云纹干涉法实验报告
云纹干涉法实验报告

云纹干涉法实验时间: 2008.12.18 朱建国同组: 张军徽一、实验原理两束准直的激光束A和B以一定的角度2 在空间相交时(图1a), 在其相交的重叠区域将产生一个稳定的具有一定空间频率f,栅距为p的空间虚栅, 虚栅的频率f与激光波长λ和两束激光的夹角2 有关, 并由下式决定λSinα=(1)f2将涂有感光乳胶的全息干板置于图1a所示的空间虚栅光场中, 经曝光后, 干板上将记录下频率为f的平行等距干涉条纹。
经过显影以后的底板,将形成图1b所示的波浪形表面, 这个波浪形表面便构成了频率为f的位相型全息光栅, 将这块光栅作为模板, 便可用它在试件上复制相同频率的位相型试件栅。
云纹干涉法采用的光栅频率f通常为1200线/mm, 也有采用600和2400线/mm的.通过使全息干板转动90O进行两次曝光可获得正交型光栅,则可用于二维面内位移场和应变场测量.图2 云纹干涉法原理图二、云纹干涉仪将已转移好试件栅的试件置于云纹干涉仪的光路系统中, 调整好光路, 便可对试件的位移场和变形进行测量。
云纹干涉仪的光路如图7所示, 所用激光器通常为氦氖激光器, 其波长λ=0.633μm 。
为了能方便地测得U 和V 两组位移场, 仪器中包含用以测量X 方向水平位移场(U 场)的水平光路系统,和用以测量Y 方向垂直位移场(V 场)的垂直光路系统。
两组光路可分别独立使用.由激光器产生的激光束经分光器和光纤耦合器并经准直镜分成四束准直光, 分别投射到四图8 云纹干涉仪光路系统 P M 3M 1 M 4 O 3 O 2 ααO 1 O 4 YX Z CCD M 2L个反射镜M1.M2.M3.M4上。
调节反射镜M1和M2可使两束准直光O1和O2按方程(4)的要求投射到试件栅上, 并调节安装试件的多维调节架, 使试件栅的法线方向正好平分两束准直光O1和O2的夹角。
此时O1和O2的一级衍射波将沿试件栅的法线方向传播, 并经成像透镜L 将试件栅和两束衍射波的干涉条纹成像在CCD 摄像机的靶面上, 实时地在显示器上显示, 并由计算机存储和处理。
干涉法测微小量实验报告

干涉法测微小量【实验目的】1.了解等厚干涉的应用2.掌握移测显微镜的使用方法【实验仪器】实验仪器:牛顿环法测曲率半径实验的主要仪器有:读数显微镜、Na光源、牛顿环仪用劈尖测细丝直径实验的主要仪器有:读数显微镜、Na光源、劈尖【实验原理】实验原理:实验内容一:牛顿环法测曲率半径图1如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△’等于膜厚度e的两倍,即△’ =2e此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差,与之对应的光程差为/2 ,所以相干的两条光线还具有/2的附加光程差,总的光程差为:(1)当△满足条件:(2)时,发生相长干涉,出现第K级亮纹。
而当:(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为rk ,对应的膜厚度为ek,则:(4)在实验中,R的大小为几米到十几米,而ek 的数量级为毫米,所以R >>ek,e k 2相对于2Rk是一个小量,可以忽略,所以上式可以简化为(5) 如果rk是第k级暗条纹的半径,由式(1)和(3)可得:(6) 代入式(5)得透镜曲率半径的计算公式(7) 对给定的装置,R为常数,暗纹半径(8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果rk是第k级明纹,则由式(1)和(2)得(9)代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
云纹干涉法测定高温材料弹性模量及泊松比

