核磁共振原理及其应用
核磁共振技术的基本原理与应用

核磁共振技术的基本原理与应用核磁共振技术(NMR)是现代科学领域中最为重要和广泛应用的一种技术,广泛应用于化学、物理、生物、医学等各个学科领域。
本文将从NMR的基本原理入手,深入探讨NMR的应用及优势。
一、NMR的基本原理核磁共振技术的基本原理是基于核磁共振的现象,当物质中的原子核受到外加脉冲磁场的影响时,其能量水平的分布状态会发生改变,从而使得这些原子核的自旋方向发生一定的变化。
这种自旋运动的变化会引起原子核所在的原子体系产生一个感应信号,这个感应信号就是核磁共振信号。
二、NMR的应用1.化学应用核磁共振技术在化学应用领域中的应用主要是用于结构和化学反应的表征,包括定量分析、定性分析以及物质结构的表征等。
通过NMR技术,我们可以获取到关于化学物质中原子之间的相对位置关系、化学键形成方式以及共价键组成的信息,非常适用于有机物的分析和表征。
2.生物应用在生物学领域中,核磁共振技术主要是用于研究生命系统中的结构和功能,包括蛋白质、肽链、核酸、糖类等生物大分子的结构研究以及动力学行为的表征等。
通过核磁共振技术,可以实现区分、研究和表征各种生物大分子和它们之间的相互作用关系,从而为生命科学领域的研究提供一些非常有用的实验数据。
3.医学应用核磁共振技术在医学领域被广泛应用于成像诊断,比如常见的核磁共振成像技术(MRI)。
MRI是一种非侵入性的检测,能够在没有任何副作用的情况下对人体内部进行成像分析,从而对疾病的诊断和治疗提供了非常有力的支持。
三、NMR技术的优势与传统的化学、生物、医学等领域的研究方法相比,核磁共振技术具有以下优势:1.高灵敏度:核磁共振技术能够提供极高的检测灵敏度,可以检测到非常微小的样品以及特定原子的自旋状态。
2.非侵入性:核磁共振技术不需要对样品进行任何破坏性处理,且对人体的影响较小,能够提供无创的检测方法。
3.高分辨率:核磁共振技术能够提供非常高的分辨率,能够对样品的微观结构和分子构象进行准确分析。
核磁共振成像技术的物理原理及应用

核磁共振成像技术的物理原理及应用核磁共振(NMR)是一种物理现象,它指的是被外加磁场激发了自旋的原子、分子或核子的向外发射能量的过程。
在医学领域,核磁共振成像技术(MRI)是一项重要的诊断工具,它可以帮助医生检测病人的内部结构,比如头部、胸部和肢体等部位。
本文将介绍MRI的物理原理、应用和未来的发展方向。
1. 物理原理在MRI中,磁共振所产生的信号来源于一些在人体内具有自旋的核子,比如氢原子中的质子和碳原子中的核子。
这些核子带有一个自旋量子数,它可以被外加磁场激发或者被核间相互作用激发。
在外加磁场的作用下,旋转时会发生Larmor进动,进动频率与外磁场大小成正比。
磁共振成像就是利用这一原理来获取人体内部的图像。
在成像前,患者需要先进入MRI机中,MRI机则会产生一个强磁场,使患者体内的核子同向排列,使得这些核子共同具有一个自发激发的“共振”状态。
为了进一步增强共振信号的强度,医生会在这个过程中通过向患者体内发射一些射频波,激发核子自发地发出信号,这些信号则由MRI机的探测器接收并处理,从而生成出最终的图像。
2. 应用MRI技术在医学领域有着广泛的应用,对于骨骼、软组织、脑部、心脏、肺部等内部器官扫描都有着良好的应用效果。
比如,MRI可以用来检测中风、脑出血、脑血管瘤等疾病。
在眼科领域中,MRI技术可以用来观察眼球内部的情况,处理虹膜和视网膜等部位的问答。
