运筹学3.2 割平面算法
割平面法

31/7=4+3/7 于是,(1)式变为
4 1 3 x4 ( 1 ) x3 (3 ) x5 4 7 7 7
⑵
将所有整数项放在等式的左边,非整数值项放 在右边,得
3 4 1 x4 x3 3x5 4 x3 x5 7 7 7
⑶
⑶式左边是一个整数值,右边是一个小于1的 数。由于是等式,所以,右边应该是一个小于 或等于0的整数值,即
二、构造割平面约束的方法
在松弛问题的最优表中,设 b的分量bko不是 整数,将其分成整数与非负分数之和,即
bko Nko fko, 其中N ko为不超过bko的最大整数, fko为非负真分数; bko 所在行中的每一个非基 变量xj的系数分成整数与非负分数两部分:
ako , j Nko , j fko , j
1、求出松弛问题的最优解,若全部变量为整数解, 停止计算;否则转2。
2、构造割平面方程 •构造方法 割平面约束具备两个性质: ⑴ 已获得的非整数最优解不满足该线性约束, 从而保证在以后的解中不可能再出现。
⑵ 所有的整数解皆满足该线性约束,从而保 证整数规划问题的最优解始终都保留在每次所 形成的、新的线性规划问题的可行域中。 我们通过下面的例子来说明构造这种线性约束 的思路。
第二节 解纯整数规划的割平面法
一、 割平面方法的基本思想和步骤
二、构造割平面约束的方法
三、示例
一、 割平面方法的基本思想和步骤
•基本思想: 在IP问题的松弛问题中依次引进线性约束(称 Gomory约束或割平面),使问题的可行域逐步缩 小,所割去的区域仅包含问题的部分非整数解;当 规划问题的最优解恰好位于缩小的可行域的一个顶 点时,算法结束。 •求解步骤
割平面法-经典

割平面法的基础仍然是用解LP的方法去解整数规划问题. 其基本的步骤是: (1) 把约束条件中所有的系数整数化; (2) 不考虑决策变量的整数约束条件, 增加线性约束条件 (cutting plane), 使得原可行域中切割掉一部分,这部分只 包含非整数部分,但没有切割掉任何整数可行解;
1 3 x3 x4 0 4 4 4 3 即 3x 3 x 4 3
上式就是所要求的一个切割方程(割平面).
引入松驰变量x5, 从而可得到一等式约束条件,将所得等
式约束加入到原标准化的松驰问题之中, 得到如下新的 松驰问题.
max s .t . z x1 x 2 x1 x 2 x 3 3x 1 x 2 x4 1 4
k k
(3) 由变量(包括松驰变量)的非负整数条件, 从而可得
f i - f ik x k 0
k
上式即为所要求的切割方程 割平面法是Gomory在1958年提出的, 当时引起了人们广 泛注意, 但至今完全用它解决实际问题仍是少数, 因为其 收敛性很慢. 但若下其它方法(如分枝定界法)配合使用,
3x 3 x 4 x 5 3 x1 , x 2 , x 3 , x4 , x5 0
将所得等式约束加入到原标准化的松驰问题的最优单纯
形表之中,得 cj 1 1 0 0 0
CB
1
XB
b
x1
1
x2
0
x3
-1/4
x4 x5
1/4 0
x1 3/4
1
0
x2 7/4
x5 -3
0
0 0
1
0 0
(3) 求解上面的LP问题,若所得的最优解为整数, 则该解也
割平面法Gommoy

割平面法Gommoy算法步骤:① 求解原整数规划对应的线性规划 min f (x )=cx , .⎩⎨⎧≥≤为整数xi x b A t s x .0.,设最优解为x*。
② 如果最优解的分量均为整数,则x *为原整数规划的最优解:否则任选一个x *中不是整数的分量,设其对应的基变量为x p ,, 定义包含这个基变量的切割约束方程∑=+jcom j ij b x r p x ,其中x j 为非基变量。
③ 令][b b b ],[r com com com ij ij ij r r -=-=,其中[]为高斯函数符号,表示不大于某数的最大整数. 将切割约束方程变换为∑∑-=-+jj ij j j ijp x r x r x com com b ][b ][,由于10,1r 0<≤<≤com ij b ,所以有∑-j ij com x r b 〈1,因为自变量为整数,则∑-j ij com x r b 也为整数,所以进一步有∑-j ij com x r b 〈=0.④ 将切割方程加入约束方程中,用对偶单纯算法求解线性规划⎪⎪⎩⎪⎪⎨⎧≥≤-≤=∑00b b Ax .,)(min com x x r t s cx x f j j ij ,转 。