云纹干涉法测定高温材料弹性模量及泊松比 MEASURING ELASTIC MO DULUS AND POISSON RATIO FORHIG H TEMPERATURE MATERIALS BY Moir INTERFEROMETRY李 禾 严超华 李仁增 江五贵 傅艳军(南昌航空工业学院实验力学研究室,南昌330034)何玉怀 刘绍伦(北京航空材料研究院,北京100095)LI H e YAN ChaoHua LI RenZeng JIANG WuGui FU YanJun(Experimental Mechanics Research Room,Nanchang Institute o f Aeronautical Technology,Nanchang330034,China)HE YuHuai LIU ShaoLun(Beijing Institute o f Aeronautical Materials,Beijing100095,China)摘要 运用云纹干涉法的波前干涉原理,分析激光云纹非接触测量高温材料弹性模量和泊松比的可行性,以及高温云纹干涉法试件光栅的类型,通过高温云纹干涉测试技术应用和大量的航空高温材料测试,解决了材料高温弹性模量和泊松比测试的难题,并总结出一套完整的测试方法。
关键词 云纹干涉法 高温材料 弹性模量 泊松比中图分类号 O348 12Abstract It is mainly about using the wave front interference principle of Moir interferometry analyzed the possibility of non contact measuring elastic modulus and Poisson ratio for high temperature materials by Moir interferometry and the types of gratin g specimers of Moir interferometry in high temperatures The means of elastic modulus and Poisson ratio of the materials measured in high temperatures,and application for a large number of aviation materials are completed A new perfect measuring way has been de veloped.Key words Moir interferometry;High tem perature materials;Elastic modulus;Poisson ratioCorrespon ding author:LI H e,E mail:lihe@niat jx cn,T e l:+86 791 8224643Manuscript received20030707,in revi sed form200309011 引言弹性模量和泊松比是表征材料力学行为的两个重要参数。
实验力学

固体力学实验总结云纹法云纹法是可以测定位移法与应变场的实验应力分析方法,云纹法测量使用设备简单,应用范围广。
可以运用于静载荷动载荷和瞬时的冲击。
1>云纹法的基本原理云纹法是将两块平板制异节栅相重叠则会出现明暗相间的干涉条纹,这种亮条纹或者暗条纹即为云纹。
实际测量时,配合使用两块栅,一块栅置与试件表面随试件一起变形,为试件栅,另一块是不随试件变形的分析栅,由复制有栅线的栅板构成。
将此两块栅重叠在一起将会形成云纹干涉。
也可通过透镜成像原理形成干涉。
云纹效应的几种基本形式:均匀线位移引起的云纹效应,春转动产生的云纹效应,均匀线变形和转动同时存在的云纹效应。
2>二维位移场位移及应变的测定对于二维位移场位移及应变的测定通常采用几何法,位移导数法,和位错云纹法。
几何法是将局部的小区域看作是均匀的应变场来近似计算应变。
位移导数法是采用两组正交的栅线所构成的试件栅,通过试件的变形而产生的干涉从而测出x与y方向上的变形。
错位云纹法是用两张同样的云纹图进行错位而获得新的二阶云纹,二阶云纹表示了位移变化的等值线。
3>条纹级数的确定与确定应变的正负主要有两种方法,第一种是通过错角法定出条纹的增减和应变的正负,转向相同应变为正,条纹递增,转向相反时条纹递减,应变为负值。
第二种方法是用异节点确定条纹的增减及应变的正负。
4>提高云纹测量精度的几种方法云纹法的精度主要取决于位移分布曲线的精度,当云纹有足够密度时,在做位移曲线时有足够的数据点保证了足够的精度,提高精度的方法有错配法和光学滤波法。
