传热学 第五章 对流传热

合集下载

传热学-第五章 对流换热(Convection Heat Transfer)

传热学-第五章 对流换热(Convection Heat Transfer)
根据傅里叶定律:
[ ] qw,x
=
−λ⎜⎜⎝⎛
∂t ∂y
⎟⎟⎠⎞w , x
W m2
注意和第三类边 界条件的区别
根据牛顿冷却公式
[ ] qw,x = hx (tw -t∞ ) W m2
根据能量守恒
对流换热过程 微分方程式
[ ] hx
=

tw
λ
− t∞
⎜⎜⎝⎛
∂t ∂y
⎟朝下
自然对流
(5) 流体的热物理性质
热导率 λ [w/(m℃)]
比热容 c [J/(kg℃)]
密 度 ρ [kg/m3]
动力粘度 η [Ns/m2] 运动粘度 ν =η/ρ [m2/s] 体积胀系数 α [1/K]
α
=
1 ⎜⎛ v⎝
∂v ∂T
⎟⎞ ⎠p
=

1
ρ
⎜⎛ ⎝
∂ρ
∂T
⎟⎞ ⎠p
λ↑ ⇒ h↑流体内部和流体与壁面间导热热阻小
第五章 对流换热(Convection Heat Transfer)
§5-1 对流换热概说
1. 对流换热的定义和性质
定义:对流换热是指 流体流经固体时流体 与固体表面之间的 热量传递现象。
对流换热与热对流不同,既有热对流,也有导热;不是 基本传热方式 对流换热实例:(1) 暖气管道; (2) 电子器件冷却;(3) 换热器
ρ、c↑ ⇒ h↑单位体积流体能携带更多能量
η ↑ ⇒ h↓有碍流体流动、不利于热对流 α ↑ ⇒ h↑自然对流换热增强
综上所述,表面传热系数是众多因素的函数:
h = f (u, tw , tf , λ, cp , ρ, α ,η, l )
对流换热分类小结

《传热学》第五章 对流换热分析PPT演示课件

《传热学》第五章  对流换热分析PPT演示课件
4个方程,4个未知数(h,u,v,t), 理论上存在唯一解, 可通过数学方法进行求解
24
求解结果 局部表面传热系数:
或可写成:
其中:
——准则方程
——无量纲流速 ——无量纲物性 ——无量纲换热强度
准则方程的意义——
把微分方程所反映的众多因素间的规律用少数几个准则来概括, 从而减少变量个数,以便于进行对流换热问题的分析、实验研究 和数据处理。
将上式在x,y两个方向代入牛顿第二定律,得到Navier-Stokes方程: 对于不可压缩流体:
11
将其代入Navier-Stokes方程,并采用连续方程化简,得到:
对稳态流动:
惯性力
体积力 压强梯度 黏滞力
当只有重力场作用时:
12
四、能量微分方程式
推导依据—— 内能增量=导热热量+对流热量 1.导热热量:
外掠平板全板长平均换热准则方程:
29
第六节 相似理论基础
相似原理的意义——通过实验寻找现象的规律以及指导推广应用实验。
一、物理相似的基本概念
1.几何相似
LA、LB——几何相似准则
30
2.物理现象相似
以管内流动为例,当两管各r之比满足下列 关系时:
若: 则速度场相似。 以外掠平板为例,当x,y坐标满足下列关系时:
《传热学》
1
第五章 对流换热分析
研究对象——流体与固体壁面之间的传热过程
研究目的——确定牛顿冷却定律
中的h
对流表面 传热系数
局部对流表面传热系数hx 平均对流表面传热系数
Isaac Newton(1642-1727)
确定对流表面传热系数的四种方法
分析法
类比法 数值法 实验法

传热学-5 对流传热原理

传热学-5 对流传热原理
电场与温度场:微分方程相同,内容不同。 强制对流换热与自然对流换热:微分方程的形式和内容都 有差异。 外掠平板和外掠圆管:控制方程相同,单值性条件不同。
5-4 相似原理简介
1)几何相似 对应的长度量成固定比例,对应的角度相等。
若(1)(2)相似
a' a ''
b' b ''
c' c ''
h' h ''
' ''
P' P ''
CF
5-4 相似原理简介
4)初始条件和边界条件相似 保证定解条件一致。
几何相似是运动相似和动力相似的前提; 动力相似是决定流动相似的主要因素(保证); 运动相似是几何相似和动力相似的表现。
y
u
u
tw x
5-1 对流传热概述
特点: (1)导热与热对流同时存在的复杂热传递过程; (2)必须有流体和壁面的直接接触和宏观运动, 也必须有温差; (3)由于流体的黏性和受壁面摩擦阻力的影响,紧 贴壁面处会形成速度梯度很大的流动边界层; (4)紧贴壁面处同时形成温度梯度很大的热边界层。
5-1 对流传热概述
偏微分方程+定解条件
速度场和温度场
表面传热系数h
2 实验法
相似原理指导下通过实验获得表面传热系数的 计算式(是目前工程计算的主要依据)。
对流传热问题的研究方法
3 比拟法
通过研究热量传递与动量传递的共性或类似特性, 建立起表面传热系数 h 与阻力系数 cf 间的相互联系, 通过较易测定的阻力系数来获得相应的表面传热系数 值。
主流区:速度梯度为0, 0 可视为无粘性理想流