算法MATLAB 实现代码:function [intx ,intf ]=Gomory(A,c ,b ,base )%约束矩阵:A ;%目标函数系数向量:c%约束右端向量:b%初始基向量base%目标函数取最小化时的自变量值:x%目标函数的最小值:minfsz=size(A);nVia=sz(2);n=sz(1);xx=1:nVia;if length(base)~=ndisp(’基变量的个数要与约束矩阵的行数相等!');mx=NaN;mf=NaN;return;endM=0;sigma=—[transpose(c) zeros(1,(nVia—length(c)))];xb=b;while 1[maxs,ind]=max(sigma);if maxs〈=0vr=find(c~=0,1,’last');for l=1:vrele=find(base==l,1);if(isempty(ele))mx(l)=0;elsemx(l)=xb(ele);endendif max(abs(round(mx)—mx))<1.0e—7intx=mx;intf=mx*c;return;elsesz=size(A);sr=sz(1);sc=sz(2);[max_x,index_x]=max(ads(round(mx)—mx)); [isB,num]=find(index_x==base);fi=xb(num)-floor(xb(num));for i=1:(index_x—1)Atmp(1,i)=A(num,i)-floor(A(num,i));endfor i=(infex_x+1):scAtmp(1,i)=A(num,i)-floor(A(num,i));end%构建对单纯形法的初始表格Atmp(1,index_x)=0;A=[A zeros(sr,1);-Atmp(1,:) 1];xb=[xb;-fi];base=[base sc+1];sigma=[sigma 0];%对偶单纯形法迭代过程while 1if(xb)>=0if max(abs(round(xb)—xb))<1。
python割平面法

python割平面法割平面法是一种用于求解凸多面体的优化问题的方法,它通过不断割平面来逼近最优解。
本文将介绍割平面法的基本原理和应用,并通过一个简单的例子来说明其具体操作过程。
割平面法是一种求解凸多面体的线性规划问题的有效方法。
在线性规划中,我们需要找到满足一组线性约束条件的目标函数取得最优值的变量取值。
而割平面法则通过不断添加新的线性约束条件来逼近最优解。
我们需要将线性规划问题转化为标准形式。
标准形式的线性规划问题可以写成如下形式:max c^T xs.t. Ax ≤ bx ≥ 0其中,c是目标函数的系数向量,x是变量向量,A是约束条件的系数矩阵,b是约束条件的常数向量。
割平面法的基本思想是通过不断添加新的线性约束条件来逼近最优解。
具体操作过程如下:1. 初始化:将原始约束条件转化为等式形式,并添加一个非负约束条件x ≥ 0。
将初始可行解设为x^0。
2. 求解:使用线性规划求解器求解当前的线性规划问题,得到最优解x^*和对应的目标函数值z^*。
3. 检验:判断当前解x^*是否满足所有约束条件,如果满足则终止算法,输出最优解x^*和对应的目标函数值z^*;否则转到下一步。
4. 割平面:添加一个新的线性约束条件,将当前解x^*加入约束条件中,得到一个新的约束条件。
将新的约束条件添加到线性规划问题中,得到一个新的线性规划问题。
5. 更新:更新线性规划问题,将新的线性规划问题转化为标准形式。
6. 转到步骤2,继续迭代求解新的线性规划问题,直到找到最优解。
通过不断割平面的过程,割平面法可以逐步逼近最优解。
由于每次迭代都添加了一个新的约束条件,所以割平面法可以保证每次迭代的解都更接近最优解。
割平面法在实际应用中有很多优点。
首先,它可以解决一般的线性规划问题,不需要对问题进行特殊的处理。