光学滤波法利用栅线的衍射效应与滤波方法使条纹加密,通过滤波处理后将会在在栅面处得到一个栅距为原栅距一定倍数的变形栅,相当于增加云纹密度。
5>影子云纹法影子云纹法主要用来测量离面位移,在影子云纹法中,和参考栅相干涉的试件栅并不是单独的栅,而是参考栅在光线照射下投射于构件表面的栅线影子,其形状随着构件表面高度的不同而异,构件表面最好涂抹无光白色涂料以增加影子栅线的对比度,但通过相机观察参考栅和影子栅线时,可以看见它们相互干涉所形成的云纹。
云纹干涉法的实验原理和发展现状

云纹干涉法 摘要:本文介绍了云纹干涉法的实验原理和发展现状,并介绍了与可分离贴片技术结合的贴片云纹法,然后介绍了云纹干涉法的应用,并对关于云纹干涉法的展望,提出了一点个人意见。
关键词:云纹干涉法;贴片云纹干涉法;干涉云纹法的应用1.云纹干涉法的原理和发展现状最常见的云纹干涉法光路是由Post 等人倡导的双光束对称入射试件栅光路, 如图1所示.Post 最早对云纹干涉法进行了解释【1】 :对称于试件栅法向入射的两束相干准直光在试件表面的交汇区域内形成频率为试件栅两倍的空间虚栅, 当试件受载变形时, 刻制在试件表面的试件栅也随之变形, 变形后的试件栅与作为基准的空间虚栅相互作用形成云纹图, 该云纹图即为沿虚栅主方向的面内位移等值线, 并提出了类似于几何云纹的面内位移计算公式图1:最基本的云纹干涉法光路2x N U f = , 2y N V f= Post 的这种最初解释借助了几何云纹的基本思想, 给云纹干涉法以简单描述, 这对建立概念是有用的. 正像Post 所指出的一样, 云纹干涉法的本质在于从试件栅衍射出的翘曲波前相互干涉,产生代表位移等值线的干涉条纹【2】. 此后, 戴和Post 等人又从光的波前干涉理论出发对云纹干涉法进行了严格的理论推导和解释【3】当两束相干准直光A,B 以入射角θ= arcsin (λ f ) 对称入射试件栅时, 则将获得沿试件表面法向传播光波A 的正一级衍射光波A ’和B 的负一级衍射光波B ’. 当试件未受力时, A ’和B ’均为平面光波'exp[]'exp[]a b A a i B a i φφ=⎫⎬=⎭式中φ a ,φb 为常数。
当试件受力变形后, 平面光波A ’和B ’变为和试件表面位移有关的翘曲波前,其位相也将发生相应的变化,翘曲波前可表示为 11'exp[((,))]'exp[((,))]a a b b A a i x y B a i x y φϕφϕ=+⎫⎬=+⎭式中(,),(,)a b x y x y ϕϕ分别为变形引起的正负一级衍射光波的位相变化, 它们与试件表面x 方向的位移U 和z 方向的位移W 有如下关系[][]2(,)(1cos )sin 2(,)(1cos )sin a b x y W U x y W U πϕθθλπϕθθλ⎫=+-⎪⎪⎬⎪=++⎪⎭正负一级衍射光波在象平面上发生干涉, 其光强分布为 }{21111('')('')21cos[(,)]I A B A B a x y αδ=++=++式中a b a φφ=-为常数,4(,)(,)(,)sin a b x y x y x y U πδϕϕθλ=-=。
云纹干涉法测量流体温度场的

摘要微细尺度对流换热温度场的光学测量技术是微细尺度传热学研究领域的重要研究内容,它可以为微细尺度传热学的实验研究提供有效的技术途径。
本文针对微细尺度对流换热温度场的特点,提出了一种可用于微细尺度对流换热温度场测量的傅立叶变换莫尔偏折法。
提高莫尔偏折法的测量灵敏度,是解决微细尺度对流换热温度场测量的关键。
本文研究并探索了提高测量灵敏度的三个技术途径。
研究了利用莫尔偏折法测量微细尺度对流换热流体温度场的基本原理,建立了该方法的几何光学和物理光学模型,分析并掌握了莫尔条纹的形成规律,讨论了实验装置中光学参数对莫尔偏折法测量温度的影响,提出了探测微细尺度热流场对光学参数的要求。
最后,本文进行了实验验证,利用傅立叶变换莫尔偏折法测量了竖直加热细丝自然对流温度场。
实验中不仅顺利地探测到了细丝加热前后莫尔条纹的变化,还得到了细丝周围流场的温度分布。
实验验证表明,本文所提出的测量微细尺度对流换热温度场的傅立叶变换莫尔偏折法是可行的,所提出的提高微细尺度流场测量灵敏度的三种技术途径也是有效的,它将对微细尺度传热学的研究提供一种有效的实验方法。