此外,MRI还具有标本研究方面的应用,可以提供组织影像和实时定位,可用于生物学研究、药物研究和疾病研究等领域。
MRI还被广泛应用于物理和工程学界,如石油勘探领域、新材料的制造等。
3. 未来发展方向MRI技术与人工智能、大数据等领域的结合会是一个有潜力的领域,如利用MRI成像技术的大数据,发掘背景丰富的图像数据,可以应用于疾病预测、疾病治疗等领域。
此外,磁共振技术的发展还提高了其对人类健康的重要性,值得期待的是,在未来几年内,MRI技术会继续得到改进和优化。
核磁共振谱的原理及应用

核磁共振谱的原理及应用1. 原理介绍核磁共振谱(Nuclear Magnetic Resonance Spectrum,简称NMR)是一种利用核磁共振现象来研究物质结构和性质的分析技术。
核磁共振是指在外加磁场作用下,原子核固有的自旋产生共振现象。
核磁共振谱通过测量样品中原子核处于不同能级之间跃迁所吸收或发射的电磁辐射,来分析物质的结构和性质。
核磁共振谱的原理基于以下几个关键概念: - 原子核存在自旋,自旋是原子核的内禀性质。
- 原子核在磁场中具有能量分裂,形成能级结构。
- 原子核在外加磁场中能级分裂程度与外加磁场强度成正比。
- 原子核能从一个能级跃迁到另一个能级,吸收或发射与能级间跃迁对应的辐射频率的电磁波。
2. 应用领域核磁共振谱广泛应用于化学、生物、医学和材料科学等领域。
以下列举了几个常见的应用领域:2.1 化学•精确测量物质的结构,包括化学成分和空间结构。
•分析有机和无机化合物的组成。
•通过测量化学位移和耦合常数,判断化学键的种类、数量和环境情况。
2.2 生物•研究生物分子(如蛋白质、核酸等)的结构和相互作用。
•通过测量生物样品中特定原子核的信号强度,定量分析样品中特定分子的含量。
2.3 医学•诊断疾病,如核磁共振成像(MRI)用于检查人体内部器官和组织的状况。
•研究药物在人体内的分布和代谢过程。
•预测药物对人体的副作用和毒性。
2.4 材料科学•研究材料的结构和性质,如聚合物、晶体和金属。
•分析杂质和纯度。
•研究材料的相变和动态行为。
3. 核磁共振谱的操作步骤核磁共振谱的操作步骤通常包括样品制备、仪器设置、数据采集、数据处理和谱图解析。
以下是一般的操作步骤:1.样品制备:–准备纯度高和浓度适宜的样品溶液。
–选择合适的溶剂并溶解样品。
–确保样品没有杂质或气泡。
2.仪器设置:–将样品放置在核磁共振仪器中。
–设置合适的磁场强度和温度。
3.数据采集:–打开核磁共振仪器,开始数据采集。
–记录信号强度和频率。
核磁共振原理及应用

核磁共振原理及应用核磁共振(Nuclear Magnetic Resonance,简称NMR)是一种重要的物理现象和应用技术,广泛应用于化学、生物学、医学等领域。
本文将介绍核磁共振的基本原理以及其在不同领域中的应用。
核磁共振的基本原理是基于原子核的自旋和磁矩之间的相互作用。
在一个外加静磁场的作用下,具有自旋的原子核会产生一个磁矩,该磁矩有两个可能的取向,即指向外磁场方向或指向相反方向。
当外加一个射频脉冲时,磁矩会发生共振吸收,即从一个能级跃迁到另一个能级。
通过检测共振吸收的能量变化,可以获得原子核的信息。
核磁共振在化学领域中有着广泛的应用。
通过核磁共振谱(NMR 谱)可以确定分子的结构和化学环境。
每个原子核都有特定的共振频率,通过测量吸收峰的位置和强度,可以推断分子中不同原子核的类型和数量。
通过核磁共振技术,可以对化学物质进行定性和定量分析,从而在化学合成、质谱分析等领域中发挥重要作用。