其次,割平面法可以适用于高维问题,具有较好的扩展性。
此外,割平面法还可以用于求解整数规划问题,通过将整数规划问题转化为线性规划问题,然后使用割平面法求解。
运筹学__割平面法

x1
1 0 0 0 x1 1 0 0 0
x2
0 1 0 0 x2 0 1 0 0
x3
1/6 1/4 -1/4 -1/4 x3 0 0 1 0
x4
-1/6 1/4 -1/4 -1/4 x4 -1/3 0 1 0
s1
0 0 1 0 s1 2/3 1 -4 -1
CB
0 1 0
XB
x1 x2 x3
b
2/3 1 2
1 1 1 ( x 3 x4 ) 0 2 4 4
1 1 1 x3 x4 s1 4 4 2
Cj CB 0 1 0 σj XB x1 x2 s1 b 1 3/2 -1/2 -3/2 0 x1 1 0 0 0 1 x2 0 1 0 0 0 x3 1/6 1/4 -1/4 -1/4 0 x4 -1/6 1/4 -1/4 -1/4 0 s1 0 0 1 0
CB
0 1 0
XB
x1 x2 x3
b
2/3 1 2
x1
1 0 0
x2
0 1 0
x3
0 0 1
x4
-1/3 0 1
s1
2/3 1 -4
σj
-1
0
0
0
0
-1
CB 0
XB x1
b 2/3
x1 1
x2 0
x3 0
x4 -1/3
s1 2/3
1
0
x2
x3
1
2
0
0
1
0
0
1
0
1
1
-4
σj -1 0 0 0 0 -1 此时,X1 =(2/3, 1), Z=1,仍不是整数解。继续以x1为源行生成割 2 2 2 平面,其条件为:
分支定界法和割平面法

分支定界法和割平面法在上学期课程中学习的线性规划问题中,有些最优解可能是分数或消失,但现实中某些具体的问题,常要求最优解必须是整数,这样就有了对于整数规划的研究。
整数规划有以下几种分类:(1)如果整数规划中所有的变量都限制为(非负)整数,就称为纯整数规划或全整数规划;(2)如果仅一部分变量限制为整数,则称为混合整数规划;(3)整数规划还有一种特殊情形是0-1规划,他的变量取值仅限于0或1。
本文就适用于纯整数线性规划和混合整数线性规划求解的分支定界法和割平面法,做相应的介绍。
一、分支定界法在求解整数规划是,如果可行域是有界的,首先容易想到的方法就是穷举变量的所有可行的整数组合,然后比较它们的目标函数值以定出最优解。
对于小型问题,变量数量很少,可行的整数组合数也是很小时,这个方法是可行的,也是有效的。
而对于大型的问题,可行的整数组合数很大时,这种方法就不可取了。
所以我们的方法一般是仅检查可行的整数组合的一部分,就能定出最有的整数解。
分支定界法就是其中一个。
分枝定界法可用于解纯整数或混合的整数规划问题。
在二十世纪六十年代初由Land Doig 和Dakin 等人提出。
由于这方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。
目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。
设有最大化的整数规划问题A ,与它相应的线性规划为问题B ,从解问题B 开始,若其最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数z *的上界,记作z ;而A 的任意可行解的目标函数值将是z *的一个下界z 。
分枝定界法就是将B 的可行域分成子区域再求其最大值的方法。
逐步减小z 和增大z ,最终求到z *。
现用下例来说明:例1 求解下述整数规划 219040Maxx x z +=⎪⎩⎪⎨⎧≥≥+≤+且为整数0,702075679212121x x x x x x解 (1)先不考虑整数限制,即解相应的线性规划B ,得最优解为:124.81, 1.82,356x x z ===可见它不符合整数条件。
割平面法

§3割平面法割平面法也是求解整数规划问题常用方法之一。
3.1基本思路用割平面法求解整数规划的基本思路是:先不考虑整数约束条件,求松弛问题的最优解,如果获得整数最优解,即为所求,运算停止。
如果所得到最优解不满足整数约束条件,则在此非整数解的基础上增加新的约束条件重新求解。