关键词:微细尺度传热学,莫尔偏折法,傅立叶变换,温度场测量。
AbstractOptical flow visualization and measurement is one of the interesting fields in the experimental researches of heat transfer, especially in the field of mini/micro scale heat transfer. An optical method, Fourier Transform Moiré Deflectometry, applicable to mini/micro scale heat transfer, is proposed in this paper.In this paper, the researches are focused on the improvement of measurement sensitivity, so as to meet the needs of measurement for mini/micro scale fluid temperature distribution. Three approaches are presented. physical and mathematical models of Moiré Deflectometry are investigated to make clear the rule of Moiré fringes’ generation. Based on the investigation, it is pointed out how to select appropriate optical parameters to measure the teperature of mini/micro scale fluid.To verify the optical method, temperature distribution for natural convection around a vertical heated thin wire was measured by Fourier Transform Moiré Deflectometry. The small phase variation in moiréfringes,when the thin wire was heated, was obtained successfully. Furthermore, the temperature distribution around the heated thin wire was finally determined.proposed in this paper is actually applicable to mini/micro scale fluidtemperature measurement. The researches also showed that the three approaches to improve the measurement sensitivity work well. The optical method will be a useful experiment technique for mini/micro scale heat transfer.Key words: Mini/micro scale heat transfer, Moiré Deflectometry, Fourier transform, Temperature measurement目录1 高温云纹干涉法基本理论与研究概况 (1)1.1引言 (1)1.2 云纹干涉法的基本原理 (1)1.2.1基于空间虚栅概念的解释 (2)1.2.2云纹干涉法的波前干涉理论 (3)1.3云纹干涉法实验方法与技术 (5)1.3.1双光束光路系统 (5)1.3.2三反镜光路系统 (5)1.3.3大准直镜光路系统 (6)1.3.4光栅分光光路系统 (7)1.4云纹干涉法在高温领域的研究概况 (9)1.5小结 (11)2 莫尔偏折法测量流体温度场的基本原理 (12)2.1格拉斯通-戴尔(Gladstone-Dale)公式 (12)2.2非均匀介质中光线的传播 (13)2.3莫尔偏折法测温的基本原理 (13)2.4傅立叶变换求取莫尔条纹相位的基本原理 (18)2.5小结 (21)3 基于MATLAB的图像仿真得到相位的移动 (22)3.1试验系统及其基本工作原理 (22)3.2基于MATLAB的图像处理以获得相位变化 (22)3.3 总结 (27)总结 (28)参考文献 (29)致谢 (32)1 高温云纹干涉法基本理论与研究概况1.1引言近二十年来,由于激光技术和近代光学和计算机技术的发展和推动及其在实验力学领域中的应用,产生了以全息干涉法、散斑干涉法、云纹干涉法和数字图象处理为主要研究和应用内容的“现代光测力学新领域”。
固体力学实验课程学习报告

固体力学实验课程学习报告————————————————————————————————作者: ————————————————————————————————日期:ﻩ固体力学实验II课程学习报告院(系)名称: 航空科学与工程学院专业名称: 航空工程学号:学生姓名:固体力学实验课程学习报告一、云纹法1云纹法定义Moiré源自法语,意思是从中国传入的丝绸的“耀眼的光泽”或“波形图案”。
在实验力学中, 它指的是两个空间频率相差不大的振幅型光栅叠加在一起时所产生的明按交错的条纹图案。
通过分析云纹图案和条纹间距,可以测量物体的面内变形和应变以及三维形貌,这种方法称为云纹法。
如图所示,云纹实际上是两个光栅间的互相遮挡与透过现象,云纹中的亮条纹是由两个光栅的白线相交形成的(源于互不遮挡),云纹中的暗条纹是由两个光栅的白线与黑线相交形成的(源于互相遮挡)。
由于人眼的分辩率或低通滤波性,白条纹中的黑线干扰被忽略了。
2 云纹法注意要点(1)直线栅云纹法测试的是由于试件变形和转动引起的面内位移,不包括刚体位移(2)直线栅云纹法中试件的刚体位移不影响云纹的形状和密度,但垂直于栅线方向的刚体位移会造成云纹的移动。
用二维光栅可以同时测试X,Y两个方向的位移场(U场和V场)(3)为了提高云纹的对比度,一般将试件栅和标准栅尽量靠近,而且光栅黑白线的宽度应尽量相等。
(4)形成云纹的两个光栅的空间频率相差不能很大(一般相差不到一倍)3处理方法传统上利用光学像机记录云纹图像,人工处理。
现在,可以利用数字相机,将云纹图像记录的同时进行数字化处理,并利用计算机和数字图像处理技术对云纹图像进行滤波、增强、提取中心线、拟合、求解位相、解包裹等一系列处理,大大降低了处理难度,加快了处理速度。
最终得到离散的位移场U(m,n)、V(m,n),m,n为像素位置4 其他云纹法(1)数字云纹法(虚拟云纹法)采用虚拟的(数字化的)标准栅,根据云纹形成原理,与数字化的试件栅进行逻辑(乘)运算得到云纹。
第四章_云纹干涉法

试件重量和变形测试、对比
19
吸湿膨胀系数测量结果
室温环境置放的试件变形
实验开始
第四章:云纹干涉法及其应用
一个月后 两个月后 三个月后
湿应变: 282.6 湿应变: 347.5 湿应变: 382.3
Weight gain Vs storage time for samples in group A and B
15.2 mm 30 mm
flip chip PBGA 的结构
Step3
试件三个月室内环境 置放
Step4 3维吸湿变形的
测试
21
第四章:云纹干涉法及其应用
塑料电子封装件的吸湿变形测试结果
A
B
t =2 month; W=1.96275 g
t =3 month; W=1.96287 g
22
第四章:云纹干涉法及其应用
第四章:云纹干涉法及其应用
第四章:云纹干涉法
一、云纹干涉法原理
1. 相交平行光的干涉
满足干涉条件下,两相交平行光 干涉形成等间距干涉条纹
空间频率
fv
2 sin
1
2. 光栅衍射方程
位相型光栅的衍射
第四章:云纹干涉法及其应用
sin m sin mf
如果: 令 1 = 0.
sin f
如果 =632.8 nm (He-Ne laser) 且 f =1200 l/mm 则有 =49.4.
27
第四章:云纹干涉法及其应用
谢谢!