在生物学领域中,核磁共振技术被广泛应用于生物大分子的结构研究。
通过核磁共振技术,可以确定蛋白质、核酸等生物大分子的三维结构,揭示其功能和相互作用机制。
核磁共振还可以用于研究生物大分子的动力学过程,如蛋白质的折叠和解折叠过程,从而为药物设计和疾病治疗提供重要的信息。
医学领域是核磁共振技术的重要应用领域之一。
核磁共振成像(Magnetic Resonance Imaging,简称MRI)是一种无创的影像技术,可以用于检测和诊断多种疾病。
MRI利用核磁共振原理,通过对人体组织中的水分子进行成像,可以获取人体内部器官和组织的高分辨率图像。
相比于传统的X射线成像技术,MRI具有更好的软组织对比度,可以提供更准确的诊断信息。
核磁共振在材料科学、地球科学等领域也有广泛的应用。
在材料科学中,核磁共振可以用于研究材料的结构、成分和性质,为新材料的设计和开发提供指导。
在地球科学中,核磁共振技术可以用于研究地球内部的岩石和矿物,揭示地球的演化过程和资源分布。
核磁共振成像的原理与应用

核磁共振成像的原理与应用核磁共振成像(NMR)技术,也被称为磁共振成像(MRI),是现代医学领域中应用广泛的无创成像技术。
该技术的原理基于核磁共振现象,通过对人体内的原子核进行激发和检测,获得人体内部结构的高清图像,这大大改进了人体内部疾病的诊断和治疗。
本文将从核磁共振成像的原理和应用两个方面进行详细介绍。
一、核磁共振成像的原理核磁共振现象是物理学中的一种基本现象。
当原子核处于强磁场中时,其会发生预cession(进动)现象,即前进和退后的往返运动,其中这一运动的频率与磁场的强度有着密切的关系。
当原子核在外部强磁场中的方向与磁场相连时,将构成高度秩序的、统一前进的状态。
在这一状态下,当对原子核提供一个特定的射频信号时,这些原子核将被激发,产生旋翼运动,并放出周围的能量。
通过激励原子核的磁场脉冲的强度和频率可以产生不同的共振响应,每一个响应都对应着具有不同的特征的原子核,然后我们可以对这些响应进行检测和汇总,最终得到被测量的物体的结构图像。
在核磁共振成像中,我们通常使用磁共振扫描仪来探测原子核,其原理是通过预设区域内的高强度均匀静磁场,使得被探测的原子核都处于同一方向,接着施加特定的射频脉冲,对区域内的原子核进行激发,之后切换成观测模式,检测每个原子核发出的信号,并将这些信号转换成 3D 扫描图像。
二、核磁共振的应用核磁共振成像技术可以被广泛地应用在不同领域,下面将分别介绍医学、生命科学和材料科学领域中的应用。
2.1 医学领域核磁共振成像技术是现代医学中极为重要的成像方法,它可以准确地捕捉人体内部的各种器官和组织的结构特征,从而在医疗精细化发展的进程中显得越发重要。
在肿瘤诊断中,核磁共振成像技术可以提供高精度的3D图像,协助医生更好地判断肿瘤的大小和位置,从而选择更加合适的治疗方案。
在神经科学领域中,核磁共振成像技术可以准确显示人脑中的各个功能区域,如医生可以利用磁共振技术来诊断失眠等神经系统的基础异常。
核磁共振的原理及应用

核磁共振的原理及应用核磁共振是一种非常重要的物理现象,它不仅在科学研究中有广泛的应用,也在医学、生物学、化学等领域具有广泛的应用。
本文将介绍核磁共振的原理及其应用。
一、核磁共振的原理核磁共振的原理是基于原子核的属性。
原子核在磁场中存在一个固有的自旋,它就像一个小的带电体,会产生一个旋转的磁场。
当一个外加的磁场作用于原子核时,原子核会发生一种叫做“进动”的运动。
这个进动的频率与外加磁场的强度和原子核自旋的性质有关。
