P ( B A) = 0.8 ,则 P ( A ∪ B) =
⎪⎩ 0,
其它.
cov( X ,Y ), ρXY , D( X − Y ) 。
姓名:
学号: 线
专业班级: 订
专业班级: 全校工科、经管、理科各专业 [该项由出卷人填写]

第( 2 )页共( 3 )页
姓名:
2014~2015 学年 第一学期试卷 课程名称:概率统计 考试形式:闭卷 试卷: A
A 四、计算下列各题 (共 30 分) 1. (7 分) 某单位设置一电话总机,共有 100 架电话分机。设每个电话分机是否使用外线通话 是相互独立的,且每时刻每个分机有 10%的概率要使用外线通话。问总机需要多少外线才能
36
6
36
∫ ∫ ∫ ∫ E(XY ) =
+∞
+∞
xyf (x, y)dxdy =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学号:
则α =
0.6
.
5. 设随机变量 X 服从参数为 λ 的泊松 (Poisson) 分布,且已知 E[( X 则λ =
− 1)( X − 2)] = 1 ,
1
.
6. 设随机变量 X 服从[ 0, 2 ]上的均匀分布,则 P { X > 7. 设随机变量 X 服从参数 λ =
DX } =
5 6
.
班级:
第 5 页(共 5 页)
P
(3)
x < −2 − 2 ≤ x < −1 −1≤ x < 0 , 0≤ x<2 x≥2
3 6
0.1 0.4 0.5
第 2 页(共 5 页)
浙江财经大学课程期中考试试卷
P { X < 0 | X ≠ −1 } =
P { X < 0, X ≠ −1 } P { X = −2 } 0.2 1 = = = . P { X ≠ −1 } P { X ≠ −1 } 0.6 3
x > 0, 得 P{ X < 2} = F ( 2) = 1 − e −1 . x≤0
k ∴ Y ~ B (5, 1 − e −1 ), 即有 P {Y = k } = C5 (1 − e −1 )k (e −1 )5 − k , (k = 0,1,2,3,4,5)
(1) EY = np = 5 (1 − e −1 ) ,
x − t2 2
x
x
当 x > 0 时, F ( x ) =
∫− ∞ f ( t ) dt = ∫0 te
, x>0 x≤0
− 1 2
x
dt = − e

t2 2
x
= 1− e
0

x2 2
,
⎧ − ⎪ ∴ F ( x ) = ⎨1 − e ⎪ ⎩ 0,
(3) (4)
x2 2

P { 1 < X < 2 } = F ( 2) − F (1) = e
P ( A − B ) = 0.3 ,则 P ( AB ) =
0.6
.
2.某校学生四级英语考试的通过率为 90%,其中 60%学生还通过六级考试,则随意选出一名学 生,该生通过六级的概率为 姓名
0.54
.
⎧ ⎪ ⎪ 3. 设离散型随机变量 X 的分布函数 F ( x ) = ⎨ ⎪ ⎪ ⎩
浙江财经大学课程期中考试试卷
浙江财经大学 2014~ 2015 学年第二学期
《 概率论与数理统计 》课程期中考试试卷(答案) 考核方式: 闭卷 考试日期: 2015 年 月 日 适用专业、班级: 13 级各专业
题 得 号 分 一 二 三 四 五 六 七 八 九 总分 线 评卷人 (共 九 大 题 ) 一 、 填 空 题 ( 每 小 题 2 分 , 共 20 分 ) 1. 设 A, B 为随机事件,且 P ( A) = 0.7,
⎧ − ⎪ 五 . (10分) 已知连续型随机变量X 的密度函数为 f ( x ) = ⎨ Axe ⎪ ⎩ 0,
求:(1) 常数 A; (2) X 的分布函数 F(x);
x2 2 dx
x2 2
,
x>0 x≤0
(4) EX .
x2 2 +∞
(3)
P { 1 < X < 2 };
− x2 2 d (−
100 − 100 ) = Φ (0) = 0.5 , 5 115 − 100 100 − 100 P{ Y = 3 } = P{ 100 < X ≤ 115 } = F (115 ) − F (100) = Φ ( ) −Φ( ) 5 5 = Φ ( 3) − Φ (0) = 0.99865 − 0.5 = 0.49865 , = 10 } = P{ X ≤ 100 } = F (100 ) = Φ (
DY = npq = 5 (1 − e −1 ) e −1 ,
第 4 页(共 5 页)
浙江财经大学课程期中考试试卷
(2) P{ Y ≤ 4 } = 1 − P { Y > 4 } = 1 − P{Y = 5} = 1 − (1 − e −1 )5 . 八 . (10 分) 某工程队完成某项目所需要时间 X (天)服从 N (100 , 5 2 ) ,工程队上级规定: 若工程在 100 天内完成,可以得到奖金 10 万元;在 100~115 天内完成,可以得到奖金 3 万元, 若超过 115 天完成,罚款 5 万元.求该工程队在完成该项工程时,获取金额的期望. (附标准正态分布函数值: Φ (1) = 0.8413 , Φ ( 2) = 0.97725 , Φ ( 3) = 0.99865 ) 解 : X ~ N (100 , 5 2 ) , 则 P{ Y 设获取金额为 Y ,
0.62469
.
X | < 2} =
10. 利用正态分布的结论,有
+∞ − 1 ( x 2 − 4 x + 4) e 2π ( x − 2) 2 2 dx
∫− ∞
=
1
.
第 1 页(共 5 页)
浙江财经大学课程期中考试试卷
二 . (10 分) 甲、乙、丙三位同学同时独立参加《概率论与数理统计》考试,及格的概率分别为
解 : (1)
∫− ∞ f ( x )dx = ∫0
+∞
+∞
Axe