28
两衍射光发生干涉,产生均匀的、等间距平行条纹
5
• 光栅发生非均匀变形
第四章:云纹干涉法及其应用
两衍射光发生干涉,产生非均匀、非等间距的条纹,条 纹级数与分布形式与两个翘曲的波前间距直接相关:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云纹干涉法实验时间:2008.12.18 朱建国 同组:张军徽一、实验原理两束准直的激光束A 和B 以一定的角度2α在空间相交时(图1a ),在其相交的重叠区域将产生一个稳定的具有一定空间频率f,栅距为p 的空间虚栅,虚栅的频率f 与激光波长λ和两束激光的夹角2α有关,并由下式决定αλSin f 2=(1)将涂有感光乳胶的全息干板置于图1a 所示的空间虚栅光场中,经曝光后,干板上将记录下频率为f 的平行等距干涉条纹。
经过显影以后的底板,将形成图1b 所示的波浪形表面,这个波浪形表面便构成了频率为f 的 位相型全息光栅,将这块光栅作为模板,便可用它在试件上复制相同频率的位相型试件栅。
云纹干涉法采用的光栅频率f 通常为1200线/mm ,也有采用600和2400线/mm 的.通过使全息干板转动90O进行两次曝光可获得正交型光栅,则可用于二维面内位移场和应变场测量.图2 云纹干涉法原理图二、云纹干涉仪将已转移好试件栅的试件置于云纹干涉仪的光路系统中,调整好光路,便可对试件的位移场和变形进行测量。
云纹干涉仪的光路如图7所示,所用激光器通常为氦氖激光器,其波长λ=0.633μm 。
为了能方便地测得U 和V 两组位移场,仪器中包含用以测量X 方向水平位移场(U 场)的水平光路系统,和用以测量Y 方向垂直位移场(V 场)的垂直光路系统。
两组光路可分别独立使用.由激光器产生的激光束经分光器和光纤耦合器并经准直镜分成四束准直光,分别投射到四个反射镜M 1、M 2、M 3、M 4上。
调节反射镜M 1和M 2可使两束准直光O 1和O 2按方程(4)的要求投射到试件栅上,并调节安装试件的多维调节架,使试件栅的法线方向正好平分两束准直光O 1和O 2的夹角。
此时O 1和O 2的一级衍射波将沿试件栅的法线方向传播,并经成像透镜L 将试件栅和两束衍射波的干涉条纹成像在CCD 摄像机的靶面上,实时地在显示器上显示,并由计算机存储和处理。
当然,当试件未受力,试件栅比较规整,屏幕上应不出现条纹。
如果干涉条纹较多,说明光路没有调节好。
经过反复调节反射镜和试件调节座,可以使干涉条纹达到最少。
此时的干涉条纹图称作零场条纹图。
零场条纹图的条纹越少表明光路调节得越好,实验结果也将越准确。
在调节光路系统时还必须注意试件栅的主方向(如X)是否和O 1和O 2所在平面,即水平面重合。
否则,该试件栅主方向与水平面的夹角的存在表明试件栅具有相对于光路系统的面内转动位移,因而会出现反映这一转动位移场的转角云纹条纹,这将不能获得准确的零场条纹图。
通过调节固定试件的调节座,转动试件栅,可以方便地消除转角云纹条纹。
同理,通过调节垂直方向的两个反射镜M 3和M 4可以使入射光O 3和O 4调节到正确方向,使垂直方向的零场干涉条纹图的干涉条纹也最少。
光路系统调节好以后,对试件施加载荷并产生变形。
屏幕上将实时地出现与试件相对应的位移条纹图。
由于加载时试件有时会产生刚体位移,包括刚体平移和刚体转动。
由此而产生的附加干涉条纹是不需要的。
通过调节夹持试件的多维调节座,可以将与刚体位移有关的干涉图8 云纹干涉仪光路系统P M 3M 1M 4O 3 O 2ααO 1O 4Y XZCCDM 2 L条纹,特别是转角云纹条纹消除。