这个新增加的约束条件的作用就是去切割相应松弛问题的可行域,即割去松弛问题的部分非整数解(包括原已得到的非整数最优解)。
而把所有的整数解都保留下来,故称新增加的约束条件为割平面。
当经过多次切割后,就会使被切割后保留下来的可行域上有一个坐标均为整数的顶点,它恰好就是所求问题的整数最优解。
即切割后所对应的松弛问题,与原整数规划问题具有相同的最优解。
下面以全整数规划问题的割平面法为例,介绍割平面的求解过程。
3.2求解步骤与举例割平面法的具体求解步骤如下:1.对于所求的整数规划问题(4.2),先不考虑整数约束条件,求解相应的松弛问题(4.6)2.如果该问题无可行解或已取得整数最优解,则运算停止;前者表示原问题也无可行解,后者表示已求得整数最优解。
如果有一个或更多个变量取值不满足整数条件,则选择某个变量建立割平面。
3.增加为割平面的新约束条件,用前面介绍的灵敏分析的方法继续求解,返回1。
下面介绍割平面的建立方法及其求解过程。
例1 求解下列整数规划问题(4.7)解引入松弛变量,写成标准形式:(4.8)对上述模型不考虑整数条件,用单纯形法求解相应松弛问题的最终单纯形表为(表4-2)表4-215/38/3-13/3显然,为非整数解。
为求得整数解,我们想办法在原约束条件的基础下引入一个新的约束条件,以保证一个或几个变量取值为整数。
为此,在表4-2中任选一个取值非整数的变量,如,写出用基变量表示基变量的表达式:(4.9)将上式的所有变量的系数及右端常数均改写成一个整数与一个非负真分数之和的形式。
据此,(4.9)式可以改写成若将带有整数系数的变量整数项留在方程的左边,其余移到方程的右边,则有, (4.10) 由于要求变量取值为正整数,方程(4.10)的左边必为整数。
割平面算法

割平面算法
割平面算法是一种计算几何的算法,主要用于求解多边形的内部或外部区域。
该算法的基本思想是通过构造一些直线(称为割平面)将多边形划分成一些简单的区域(称为小区域),然后根据小区域的情况确定多边形的内部或外部区域。
具体而言,该算法的步骤如下:首先确定一个多边形和一些割平面,然后将多边形和割平面进行求交,得到一些线段和点。
接着,根据这些线段和点将多边形划分成一些小区域,再根据每个小区域的情况判断其是否在多边形的内部或外部。
最后将所有在多边形内部的小区域合并在一起,就得到了多边形的内部区域。
割平面算法的优点是可以处理一些复杂的多边形,而且算法复杂度比较低。
不过该算法也存在一些缺点,比如对于一些具有孔洞的多边形,需要额外的处理,并且对于一些不规则的多边形,该算法的结果可能不准确。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xB0 a0jxj b0
jS
xBi aijxj bi, i 1, ,m jS
i0,1, ,m
若对所有的 i0,1, ,m, bi均为整数
STOP ! x 0已经是( IP )的最优解
XJTU
第三章 整数线性规划
OR
否则, 至少存在某一个l:0lm,使得bl不是整数 .
OR
Proof: 由上述推导过程, 割平面(△)是原( IP )的整数约束推出来
的, 所以它不会切割掉任何整数可行解 .
可选松弛变量S作为对应所增加新约束条件的基变量, 它
与原来的基变量 xB1, , xB一m 起必可构成新松弛问题的基变量. 当 b l 不是整数时, f l 0 , 新松弛问题的基本解中有
的最优解. 否转 S 2 .
S 2 : 任选 x 0 的一个非整数值分量 bl (0l m), 按上述方式
构造割平面方程 fljxj sfl .
jS
S 3 : 将此割平面方程加到松弛问题( P 0 )得新的松弛问题.
用对偶单纯形法求解这个新的松弛问题. 若其最优解为
整数向量, 则STOP, 它亦为( IP )的最优解.
jS
jS
(△)
对应于生成行l 的 Gomory割平面条件
系数为分数→ 分数割平面
Th. : 将割平面(△)加到松弛问题(P 0 )中并没有割掉原IP问 题的任何整数可行点. 当 b l 不是整数时, 则对应新的
松弛问题有一个原始基本不可行解和对偶可行解 .
用对偶单纯形法求解 !
XJTU
第三章 整数线性规划
否则, 用这个最优解代替 x 0 , 转S 2 .