= − A∫0 e
+∞
− x2 ) = − Ae 2
= A = 1,
0
∴ A = 1,
⎧ − ⎪ 此时 f ( x ) = ⎨ xe ⎪ ⎩ 0,
x2 2
,
x>0 x≤0

(2) 当 x ≤ 0 时, F ( x ) =
∫− ∞ f ( t )dt = ∫− ∞ 0 dt = 0,
4. 设随机变量 X 的概率密度 f ( x ) = ⎨
0, x < −1 0.2, − 1 ≤ x < 1 ,则 X 的分布律为 0.7, 1 ≤ x < 2 1, x≥2
X P
-1 0.2
1 0.5
2 0.3

⎧ 3 x 2 , 0 < x < 1 ,且 P{ X ≥ α } = 0.784 , 其他 ⎩ 0,
九.(10 分) 设随机变量 X 的概率密度为 f ( x ) =
1 , ( −∞ < x < +∞ ) , π (1 + x 2 )
求:(1) Y = X 2 的概率密度 fY ( y ) ;
解 : (1) 当 当
(2) E (arctan X ) .
FY ( y) = P{Y ≤ y} = P{ X 2 ≤ y},
y>0 y≤0
+∞
1 ⎧ , ⎪ ∴ fY ( y ) = ⎨ π (1 + y ) y ⎪ 0, ⎩
(2) E (arctan X ) = ∫
+∞

arctan x ⋅ f ( x )dx = ∫− ∞ arctan x −∞
1 dx = 0 π (1 + x 2 )
(对称区间上奇函数的积分)
P( A1 + A2 + A3 ) = 1 − P( A1 ) P( A2 ) P( A3 ) = 1 − 0.1 × 0.3 × 0.5 = 0.985 .
三 . (10 分) 有三个箱子,第一个箱子中有 4 个黑球、1 个白球,第二个箱子中有 3 个黑球、3 个白球,第三个箱子中有 3 个黑球、5 个白球.现随机地取一个箱子,再从这个箱子中取出 1 个 球, (1) 求这个球为白球的概率; (2) 已知取出的球是白球,求此球属于第二个箱子的概率. 解 : 设 Ai =“取第 i 个箱子” , (i =1, 2, 3),则 A1 , A2 , A3 是一完备事件组, 设 B=“取出的球为白球” , 则 (1) P ( B ) =
X -2 -1 0 2
四 . (10 分) 设随机变量 X 的概率分布为: 求 : (1) X 的 分 布 函 数 F(x) ; 分布; (3) P { X < 0 | X ≠ −1 } . (2)
P 0.2 0.4 0.1 0.3
Y = X2 + 2 的 概 率
⎧ 0, ⎪ 0.2, ⎪ ⎪ 解 : (1) F ( x ) = ⎨ 0.6, ⎪ 0.7, ⎪ ⎪ ⎩ 1, 2 (2) X +2 2
3 1 1 π . dt = 2Γ ( ) = 2 ⋅ Γ ( ) = 2 2 2 2
六 . (10 分)设一城市某公交线路终点站的载客人数服从泊松分布,且每辆进站车车中无人的概 率为 e −10 ,现任意观察一辆到达终点站的汽车, 求:(1) 车中有 5 人的概率; (2) 车中至少有 3 人的概率.
解 : 设 X 表示进站车中的人数,则 P{ X = k } = 由 P { X = 0} = e − λ = e −10 , 得 λ (1) P{ X = 5} =
λ k e −λ
k!
( k = 0,1,2 !) ,
= 10,
10 5 ⋅ e −10 2500 − 10 = e ; 5! 3
(2) P{ X ≥ 3} = 1 − P{ X < 3} = 1 − P{ X = 0} − P{ X = 1} − P{ X = 2} = 1 − 61 e −10 .
七. (10 分) 设 X 服从参数 λ =
1 Y 表示对 X 的 5 次独立重复观察中事件“ X < 2 ” 的指数分布, 2
(2)
出现的次数,求: (1) EY 和 DY ;
P { Y ≤ 4} .
⎧ 1 − 1 x ⎪ e 2 , 解 : 由 X ~ f ( x ) = ⎨ 2 ⎪ 0, ⎩
相关文档
最新文档