需要注意的是:加载以后,光路系统中的四个反射镜的调节旋钮不能再调节,否则将改变原已调节好的光路,所获得的干涉条纹图将会是不准确的。
特别是与两束对称入射光的夹角有关的调节旋钮,在零场条纹图已经调好以后是绝对不能再调节的。
三、位移场实时观测两束经过准直的波长为λ的平面波A 光和B 光对称地以入射角α投射到光栅频率为f 的试件栅上.根据上述光栅衍射方程,当入射角α、波长λ和光栅频率f 满足以下方程关系时,两束光的一级衍射光波将沿试件栅的法线方向衍射。
f Sin λα= (4)如两束对称入射的光波为准直光。
试件栅十分规整,试件也未受力,则两个一级的衍射波A ’及B ’可视为平面波。
此时,在理想情况下,成像面上将不出现干涉条纹,仅为一均匀的光强分布。
当试件栅随试件受力产生变形和应变,试件栅的频率将发生变化,原来的平面波将发生翘曲,变成与面内位移场有关的翘曲波A ’’和B ’’ ,如图7所示。
两束翘曲波A ’’和B ’’的相对光程差Δ将形成反映光栅主方向,即X 方向的位移场的干涉条纹。
图8 面内位移与光程变化图8给出了光程差Δ和试件表面的面内位移之间的几何关系。
设试件表面变形以前的两束入射光波和一级衍射波分别为AOC 和BOC,其光程相等,即AO+OC=BO+OC其光程差为零。
当试件产生变形后,O 点产生X 方向的位移U 到达P 点,则对应于该点的入射波为A 'P 和B 'P, 以及衍射波P C ', 则产生与位移有关的光程差Δ。
根据图5所示的几何关系,可导出光程差Δ与位移U 的关系Δ=(A 'P+ P C ')-(B 'P+ P C ') =αUSin 2将(3)式代入上式,并用波长的倍数,即干涉条纹级数N 来表示光程差Δ,Δ=λN可建立位移U 和干涉条纹级数N 以及光栅频率f 的关系为A A 'CC 'B B 'ααO U PXαsin UfNU 2=如试件栅为正交型光栅,将试件或光路系统围绕法线方向旋转90度,则可获得沿Y 方向的面内位移干涉条纹图。
通常的云纹干涉仪同时具有X 和Y 方向两套光路系统,因而很容易获得沿X 和Y 方向的两组干涉条纹图。
令x N 和y N 分别代表X 和Y 方向的面内位移干涉条纹图的条纹级数,则可由下式求得面内位移U 和V ,fN U x2= (5a )fN V y2=、(5b )在云纹干涉法实验中所用的光栅频率通常为1200线/mm, 或光栅节距为0.833μm, 代入上式,()m N N pU x x μ417.02==(6a) ()m N N pV y y μ417.02==、 (6b)上式表明当试件栅的频率f 为1200线/mm 时,一级干涉条纹代表0.417μm 的位移量。
云纹干涉法的灵敏度通常为试件栅光栅节距的一半.四、应变场根据面内位移干涉条纹图可以求得试件表面的应变分布。
设试件表面所在平面为X-Y 平面, 该面内的线应变和剪应变分别为xy y x γεε,,。
根据位移和应变的关系可得XUx ∂∂=ε、(7a)Y Vy ∂∂=ε (7b) X VY Uxy ∂∂+∂∂=γ (7c)用相应的位移增量和条纹级数增量形式来表示, 可得 XN f X U xx ∆∆=∆∆=21ε (8a) YN f Y V yy ∆∆=∆∆=21ε (8b) ⎥⎦⎤⎢⎣⎡∆∆+∆∆=∆∆+∆∆=X N Y N f X V Y U y x xy21γ (8c) 根据两组条纹级数沿X和Y方向的变化率便可求得三个应变分量的分布。
实验一:单向拉伸实验一、实验目的1、了解云纹干涉法的基本原理、特点和应用范围,初步掌握云纹干涉法操作技术2、测定材料弹性模量和波桑系数二、实验设备1、云纹干涉仪2、已转移光栅的拉伸试件3、卡尺三、实验步骤1、量取试件尺寸,注意切勿触摸试件栅。