当外界向样品中的原子核施加一种射频电磁波,如辐射磁场,原子核会吸收这个电磁波并被激发到高能态。
当外界停止施加电磁波时,原子核会返回到低能态并通过辐射磁场向外发射一种电磁波。
这个电磁波的频率与原子核自身的属性有关,它是每种原子核特有的。
这个过程就是核磁共振的基本原理。
二、核磁共振的应用1. 医学方面的应用核磁共振成像(MRI)是医学领域中最广泛应用核磁共振技术之一。
它通过接受由机器产生的外部电磁波信号,对人体内的水分子分布进行扫描,从而生成高分辨率的图像。
这个技术的优点在于不依赖于X射线等有害射线,能够揭示出体内组织的详细三维结构,对于癌症、心血管疾病、神经系统疾病等疾病的诊断非常有用。
2. 药物研究方面的应用核磁共振也广泛应用于药物研究领域,尤其是对于低浓度物质的检测具有很高的敏感度。
它可以用于分离和鉴定分子组成或结构,测定反应动力学参数,甚至可以实现实时跟踪药物分布和代谢。
这些应用可以帮助药物研究人员更好地理解药物代谢和行为,并帮助开发更有效的药物。
3. 其他领域的应用核磁共振在生物学、化学等领域也有广泛的应用。
例如,它可以用于分离和鉴定混合物中的分子,或用于检测固体物质的组成和结构。
此外,核磁共振还可以用于通过血液和组织中氢离子(也称做质子)的信号,来定量地分析体内物质的浓度。
总结:核磁共振是一种重要的物理现象,它的原理基于原子核的属性,可以应用于医学、药物研究、生物学、化学等领域。
核磁共振的原理与应用

核磁共振的原理与应用核磁共振(Nuclear Magnetic Resonance,NMR)是一种非常强大的分析技术,它基于原子核在外磁场作用下表现出的磁性而产生。
这项技术不仅广泛应用于物理、化学和生物医学领域,而且是新药研发、原料质量控制和食品检测等领域的重要工具。
本文将介绍核磁共振的原理和应用。
一、核磁共振的原理核磁共振技术基于核磁共振现象,可用于研究物质的化学结构、物理性质等。
这个现象是由物质中带电粒子(如质子和核子)的旋转所导致的。
当从外界施加一个恒定的磁场时,原子核的旋转会产生一个局部磁场,这个局部磁场会影响到邻近的原子核,并改变它们自身的旋转。
这样形成的相互作用称为“磁偶极相互作用”。
在此基础上,将射频电磁波作用于原子核,使其进行能量吸收和辐射,此时产生谱线,并反映出物质中的核的不同磁性环境。
这种现象即为核磁共振现象。
通常使用核磁共振谱仪来观察核磁共振现象。
谱仪由磁体、探头和各种控制电路构成。
磁体产生一个恒定的磁场,而探头则是用于施加射频电磁波的设备,而控制电路则是用于控制射频信号的频率和幅度。
二、核磁共振的应用1.化学领域核磁共振谱是化学分析的有力工具。
它可以用于精确测定物质的分子结构、相互作用和化学反应。
核磁共振谱可以确定有机分子中各种化学键的结合方式和它们在分子中的位置,而这些信息则对于合成新化合物和分析复杂杂环分子很有用。
另外,核磁共振技术还可以检测各种杂质,测定纯度和质量,这对于新药研发和原料质量控制起到了很大的作用。
2.生物医学领域核磁共振在生物医学领域中广泛应用。
它可以用于非侵入性地检测疾病,如放射性药物对患者不良的影响、脑部疾病的检测等。
此外,核磁共振技术也可以用于了解人体内的各种碳-氢、氮、氧、磷等分子之间的相互作用,从而更好地研究生命的本质。
3.食品领域核磁共振技术在食品领域中的应用也有很大的作用。
食品中往往含有大量的复杂分子结构,如蛋白质、糖和脂质等,这些分子往往会发生化学反应,而这些反应通常具有很高的选择性,因此很难被检测到。
