三角函数讲义
高一数学三角函数讲义

三角函数讲义知识要点:一、角的概念与推广:任意角的概念;象限角(轴线角)、终边相同的角;二、弧度制:把长度等于半径的弧所对的圆心角叫做1弧度;弧长公式:r l α=扇形面积:S=α22121r r l =⋅三角函数线:如右图,有向线段A T与M P O M 分别叫做α 的的正切线、正弦线、余弦线。
三、三角函数的求值、化简、证明问题常用的方法技巧有:1、 常数代换法:如:αααααα2222tan sec cot tan cos sin 1-=⋅=+=2、 配角方法:ββαα-+=)(()βαβαα-++=)(222βαβαβ--+=3、 降次与升次:22cos 1sin 2αα-= 22cos 1cos 22αα+= 以及这些公式的变式应用。
4、 ()θααα++=+sin cos sin 22b a b a (其中ab=θtan )的应用,注意θ的符号与象限。
5、 常见三角不等式:(1)、若x x x x tan sin .2,0<<⎪⎭⎫⎝⎛∈则π (2)、若2cos sin 1.2,0≤+<⎪⎭⎫⎝⎛∈x x x 则π(3)、1cos sin ≥+x x 6、 常用的三角形面积公式:(1)、c b a ch bh ah S 212121===(2)、B ac A bcC ab S sin 21sin 21sin 21===(3)、S =四、三角函图象和性质:正弦函数图象的变换:()()αωαωω+=−−−→−+=−−−→−=−−−→−=x A y x y x y x y sin sin sin sin 振幅变换平移变换横伸缩变换万能公式:2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α 证:2tan 12tan22cos 2sin 2cos 2sin 21sin sin 222α+α=α+ααα=α=α2tan 12tan 12cos 2sin 2sin 2cos 1cos cos 222222α+α-=α+αα-α=α=α2tan 12tan22sin 2cos 2cos 2sin 2cos sin tan 222α-α=α-ααα=αα=α例1 已知5cos 3sin cos sin 2-=θ-θθ+θ,求3c os 2θ + 4sin 2θ 的值。
三角函数第一轮复习讲义

三角函数第一轮复习讲义一、知识回顾1.平面直角坐标系及角的概念平面直角坐标系由横轴x和纵轴y组成。
两条相互垂直的坐标轴交于原点O,称为坐标原点。
根据角的位置,可以分为标准位置角和一般位置角。
标准位置角的始边与正半轴重合,而一般位置角的始边与正半轴不重合。
2.弧度制和角度制弧度制是用弧长来度量角的大小,一周的弧长定义为2π。
而角度制是用度来度量角的大小,一周定义为360°。
两者之间可以通过以下公式进行转换:弧度制=角度制×π/180角度制=弧度制×180/π3.三角函数三角函数是角的函数,分为正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)。
在单位圆上,对于一个角x,在弧度制下,它的正弦值等于角对应的点在单位圆上的y坐标,余弦值等于x坐标,正切值等于y坐标除以x坐标。
4.三角函数的性质正弦函数的周期为2π,在0到2π之间呈现一个完整的周期。
余弦函数的周期也为2π,并且余弦函数与正弦函数的图像相似,只是在x轴上有一个平移。
正切函数的周期为π,即在0到π之间呈现一个完整的周期。
正弦函数和余弦函数在区间[0,π/2]上单调递增,而正切函数则在区间(-π/2,π/2)上单调递增。
二、例题讲解例题1:已知点P(-3,4)在单位圆上的坐标为(M,N),求角APN的弧度制大小。
解:根据P在单位圆上的坐标为(M,N),可以得到:M=-3/5,N=4/5又因为点A是单位圆的圆心,所以A的坐标为(0,0)。
利用三角函数的性质,可以得到:sin(APN) = N = 4/5cos(APN) = M = -3/5因此,角APN的大小为sin^-1(4/5),即其弧度制大小为sin^-1(4/5)。
例题2:已知tan(A) = 5/12,且A的终边在第三象限,求cos(A)的值。
解:已知tan(A) = 5/12,可得:sin(A) = 5/13,cos(A) = 12/13由终边在第三象限可知,cos(A) < 0。
06第六章 三角函数【讲义】

x
x
注:以上两例用到了三角函数的单调性和有界性及辅助角公式,值得注意的是角的讨论。
用心 爱心 专心
3.最小正周期的确定。 例 4 求函数 y=sin(2cos|x|)的最小正周期。
4.三角最值问题。 例5 已知函数 y=sinx+ 1 cos x ,求函数的最大值与最小值。
2
例6
设 0< <π,求 sin
的图象先保持横坐标不变,纵坐标变为原来的 A 倍,再保持纵坐标不变,横坐标变为原来
个单位,得到 y=Asin( x+ )的图象。 例 10 例 10 已知 f(x)=sin( x+ )( >0, 0≤ ≤π)是 R 上的偶函数,其图象关于点 3 M ,0 对称,且在区间 0, 上是单调函数,求 和 的值。
是很容易的。
6.图象变换:y=sinx(x∈R)与 y=Asin( x+ )(A, , >0). 由 y=sinx 的图象向左平移 个单位,然后保持横坐标不变,纵坐标变为原来的 A 倍,然后 再保持纵坐标不变,横坐标变为原来的
1
,得到 y=Asin( x+ )的图象;也可以由 y=sinx
x 2 , 2 的反函数叫反正切函数。记作 y=arctanx(x∈[-∞, +∞]). y=cosx(x∈[0, π])的反
函数称为反余切函数,记作 y=arccotx(x∈[-∞, +∞]). 定理 15 三角方程的解集,如果 a∈(-1,1),方程 sinx=a 的解集是{x|x=nπ+(-1)narcsina, n∈Z}。 方程 cosx=a 的解集是{x|x=2kx arccosa, k∈Z}. 如果 a∈R,方程 tanx=a 的解集是 {x|x=kπ+arctana, k∈Z}。恒等式:arcsina+arccosa= 定理 16 若 x 0,