传热学第5章

传热学第5章
•T
w
•t — 热边界层厚度 •与t 不一定相等
•边界层的传热特性: •在层流边界层内垂直于壁面方向上的热量传递主要依 靠导热。湍流边界层的主要热阻为层流底层的导热热阻 。
1对流换热
•层流:温度呈抛物线分 布•湍流:温度呈幂函数分 布
•湍流边界层贴壁处的温度 梯度明显大于层流
•故:湍流换热比层流换热强!
•边界层内:平均速度梯度很大;

y=0处的速度梯度最大
6对流换热
•由牛顿粘性定律:
•速度梯度大,粘滞应力大
•边界层外: u 在 y 方向不变化, u/y=0
•粘滞应力为零 — 主流区
•流场可以划分为两个区: •边界层区:N-S方程
•主流区: u/y=0,=0;无粘性理想流体;

欧拉方程
•——边界层概念的基本思想
•强迫对流换热 •自然对流换热
7对流换热

(2) 流动的状态 •层流 •:主要靠分子扩散(即导热)。
•湍流 •:湍流比层流对流换热强烈

(3) 流体有无相变
•沸腾换热 •凝结换热
8对流换热
• (4) 流体的物理性质
• 1)热导率,W/(mK), 愈大,对流换热愈强烈;
• 2)密度,kg/m3 • 3)比热容c,J/(kgK)。c反映单位体积流体热容
• 与 t 的关系:分别反映流体分子和流体微团的动量

和热量扩散的深度
•普朗特数
2对流换热
•综上所述,边界层具有以下特征:
•( • a) (b) 流场划分为边界层区和主流区。
•流动边界层:速度梯度较大,动量扩散主要区域。
•热边界层:温度梯度较大,热量扩散的主要区域
• (c) 流态:边界层分为层流边界层和湍流边界层 。湍流边界层分为层流底层、缓冲层与湍流核心。

传热学第五章对流换热

传热学第五章对流换热

1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的、分类 三、对流换热的机理 四、影响因素 五、研究方法 六、h的物理意义
一.定义
流体流过与其温度不同的固体表面时所发生的热量交换称为 对流换热。 对流换热与热对流不同, 既有热对流,也有导热; 不是基本传热方式。 对流换热遵循牛顿冷却定律:
qw tw
x
y
t∞
u∞
图5-1 对流换热过程示意
圆管内强制对流换热 其它形式截面管道内的对流换热 外掠平板的对流换热 外掠单根圆管的对流换热 外掠圆管管束的对流换热 外掠其它截面形状柱体的对流换热 射流冲击换热
外部流动
对 流 换 热
有相变
自然对流(Free convection) 混合对流 沸腾换热 凝结换热
大空间自然对流 有限空间自然对流
大容器沸腾 管内沸腾 管外凝结 管内凝结
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:

传热学第五章对流换热

传热学第五章对流换热
第五章
§5-1 §5-2 §5-3 §5-4 §5-5 §5-6 §5-7 §5-8
对流换热
Convective heat transfer
对流换热概说 对流换热的数学描写 对流换热边界层微分方程组 对流换热边界层积分方程组 相似理论与量纲分析 管内受迫流动 横向外掠圆管的对流换热 自然对流换热及实验关联式
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
同理:() dτ qm hout − qm hin ≈ ρcp (
y
H y + dy − H y =
∂t ∂v ⋅ v + ⋅ t )dxdydτ ∂y ∂y
(qm h)out − (qm h)in ∴ ∂t ∂t ∂u ∂v = ρ c p (u + v )dxdy + ρ c p t ( + )dxdy ∂x ∂y ∂x ∂y ∂t ∂t = ρ c p (u + v )dxdy (d ) ∂x ∂y
1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的概念。