核磁共振的原理和应用

核磁共振的原理和应用核磁共振(Nuclear Magnetic Resonance,NMR)是一种物理学和化学中广泛应用的技术。
其原理基于原子核的磁性和自旋,通过对核磁共振信号的分析和处理,可以获取物质的结构和性质等信息。
本文将从NMR的原理、技术应用和发展历程三个方面阐述NMR技术的重要性与深远影响。
1. NMR的原理NMR是一种基于原子核的自旋和磁性之间相互作用原理,利用外加磁场和电磁辐射的方式对样品中原子核相互作用的信息进行测量的技术。
具体来说,原子核除了电荷和质量外,还具有自旋量子数和磁矩。
在外加磁场的作用下,原子核的自旋会沿着外磁场方向进行取向,而大量的自旋则会沿着阿尔克西希的定义进行分成两个能级。
当外加的射频场的频率符合原子核自旋能级转移的条件时,原子核就会吸收电磁辐射,并从低能级跃升到高能级,这个过程称为共振吸收。
共振吸收的强度和观察的核的种类、化学环境、内部电磁场等因素有关。
通过精确测量核磁共振信号的共振频率、化学位移和强度等参数,可以确定样品的分子结构和化学性质。
2. NMR的应用NMR技术在化学、物理学、材料科学、生物学等领域都有着广泛的应用。
以下列举其中几项:(1)确定有机分子结构核磁共振技术被广泛应用于有机化合物和生物大分子的结构研究,它能够提供有关样品分子内部组成、结构、晶体构型、立体异构和空间排列等相关信息,通过化学位移、耦合常数、信号强度等参数,我们可以分析并确定有机分子结构,这对新药物的研发、医药工业和环保有着重要的意义。
(2)核磁共振成像核磁共振成像技术利用核磁共振信号在空间中的分布得到生物组织内部结构的三维图像,被广泛应用于体内疾病的诊断,如肿瘤、血液灌注、中风及神经退行性疾病等。
NMR成像技术结合了医学、物理、化学和计算机科学等不同领域的知识,具有高度的安全性和无创性,已成为现代医学诊断的重要工具。
(3)材料科学NMR技术在材料科学的研究中也扮演着重要角色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
王逗
1946 年 以 美 国 物 理 学 家 布 洛 赫 ( F.Bloch) 和 普 舍 尔(E.M.Purcell)为 首 的 两 个 小 组 几 乎 在 同 一 时 间 , 用不同的方法各自独立地发现了物质的核磁共振 (NMR)现象, 后 来 两 人 合 作 制 造 了 世 界 上 第 一 台 核 磁共振谱仪。1952 年他们二人因此获得了诺贝尔物 理奖。所谓核磁共振是根据处在某个静磁场中的物 质原子核系统受到相应频率的电磁波作用时, 在它 们的磁能级间产生共振跃迁的原理而采取的一种新 技术。核磁共振技术自创始以来经过了 60 年代连续 波谱仪的大发展时代, 以及 70 年代的脉冲傅里叶变 换核磁共振和核磁双共振时代, 近年来发展的多核 NMR, 多脉冲 NMR, 二维 NMR 和固体 NMR 在理论 和实践上都取得了迅速发展。
PI !I(I+1) h I 为整数或半整数
I 是核自旋量子数。原子核自旋在空间给定 Z 方向 上的投影 PIZ 为:
PIZ=mI h , mI=I, I- 1, …, - I+1, - I
其中 mI 叫磁量子数。实验发现, 所有基态的原子核 的自旋都满足下面的规律: 偶 A 核的自旋为整数, 其中, 偶偶核( 质子数和中子数都是偶数) 的自旋都 为零; 奇 A 核的自旋都是半整数。核子是费米子, 因 此, 核子数 A 为偶数的原子核是玻色子, 遵循玻 色—爱因斯坦统计; 核子数 A 为奇数的原子核是费 米子, 遵守费米—狄拉克统计。