三角函数概念与诱导公式讲义

回顾教材 务实基
【知识梳理】
考点 1 三角函数基本概念
1.角的概念 (1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;
②分类:角按旋转方向分为正角、负角和零角.
(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是
.
(3)象限角:使角的顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么,角的终边在第几象限,就说 这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. (4)象限角的集合表示方法:
(1)若
则 在第一、三象限;(2)若
3.同角三角函数其次式
决定, 则 在第二、四象限;
(1)弦切互化法:主要利用公式
进行切化弦或弦化切
(2)
同除以 ,
除以 1,在除以
等类型可进行弦化切.
考点 3 三角函数诱导公式
公式
一
二
三
四
五
六
角
正弦 余弦 正切 口诀
函数名不变,符号看象限
函数名改变,符号看象限
【记忆口诀】“奇变偶不变,符号看象限”中的奇、偶是指
.求: ;
(2)
.
【跟踪训练】
考点 3 三角函数诱导公式
【例 1】(2019•新课标Ⅰ)
A.
B.
C.
D.
【例 2】(2020•湖北期末)
的值为
A.
B.
C.0
D.
【例 3】(2021•凉山州期末)设角 的终边过点
,则
等于
A.
B.1
C.
D.
【例 4】(2021•淮安期末)已知 是第三象限角,且
时,则
三角函数经典讲义全集

三角函数专题1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
3. 终边相同的角的表示:(1)终边与终边相同( 的终边在终边所在射线上) 2k (k Z) ,注意:相等的角的终边一定相同,终边相同的角不一定相等. 如与角1825 的终边相同,且绝对值最小的角的度数是___,合___弧度。
(答:25 ;536)(2)终边与终边共线( 的终边在终边所在直线上) k (k Z) .(3)终边与终边关于x 轴对称2k (k Z) .(4)终边与终边关于y 轴对称2k (k Z) .(5)终边与终边关于原点对称2k (k Z).(6)终边在x 轴上的角可表示为:k , k Z;终边在y 轴上的角可表示为:kk , k Z;终边在坐标轴上的角可表示为:,k Z . 如的终边与2 2 6的终边关于直线y x对称,则=____________。
(答:2k , k Z )34、与的终边关系:由“两等分各象限、一二三四”确定. 如若是第二象限角,则是第22_____象限角(答:一、三)5. 弧长公式:l | | R,扇形面积公式: 1 1 | |2S lR R ,1 弧度(1rad) 57.3 . 如已知扇形2 2AOB 的周长是6cm,该扇形的中心角是 1 弧度,求该扇形的面积。
(答:2 2cm )6、任意角的三角函数的定义:设是任意一个角,P(x, y) 是的终边上的任意一点(异于原点),它与原点的距离是y x2 2 0r x y ,那么sin ,cosr ry,tan , x 0x,cotxy( y 0) ,sec rxrx 0 ,csc y 0y。
三角函数讲义

知识总结一、角的概念的推广1.角的定义(1)一条射线由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.(2)“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.2.“象限角”角的顶点合于坐标原点,角的始边合于x 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角.第一象限角:{α|k360o π<α<k360o +90o ,k ∈Z }第二象限角:{α|k360o +90o <α<k360o +180o ,k ∈Z }第三象限角:{α|k360o +180o <α<k360o +270o ,k ∈Z }第四象限角:{α|k360o +270o <α<k360o +360o ,k ∈Z }角的终边落在坐标轴上,则此角不属于任何一个象限。
3.终边相同的角所有与α终边相同的角连同α在内可以构成一个集合:{}Z k k S ∈⋅+==,360| αββ 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和注意以下四点:(1)Z k ∈(2) α是任意角;(3)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.二、弧度1、定义用“弧度”做单位来度量角的制度叫做弧度制。
1弧度的角指的是弧长与半径相等的圆弧所对应的圆心角,记作1rad 。
⑴平角=π rad 、周角=2π rad⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0⑶圆心角α的弧度数的绝对值r l =α(l 为弧长,r 为半径) 2.角度制与弧度制的换算:360︒=2πrad180︒=π rad1︒=rad rad 017453.0180≈π 8.447157)180(1'''︒≈︒=πrad 3.两个公式(1)弧长公式:α⋅=r l 180r n l π= 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积(2)扇形面积公式lR S 21=3602R n S π=扇 其中l 是扇形弧长,R 是圆的半径3、任意角的三角函数有向线段MP 为正弦线 有向线段OM 为余弦线有向线段AT 为正切线四、三角函数的基本关系1、平方关系:sin2α+cos2α=1;2、商数关系:五、三角函数的诱导公式口诀:奇变偶不变,正负看象限例题题型一角的集合表示及象限角的判定【例1】(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【例2】已知点P(sin 5π4,cos3π4)落在角θ的终边上,且θ∈[0,2π),则θ是第________象限角.