传热学第五章_对流换热原理-1

传热学第五章_对流换热原理-1

Velocity = v Velocity = 0
Velocity Temperature
Boundary Boundary
Layer
Layer
HOT SURFACE, TEMP = TH
3. 热边界层厚度δt和流动边界层厚度δ的区 别与联系
(2) 边界层产生原因:
由于粘性的作用,流体与 壁面之间产生一粘滞力, 粘滞力使得靠近壁面处的 速度逐渐下降,最后使壁 面上的流体速度降为零, 流体质点在壁面上产生一 薄层。随着流体的流动, 粘滞力向内传递,形成的 薄层又阻碍邻近流体层中 微粒运动的作用,依此类 推,形成的薄层又阻碍邻 近流体层微粒运动,到一 定程度,粘滞力不再起作 用。
➢ 如果流体为粘性流体,情况会如何呢?我们用一测速仪来 测量壁面附近的速度分布。测量发现在法向方向上,即y 方向上,壁面上速度为零,随着y方向的增加,流速急剧 增加,到达一薄层后,流速接近或等于来流速度,普朗特 研究了这一现象,并且在1904年第一次提出了边界层的概 念。
普朗特在仔细观察了粘性流体流过固体表面的特性后提出了 突破性的见解。他认为,粘滞性起作用的区域仅仅局限在 靠近壁面的薄层内。在此薄层以外,由于速度梯度很小粘 滞性所造成的切应力可以略而不计,于是该区域中的流动 可以作为理想流体的无旋流动。这种在固体表面附近流体 速度发生剧烈变化的薄层称为流动边界层(又称速度边界 层).图5—5示出了产生流动边界层的两种常见情形。如 图5—5a所示,从y=o处u=0开始,流体的速度随着离开 壁面距离y的增加而急剧增大,经过一个薄层后u增长到接 近主流速度。这个薄层即为流动边界层,其厚度视规定的 接近主流速度程度的不同而不同。通常规定达到主流速度 的99%处的距离y为流动边界层的厚度,记为δ 。

传热学对流传热原理

传热学对流传热原理

+v
t y
=
cp
2t x2
+
2t y2
4个方程,4个未知量 —— 可求得速度场(u,v)和温度场(t) 以及压力场(p), 既适用于层流,也适用于湍流(瞬时值)
➢ 边界层型对流传热问题的数学描写
动量方程中的惯性力项和能量方程中的对流 项均为非线性项,难以直接求解
边界层理论
简化
流动
普朗特 速度边界层
2t y2
→固体中的热传导过程是介质中传热过程的一个特例。
稳态对流换热微分方程组:
(常物性、无内热源、二维、不可压缩牛顿流体)
u v 0 x y
(u
u x
v
u y
)
Fx
p x
(
2u x 2
2u y 2
)
(u
v x
v
v y
)
Fy
p y
(
2v x 2
2v y 2
)
hx
t
t
y
w
,x
u
t x
5.4 相似原理与量纲分析
1、目的—— 简化实验 • 减少自变量的个数
1
1
hx x
0.332
u x
2
3
v a
Nu x
0.332
Re
1 x
2
Pr
1
3
• 缩小实验模型的尺寸 • 反映同一类现象的规律性
建立基于相似理论的实验关联式
(1)相似分析法;(2)量纲分析法
控制方程的无量纲化
二维、稳态、常物性、不可压缩、不计重力、无内热源、 无粘性耗散、牛顿流体的外掠平板强迫对流换热。
• y=0:u = 0, v = 0, t = tw
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思路:
定性地分析对流传热的影响因素
深入讨论对流传热过程的数学描述 导出边界层问题的简化方程
给出相应的求解方法
3
2. 对流传热的特点 (1) 导热与热对流同时存在的复杂热传递过程 (2) 流固之间存在温差 (3) 必须有直接接触(流体与壁面)和宏观运动 (4) 由于流体的粘性,受壁面摩擦阻力的影响,紧贴壁面处会 形成速度梯度很大的边界层
自然对流:流体因各部分温度不同而引起的密度差所产生的 浮升力所推动的流动
5
(2) 流动状态
层流:(Laminar flow )流体微团沿主流方向做有规则的 分层运动,整个流场呈一簇互相平行的流线
湍流:(Turbulent flow )流体质点做复杂无规则的运动,
流体各部分之间发生剧烈的混合。
(3) 流体有无相变
15
2. 动量守恒方程
牛顿第二运动定律: 作用在微元体上各外力的总和等于控制体中流体动量的变化率
F = ma
作用力:体积力(重力、离心力、电磁力) 表面力:切应力、z应力
16
应力形式的运动微分方程:
(1)
牛顿流体的本构关系:
1)达朗伯原理——两相邻正交截面上的剪切力互等 2)斯托克斯三假设
a) 流体各向同性,任一质点在的各个方向上物理性质都相同 b) 应力分量与变形速度成正比 c) 变形速度为零:切应力为零,法向应力为流体静压强 P
Note: 第三类边界条件中的h为已知量
12
§5-2 对流传热问题的数学描述
为便于分析,以二维对流传热问题为研究对象: 假设:a) 流体为连续性介质 b) 流体为不可压缩的牛顿流体
c) 所有物性参数(?、cp、?、? )为常量 d) 粘性耗散热忽略不计 控制变量:速度 u、v;压力 p;温度 t 控制方程:连续性方程、动量方程、能量方程
粘性流体的运动微分方程—— Navier-Stokes 方程,最普遍的流体运动方程:
忽略微元体内粘性随坐标的变化,并取第二动力粘度为零: 若流体不可压,则有:
二维、不可压缩、常物性、牛顿流体运动微分方程组:
惯 性 力 项
体压