应用氢谱解析结构 核磁共振是有机化合物结 构鉴定的一个重要手段, 例如用 C7H16O3 的 1H- NMR 谱 , 可 推 断 其 结 构 式 ( 图 2) 。 δ=1.2 附 加 的 峰 为 CH3CH2- 基 的 甲 基 峰 , 被 邻 接- CH2- 裂 分 为 三 重 峰。δ=3.6 峰为与氧相连的亚甲基峰, 移向低场, 同时 被邻接的甲基裂分为四重峰。更低场的 δ=5.2 峰为 单峰, 说明无氢核耦合, 再由峰面积比 9: 6: 1 和化学 位移判断, 应是与 3 个氧相连的次甲基峰, 因此推断 此化合物为( CH3CH2O) 3CH。
原子核磁矩 原子核是一个带电的系统, 而且
·50·
有自旋, 所以应该具有磁矩。和原子磁矩相似, 原子 核磁矩 μI 和原子核角动量 PI 有关系式:
μI = μN gI !I(I+1) μIZ=mI μN gI 其 中 , gI 称 为 原 子 核 的 朗 德 因 子 , μN=e h /( 2mp) = 5.0508×10-27 J/T,称作核磁子。质子质量 mp 比电子质 量 me 大 1836 倍 , 所 以 核 磁 子 比 玻 尔 磁 子 小 1836 倍, 可见原子核的磁相互作用比电子的磁相互作用 弱得多。这个弱的相互作用正是原子光谱的超精细 结构的来源。 核磁共振 由于原子核具有磁矩, 当将被测样 品放在外磁场 B0 中, 则与磁场相互作用而获得附加 的能量。 W= - μ·I B0= - mI μN gI B0 mI 有 2I+1 取值, 即能级分裂成 2I+1 个子能级, 根据 选择定则△mI=±1, 两相邻子能级间可以发生跃迁, 跃迁能量: △E=μN gI B0 若其能级差△E 与垂直于磁场方向上, 频率为 " 的 电磁波光子的能量相等, 则处在不同能级上的磁性 核发生受激跃迁, 由于处在低能级上的核略多于处 在高能级上的核, 故其净结果是低能级的核吸收了 电磁波的能量 h" 跃迁到高能级上, 这就是核磁共振 吸收。 该频率 "=μN gI B0/h 称为共振频率
二、核磁共振技术的应用 化学位移 在分子中, 磁核周围都有电子包围, 电子绕核运动形成电子云。在静磁场 B0 作用时, 核
图 1 孤立氢原子 H1 的核外电子的抗磁屏蔽 现代物理知识
外电子云感应出电子环流, 因此产生一个与 B0 大小 成正比, 方向相反的感应磁场 Bi, 如图 1 所示。这时 磁核实际所受的磁场强度为 B0 ′:
的谱线宽几个数量级, 致使化学位移、自旋耦合分裂 的精细结构全淹没了。因此, 消除偶极加宽, 提高分 辨率是核磁共振技术发展的关键。
目前, 已研制出固体高分辨核磁共振波谱仪, 并
已商品化, 这使得核磁共振的应用又有了新的发展。 ( 西安市西北大学物理系基地班 710069)
########################################
指出, 化学和放射性废料可以在这些容器内安全 储存至少 700 年, 而现在有害物质被储存在钢筋混 凝土容器内, 储存年限不超过 10 年。
主要专家之一的阿列克谢·亚洛沃伊指出, 该容
器不仅能用来储存有害废料, 而且能安全运输危险 废料, 因此我们将对容器在非常严格的情形下进行 认真试验, 包括在事故情况下进行试验。
·51·
B0 ′= B0 - Bi =( 1- σ) B0 式中 σ称为屏蔽常数, 它是特定原子核所处化学环 境的反映。