( ) A.一B.二C.三 D.四题型二三角函数的定义【例3】已知角θ的终边上有一点P(x,-1)(x≠0),且tan θ=-x,求sin θ,cos θ.【例4】已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,则cos 2θ=().A.-45B.-35C.35D.45三、弧度制的应用【例5】4已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是()A.1或4 B.1C.4 D.8【例6】已知半径为10的圆O中,弦AB的长为10.(1)求弦AB所对的圆心角α的大小;(2)求α所在的扇形的弧长l及弧所在的弓形的面积S.四、三角函数线及其应用【例7】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合:(1)sin α≥32;(2)cos α≤-12.【例8】求下列函数的定义域:(1)y=2cos x-1;(2)y=lg(3-4sin2x).题型五、利用诱导公式化简、求值【例9】已知tanθ=2,则sin(π2+θ)-cos(π-θ)sin(π2-θ)-sin(π-θ)=()A. 2B. -2C. 0D. 2 3【例10】已知角α终边上一点P(-4,3),则cos⎝⎛⎭⎪⎫π2+αsin(-π-α)cos⎝⎛⎭⎪⎫11π2-αsin⎝⎛⎭⎪⎫9π2+α的值为________.题型六、同角三角函数关系的应用【例10】已知tan α=2.求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin2α-3sin αcos α-5cos2α.题型七三角形中的诱导公式【例11】在△ABC中,sin A+cos A=2,3cos A=-2cos(π-B),求△ABC 的三个内角.若将例11的已知条件“sin A+cos A=2”改为“sin(2π-A)=-2sin(π-B)”其余条件不变,求△ABC的三个内角.课下作业一、选择题1.若α=k ·180°+45°(k ∈Z ),则α在().A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限2.下列与9π4的终边相同的角的表达式中正确的是( ).A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )3.已知角α的终边过点(-1,2),则cos α的值为( ).A .-55B.255C .-255 D .-124.若sin α<0且tan α>0,则α是( ).A .第一象限角B .第二象限角C .第三象限角D .第四象限角5.点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ).A .第一象限B .第二象限C .第三象限D .第四象限6.已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12C.32 D .±327.若cos α=13,α∈(-π2,0),则tan α等于 ( )A. -24B. 24C. -22D. 2 28.cos ⎝ ⎛⎭⎪⎫-17π4-sin ⎝ ⎛⎭⎪⎫-17π4的值是( ). A. 2 B .- 2 C .0 D.22二、填空题9.已知角θ的顶点为坐标原点,始边为x 轴非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________10.若sin θ=-45,tan θ>0,则cos θ=________.11.在直径为10 cm 的轮上有一长为6 cm 的弦,P 为弦的中点,轮子以每秒5弧度的角速度旋转,则经过5 s 后P 转过的弧长为________.三、计算题12、已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.13、已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.14、若sin θ,cos θ是关于x的方程5x2-x+a=0(a是常数)的两根,θ∈(0,π),求cos 2θ的值.15、已知sin θ+cos θ=713,θ∈(0,π),求tan θ.。
三角函数讲义

三角函数讲义任意角的三角函数及同角三角函数的关系知识点知识点一三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ;(3)y x 叫做α的正切,记作tan α,即tan α=y x(x ≠0).2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r ,cos α=x r ,tan α=y x . 知识点二正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k ·2π)=sin α,cos(α+k ·2π)=cos α,tan(α+k ·2π)=tan α,其中k ∈Z .作用:可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.体现了三角函数的周期性。