积强

力梯

项度


20
3. 能量方程
微元体的能量守恒:与导热问题的微分方程推导比需要多考虑 ——流体流进流出所携带的能量
? 如何从求温度场获得对流传热系数h
考虑粘性流体掠过平板的流动问题。由于粘性的作用,流体的流速在靠近壁面处,随距 离壁面距离的缩短而逐渐降低;在紧贴壁面处形成一滞止的薄层,处于无滑移的状态。
贴壁流体的无滑移边界条件
由于滞止,热量穿过该静止区域的方 式只能是导热(不考虑辐射)
对流传热量=导热量
对贴壁流体(滞止薄层) 应用傅里叶定律
3. 对流传热的基本计算式
4
4. 对流传热的影响因素 对流传热是流体的导热和热对流两种基本传热方式共同作用 的结果。其影响因素主要有以下五个方面:(1)流动起因; (2) 流动状态; (3)流体有无相变; (4)换热表面的几何因素; (5)流 体的热物理性质
(1) 流动起因
强迫对流:由外力(如:泵、风机、其他外部动力源)作 用所产生的流动
第五章 对流传热
Convective Heat Transfer
1
§5-1 对流传热概述
1. 对流传热的定义 对流传热是指流体流经固体表面时流体与固体表面之间的 热量传递现象。
局限性:未能揭示表面传热系数 h 与相关物理量之间 的内在关系。
2
? 本章的主要任务:
揭示对流传热内在的物理本质、数学描述方法,以及进行 实验研究的基本准则
开口系热力学第一定律:
[导入的净能量 ] +流[ 入净能量 ] + [内热源能量 ] = 热[力学能的增量 ] +对[ 外作膨胀功 ]
假设:
(1)流体不可压缩—— 流体对外做功 W=0
(1)
21
以x方向为例: 同理y方向有:
(2) (3)
将式(2)、(3)、(4)代入式(1):
(4)
化简得: 二维坐标系内,常物性,无内热源、不可压缩牛顿流体的能量方程:
二维、常物性、不可压缩、牛顿流体对流传热微分方程组:
非 稳 态 项
对 流 项
扩 散 项
源 项
24
几点讨论:
(1)流体静止,对流项为、体积力、压力项为零, 方程退化为常物性、无内热源的导热微分方程:
(2)稳态对流传热,非稳态项消失,方程可简写为:
8
5. 对流传热分类小结:
原则上每种对流传热方式都可以分为层流和湍流两种流态,为表达方便未予以区分。
9
研究对流传热的方法: (1)分析法,(2)实验法,(3)数值法,(4)比拟法
比拟法(analogy method):
通过研究动量传递及热量传递的共性或类似特性,以建立起表面传热系数与阻力系 数间的相互关系的方法。应用比拟法,可通过比较容易测定的阻力系数来获得相应 的h 。这一方法在早期用来获得湍流换热的计算公式,但随着实验手段和计算机技 术的发展,目前已较少使用。
汽化潜热g=2257.1 KJ/Kg )
h相变 ? h单相
6
(4) 换热表面的几何因素:
换热表面的形状,大小,表面与流体流动方向的相对位置、 换热表面的粗糙程度
内部流动(internal flow) : 外部流动(external flow) :
管内或槽内
外掠平板、圆管、管束
7
(5) 流体的热物理性质: 综上所述,表面传热系数是众多因素的函数:
h湍流 ? h层流
单相换热:(Single phase heat transfer ):传热是由于流体的显 热(一个标准大气压下100℃饱和水的比热容:Cp=4.22 kJ/kgK ) 变化而实现;
相变换热:流体凝结、沸腾等过程中,起主导作用的是潜热
(一个标准大气压下100℃饱和水蒸发形成100 ℃的饱和蒸汽的
13
1. 质量守恒方程(连续方程) 以二维流动为例,从流场中 (x, y) 处取出边长为 dx、dy 的微元体
单位时间内、沿x轴方向、经x表面流入微元体的质量(质量流量 [kg/s)]
单位时间内、沿x轴方向、经x+dx表面流出微元体的质量 单位时间内、沿间内、沿 y 轴方向流入流出微元体的净质量: 单位时间内微元体内流体质量的变化 : 质量守恒: 微元体内流体质量的变化量 =流入流出微元体的净质量 粘性流体二维连续性方程: 不可压流(密度为常数):
相关文档
最新文档