XJTU
第三章 整数线性规划
OR
特点 :
割平面方程系数为分数
迭代过程中保持对偶可行性 分数对偶割平面算法
且用对偶单纯形法求解
收敛性 :
按一定的规则(如字典序)选取诱导方程 用对偶单纯形算法时避免循环
分数对偶割平面算法可在有限步内收敛(终止)
2P(L)
算法通常需要很多次迭代源自既可行解若算法在中途停止, 也 得不到原始问题的 整数解
结果毫无用处 !
XJTU
第三章 整数线性规划
为克服上述不足 :
对偶 整数割平面算法 原始
OR
整数割平面方程的导出 :
诱导方程
xBl aljxj bl jS
任意非零的h乘以上式两边 hxBl haljxj hbl
设用单纯形法求解( IP )的松弛问题( P 0 )所得的最优基本
可行解为 x 0 :
x0
基 BAB 1, ,ABm
基 变 量 xB1, ,xBm
下标集合记为 S ,
而非基变量下标集为 S
迭代终止时目标函数、各个约束条件对应的典式分别为 :
x0
z jxj z0
jS
xB0 z, a0j j
jS
将各变量的系数分离成整数部分和小数部分 :
h x B l h a l j x j h h x B l h a l j h a l j x j h b l h b l h b l
否则, 对( P 0 )增加一个线性约束(几何上为超平面, 故
称为割平面条件)
费
用 减 小
x2
x1
x0
该割平面条件将(P 0 )的可行域割掉一部分, 且使这个非整数
向量 x 0 恰好在被割掉的区域内
但原( IP )的任一可行解均未被切割掉
新的 松弛问题
改进的松弛问题 ( P 1 )
XJTU
第三章 整数线性规划
OR
按上述增加约束、逐步迭代的过程中, 若某步所得的松弛
LP问题
无可行解 无界
原问题( IP )亦不可行
STOP
原问题( IP )或不可行或无界
割平面法为一种松弛方法 !
关键 : 如何生成割平面, 不同的构造方法将产生不同的算法 .
XJTU
第三章 整数线性规划
OR
Gomory 分数割平面算法
S fl 0
它对应的是新松弛问题的一个原始基本解, 但不可行 .
XJTU
第三章 整数线性规划
OR
Gomory 割平面算法计算步骤 :
S 1 : (用单纯形法)求解整数规划问题( IP )的松弛问题( P 0 ) 若( P 0 )没有最优解, STOP ! ( IP )也没有最优解 .
若( P 0 )有最优解 x 0, 如果 x 0 是整数向量, STOP ! x 0为( IP )
xBl aljxj bl jS
诱导(生成)方程
b l b l f l ,0 f l 1 ,a l j a l j f l j ,0 a l j 1 ,j S
由变量的非负性
aljxj aljxj
jS
jS
生成方程变为 :
A、 b、 c 均为整值
放弃该约束
m in c T x s.t. A x b
x 0 ( P0 )
称为( IP )的松弛问题
XJTU
第三章 整数线性规划
OR
用单纯形法或别的方法求解( IP )的松弛问题( P 0 ), 得其最优解 x 0,
若x 0 为整数向量→STOP, x 0 亦为( IP )的最优解.
xBl aljxj bl jS
左边取值必为整数值
xBl aljxj bl
jS
从诱导方程中减去该不等式
XJTU
第三章 整数线性规划
OR
aljaljxjblbl jS
引进松弛变量S
fljxj fl
fljxj sfl
问题输入长度L 的多项式
XJTU
第三章 整数线性规划
OR
分数割平面算法的缺点 :
① 涉及分数. 计算机仅能以有限精度存贮各个参数的值, 从而对无限((不)循环)小数就产生了误差 .
一次一次迭代 误差积累
很难判定一个给定的元素是否为整数
但判定一个元素是否为整数却是生成割平面所必须的 !
② 对偶性 :导致在达到最优性以前未必可找到原始可行解
§ 3.2 割平面算法
XJTU
第三章 整数线性规划
OR
1958 R.E.Gomory 提出割平面(cutting plane)的概念
理论依据 : IP与LP之间的关系, 即前述的“conv(S)”结论 基本思想 :
考虑纯IP :
m in c T x
s.t. A x b
( IP )
x0
x Zn