知识点四三角函数的定义域正弦函数y =sin x 的定义域是R ;余弦函数y =cos x 的定义域是R ;正切函数y =tan x 的定义域是{x |x ∈R且x ≠k π+π2,k ∈Z }.知识点五三角函数线如图,设单位圆与x 轴的正半轴交于点A ,与角α的终边交于P 点.过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点.单位圆中的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线.记作:sin α=MP ,cos α=OM ,tan α=AT .知识点六同角三角函数的基本关系1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α (α≠k π+π2,k ∈Z ). 2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)tan α=sin αcos α的变形公式:sin α=cos αtan α;cos α=sin αtan α.题型一三角函数定义的应用【例1】已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.【例2】已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值;2.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( ) A .3 B .-3 C .±3 D .5题型二三角函数符号的判断【例1】判断下列三角函数值的符号:(1)sin 3,cos 4,tan 5;(2)sin(cos θ)(θ为第二象限角).【例2】若tan x <0,且sin x -cos x <0,则角x 的终边在() A .第一象限 B .第二象限C .第三象限D .第四象限【过关练习】1.若sin θ<0且tan θ<0,则θ是第象限的角.2.使得lg(cos αtan α)有意义的角α是第象限角.题型三诱导公式一的应用【例1】求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin -11π6+cos 12π5·tan 4π.【过关练习】1.求下列各式的值:(1)cos 25π3+tan -15π4;(2)sin 810°+tan 765°-cos 360°.2.sin(-1 380°)的值为( )A .-12 B.12 C .-32D.323.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°);(2)tan 405°-sin 450°+cos 750°.题型四利用三角函数线求角、解不等式【例1】根据下列三角函数值,作角α的终边,然后求角的取值集合:(1)cos α=12;(2)tan α=-1.【例2】利用单位圆中的三角函数线,分别确定角θ的取值范围.(1) sin θ≥32;(2)-12≤cos θ<32.【例3】当α∈0,π2时,求证:sin α<α<="">【过关练习】1.如果π4<α<π2,那么下列不等式成立的是( ) A .cos α<="" αB .tan α<="" αC .si n α<="" αD .cos α<="" α2.如图在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT3.在[0,2π]上,满足sin x ≥12的x 的取值范围为( ) A.0,π6 B.π6,5π6 C.π6,2π3D.5π6,π题型五求三角函数定义域【例1】求下列函数的定义域.(1)f (x )=sin x ·tan x ;(2)f (x )=lg sin x +9-x 2.【过关练习】1. 求函数f (x )=1-2cos x +lnsin x -22的定义域.2.函数y =tanx -π3的定义域为( ) A.x |x ≠π3,x ∈R B.?x |x ≠k π+π6,k ∈Z C.x |x ≠k π+5π6,k ∈Z D.x |x ≠k π-5π6,k ∈Z题型六三角函数知一求二【例1】已知cos α=-817,求sin α,tan α的值.【例2】已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α.【过关练习】1.已知tan α=43,且α是第三象限角,求sin α,cos α的值.2.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-5123.已知tan α=3,求下列各式的值. (1)3cos α-sin α3cos α+sin α;(2)2sin 2α-3sin αcos α.4.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.35题型七三角函数平方关系及其应用【例1】已知sin θ+cos θ=15,θ∈(0,π),求:(1)sin θ-cos θ;(2)sin 3θ+cos 3θ.【例2】已知sin α+cos α=m ,求sin 3α+cos 3α的值.【过关练习】1.已知sin θ、cos θ是关于x 的方程x 2-ax +a =0的两个根(a ∈R ).(1)求sin 3θ+cos 3θ的值;(2)求tan θ+1tan θ的值.2.若sin A =45,且A 是三角形的一个内角,求5sin A +815cosA -7的值.3.已知sin α+cos α=15,α∈(0,π),则tan α的值是( ) A.34 B .-34 C.43 D .-43 题型八三角函数的化简证明【例1】已知α是第三象限角,化简:1+sin α1-sin α-1-sin α1+sin α.【例2】证明三角恒等式cos α1-sin α=1+sin αcos α【例3】已知下列等式成立.(1)a sin θ-b cos θ=a 2+b 2;(2)sin 2θm 2+cos 2θn 2=1a 2+b 2.求证:a 2m 2+b 2n 2=1.【过关练习】1.若α是第三象限角,化简 1+cos α1-cos α+1-cos α1+cos α.2.求证:2sin x cos x -1cos 2x -sin 2x =tan x -1tan x +1.3.