2、安装拉伸试件。
并使试件栅距离场镜约52mm3、开启激光器,打开U场光路开关,调节加载架调节座和U场光路反光镜调节旋钮,使两束衍射光点在中轴线上的聚焦点,即毛玻璃十字丝中心重合。
4、调节成像镜头和成像距离,和加载架调节座,观察显示器屏幕,使成像清晰,大小合适,试件位置居中。
5、观察计算机显示屏上的干涉条纹,继续调节U场反光镜旋钮,使屏幕上的干涉条纹最少,以获得U场的零场。
6、关闭U场光路开关,打开V场光路开关,和调节U场一样,调节V场光路反光镜旋钮,以获得V场的零场条纹图。
此时,无需调节加载架调节座。
7、施加适当载荷,观察U场条纹图,如条纹出现不对称现象,表明试件有面内转动,可调节加载架调节座的旋钮,使条纹图恢复对称。
8、反复检查U场和V场条纹图,将两幅条纹图采集和保存在计算机内,并记录下载荷大小。
9、整理复原实验环境。
四、试验结果图1a P =79.2N时V场云纹干涉条纹图图1b P =79.2N时U场云纹干涉条纹图根据应力均匀区的V 场条纹图和U 场条纹图,量取条纹间距b (V 场条纹间距)和a (U 场条纹间距),计算试件材料的弹性常数E 和波桑比μ。
Btb f PE 2==εσ(11)a b =μ (12)式中P 为试件的拉伸载荷,B 和t 为试件的宽度和厚度,f 为试件栅的频率。
实验二:梁的弯曲实验一、实验目的1、了解云纹干涉法的基本原理、特点和应用范围2、验证梁的弯曲应力和弯曲变形理论,巩固和加深弯曲理论的有关基本概念3、加深对应力、应变、位移以及弯曲挠度、转角、曲率的关系和概念的理解二、实验设备1、云纹干涉仪2、已转移光栅的弯曲试件3、卡尺三、实验步骤1、量取试件尺寸,注意切勿触摸试件栅。
2、安装三点弯曲试件。
跨度L=42mm, 试件距离光路系统箱53mm.3、调节成像镜头和成像距离,和加载架调节座,观察显示器屏幕,使成像清晰,大小合适,试件位置居中。
4、开启激光器,打开U场光路开关,调节U场光路反光镜旋钮,和加载架调节座,使两束衍射光点在中轴线上的聚焦点重合。
5、观察显示器屏幕上的干涉条纹,继续调节U场反光镜旋钮,使屏幕上的干涉条纹最少,以获得U场的零场。
6、关闭U场光路开关,打开V场光路开关,和调节U场一样,调节V场光路反光镜旋钮,以获得V场的零场条纹图。
此时,无需调节加载架调节座。
7、施加适当载荷,观察U场条纹图,如条纹出现不对称现象,表明试件有面内转动,可调节加载架调节座的旋钮,使条纹图恢复对称。
8、反复检查U场和V场条纹图,将两幅条纹图采集和保存在计算机内,并记录下载荷大小。
9、整理复原实验环境。
四、试验结果图1三点弯曲试件图1a P =196.3N 时U 场云纹干涉条纹图图1b P =195.9N 时V 场云纹干涉条纹图图6所示为云纹干涉法实验获得的两端简支,中点受集中力作用的三点弯曲梁的U 场和V 场云纹干涉条纹图。
根据公式(8a ),U 场条纹级数沿X 方向的梯度代表X 方向的应变εx 。
为简单起见,也可以用相邻条纹沿X 方向的间距a x 来近似地表示该位置的应变εx 。
因相邻两级条纹之间条纹级数差ΔN =1,则式(7a )可近似地表示为xx fa 21≅ε (9b )同理可获得yy fb 21≅ε (9a)⎥⎥⎦⎤⎢⎢⎣⎡+≅x y xyb a f1121γ (9c ) 式中y a 为U 场条纹图相邻条纹沿Y 方向的条纹间距;b x 和b y 分别代表V 场条纹图相邻条纹X 和Y 方向的条纹间距。
从图6a 所示的U 场条纹图不难看出,沿着梁的中性层位置条纹的走向是与X 方向平行的,这表示U 场条纹沿X 方向的梯度为零,即εX =0。