因 为 原 子 核 不 是 “裸 ”核 , 分 子 中 的 核 是 由 电 子包 围 着 的 , 即 处 于 一 定 的 “分 子 环 境 ”又 称 “化 学 环境”中。同一种核, 处于相同的静磁场中, 由于自 旋核所处的化学环境不同, 核所受实际磁场强度 不同, 核磁共振频率就不同。这种由于化学环境不 同引起的核磁共振频率发生偏移的现象称为化学 位 移 ( ") 。 这 种 化 学 位 移 成 为 不 同 化 学 集 团 的 “指 纹 ”, 使 有 可 能 从 核 磁 共 振 谱 中 得 到 有 关 分 子 结 构 的信息。
目前, 核磁共振已成为鉴定化合物结构和研究 化学动力学的极为重要的方法。因此, 在有机化学、 生 物 化 学 、药 物 化 学 和 化 学 工 业 、石 油 工 业 、橡 胶 工 业、食品工业、医药工业等方面得到了广泛的应用。
一、核磁共振基本原理 原子核的角动量 通常称为核的自旋, 是原子 核的一个重要特性。由于原子核由质子和中子组成, 质子和中子是具有自旋为 1/2 的粒子, 它们在核内 还有相对运动, 因而具有相应的轨道角动量。所有核 子的轨道角动量和自旋角动量的矢量和就是原子核 的自旋。原子核自旋角动量 PI, 遵循量子力学的角动 量规则, 它的大小为:
!!!!"
!!!!!!!!!!!!!"
储存化学和放射性
!!!!"
科苑快讯
物质的生态洁净容器
!!!!!!!!!!!!!"
乌克兰第聂伯罗彼得罗夫
斯克州科学家研制成生态上洁净的容器, 它可以
储存化学和放射性物质以及用过的核燃料, 目前 正在尼科波尔铁合金厂对新型容器进行试验。这
种容器用冶金生产废料制成, 第聂伯罗彼得罗夫 斯克州科学家在制作该容器时采用石熔化新工
图 2 C7H16O3r H1- NMR 谱
核磁共振计算机断层照相设备 ( NMR - CT) 其基本原理: 就是利用核磁共振技术测量人体组织 中的氢核密度, 由于正常组织和病变组织中氢核密 度有明显差别, 于是就可诊断脏器病变情况。它比 X 射线断层照相有明显的优点, 对软组织也灵敏, 且由 于它对 1H, 13C, 17O, 15N 和 31P 等原子核以及由它们组 成的分子、离子和化学基等化学物质灵敏, 所以能得 到说明功能和代谢过程等的生理生化信息。因此对
艺。在冶炼矿石时形成的残渣通过高温处理获得
生态上纯净类似玄武岩的材料, 它耐受化学物质
和 机 械 作 用 。 负 责 这 项 计 划 的 亚 历 山 大·季 莫 费 耶
夫指出, 产生研制新容器的想法旨在尽快结束化 学和放射性废料在乌克兰境内大范围流散, 大量 化学和放射性废料被堆放在企业仓库内。研制者
17 卷 5 期(总 101 期)
疾病的临床诊断和病理研究有很大意义。
磁核共振技术不仅在物理、化学、材料科学等方
面有广泛应用, 在近代医学技术中也得到了重要应
用。但它主要应用于鉴定化合物结构和研究化学动
力学等方面。以前, 高分辨核磁共振局限于测定液态
样品, 这是因为固体试样中邻近磁性核之间的磁偶 极间相互作用可使固体的核磁共振谱线比液体样品
专家们声称, 利用废料制作容器在经济上是有 益处的, 而且新工艺能帮助冶金工作者解决生态问
题。例如可以使企业摆脱数以百万吨的废料, 因为大
量废料会占用不小的场地, 对周围环境产生负面影
响。只要订单一到, 他们就准备批量生产新型容器,
容器尺寸可由使用者自定。
( 周道其译自《乌克兰新闻时报》2004/10/17)