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1.课后练习【补救练习】1.若sin θcos θ>0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限 2.已知α是第四象限角,cos α=1213,则sin α等于( ) A.513 B .-513 C.512 D .-5123.利用三角函数线比较下列各组数的大小(用“>”或“<”连接):(1)sin 23π________sin 45π;(2)cos 23π________cos 45π;(3)tan 23π________tan 45π.4.函数y =lg cos x 的定义域为________________.5.利用三角函数线,写出满足下列条件的角α的集合:(1)sin α≥22;(2)cos α≤12.6.已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值.【巩固练习】1.已知角α的终边上一点的坐标为?sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π62.如果3π4<θ<π,那么下列各式中正确的是( ) A .co s θ<="" θB .sin θ<="" θC .tan θ<="" θD .cos θ<="" θ3.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .(-π3,π3) B .(0,π3) C .(5π3,2π) D .(0,π3)∪(5π3,2π) 4.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-3105.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为.6.函数f (x )=cos 2x -sin 2x 的定义域为________________.7.化简sin 2β+cos 4β+sin 2βcos 2β的结果是.8.已知sin α=15,求cos α,tan α.9.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan-23π4;(3)sin (cos θ)cos (sin θ)(θ为第二象限角).10.求证:tan θ·sin θtan θ-si n θ=1+cos θsin θ.【拔高练习】1.若sin 2x >cos 2x ,则x 的取值范围是( )A .{x |2k π-34π<="">π,k ∈Z } B .{x |2k π+π4<="">π,k ∈Z } C .{x |k π-π4<="">,k ∈Z } D .{x |k π+π4<="">π,k ∈Z } 2.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .3.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x的值域是. 4.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为. 5.在△ABC 中,2sin A = 3cos A ,则角A = .6.已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值.(1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.7.化简:1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).8.证明:sin α-cos α+1sin α+cos α-1=1+sin αcos α;。
高中数学三角函数综合复习讲义

高中数学三角函数综合复习讲义1:产生背景:初中锐角三角函数定义:设a是一个任意大小的角,角的终边上任意一点P的坐标是(x,y),它于原点的距离是r(r>0),那么正弦: sinα=y/r余弦: cosα=x/r正切: tanα=y/x余切: cotα=x/y正割: secα=r/x余割: cscα=r/y都是a的函数,这六个函数统称为角a的三角函数。
2:找出结构:[函数]包括定义域,值域,对应法则。
本质:对于定义域内地任一x值在对应法则f(x)下都有值域中唯一的y和x对应,即y=f(x)3:分类:[角的大小]包括:正角三角函数,负角三角函数;[定义域]包括:【0,2π】,【0,2π】之外的[对应法则]包括:正弦: y= sinx余弦: y= cosx正切: y= tanx余切: y= cotx正割: y= secx余割: y= cscx[角的位置]包括:象限角的三角函数,坐标轴上的角的三角函数4:产生的条件:三角函数是在角的集合与实数集合之间建立的一种一一对应的关系。
5:研究概念的性质{特征、用途、作用、功能}基本三角函数的性质:同角的三角函数:倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secαsin 2α+cos 2α=1 1+tan 2α=sec 2α 1+cot 2α=csc 2α诱导公式sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanαcot (-α)=-cotαsin (π/2-α)=cos α cos (π/2-α)=sin α tan (π/2-α)=cot α cot (π/2-α)=tan αsin (π/2+α)=cos αcos (π/2+α)=-sin α tan (π/2+α)=-cot α cot (π/2+α)=-tan α sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan α cot (π-α)=-cot αsin (π+α)=-sin αcos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot αsin (3π/2-α)=-cos α cos (3π/2-α)=-sin α tan (3π/2-α)=cot α cot (3π/2-α)=tan αsin (3π/2+α)=-cos α cos (3π/2+α)=sin α tan (3π/2+α)=-cot α cot (3π/2+α)=-tan α sin (2π-α)=-sin α cos (2π-α)=cos α tan (2π-α)=-tan α cot (2π-α)=-cot α sin (2k π+α)=sin αcos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α(其中k∈Z)两角和与差的三角函数公式sin sin cos cos sin sin sin cos cos sin cos cos cos sin sin cos cos cos sin sin αβαβαβαβαβαβαβαβαβαβαβαβ(+)=+(-)=-(+)=-(-)=+ =1 ?tan tan tan tan tan αβαβαβ+(+)-1? ?tan tan tan tan tan αβαβαβ-(-)=+半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α万能公式2tan(α/2) 1-tan2(α/2) 2tan(α/2) cosα=—————— sinα=—————— tanα=——————1+tan2(α/2) 1+tan2(α/2) 1-tan2(α/2) 三角函数的和差化积公式三角函数的积化和差公式sinα+sinβ=2sin2βα+cos2βα-sinα-sinβ=2cos2βα+sin2βα-cosα+cosβ=2cos2βα+·cos2βα-cosα-cosβ=-2sin2βα+·sin2βα-sinα ·cosβ=21[sin(α+β)+sin(α-β)]cosα ·sinβ=-21[sin(α+β)-sin(α-β)]cosα ·cosβ=21[cos(α+β)+cos(α-β)]sinα ·sinβ=-21[cos(α+β)-cos(α-β)]【三角形边角关系】1.正弦定理:在△ABC 中,∠A , ∠B , ∠C 的对边分別为 a , b , c ,则其中R 为外接圆半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数
知识点精讲:
定义1 角:一条射线绕着它的端点旋转得到的图形叫做角。
⎧⎪⎨⎪⎩
正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.
第一象限角的集合为___________________________________
第二象限角的集合为___________________________________
第三象限角的集合为___________________________________
第四象限角的集合为___________________________________
终边在x 轴上的角的集合为______________________________
终边在y 轴上的角的集合为______________________________
终边在坐标轴上的角的集合为____________________________
3、与角α终边相同的角的集合为{}
360,k k ββα=⋅+∈Z
二、弧度制
定义2 角度制,把一周角360等分,每一等价为一度
弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。
360度=2π弧度。
若圆心角的弧长为L ,则其弧度数的绝对值|α|=r
L ,其中r 是圆的半径。
1、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.
三、任意角的三角函数
定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的
正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x,y ),到原点的距离为r,
则 正弦函数sin α=r y , 余弦函数cos α=r x
,
正切函数tan α=x y
, 余切函数cot α=y x ,
终边相同的角的同意三角函数的值相等
公式一:()sin 2sin k παα+=,
()cos 2cos k παα+=,
()()tan 2tan k k παα+=∈Z .
1、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.
2、如图三角函数线:sin α=MP ,cos α=OM ,tan α=AT
同角三角函数的基本关系:
()221sin cos 1αα+=
()2222sin
1cos ,cos 1sin αααα=-=-; ()sin 2tan cos ααα
= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝
⎭. 倒数关系:tan α=
α
cot 1, 8、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:奇变偶不变,符号看象限
___________________________.
()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭
. ()6sin cos 2παα⎛⎫+=
⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:______________________________.。