《大学物理》第11章 角动量:转动

合集下载

角动量课件

角动量课件

角动量的物理意义
总结词
角动量决定了物体旋转运动的特征。
详细描述
角动量的大小决定了物体旋转运动的快慢和方向。在无外力矩作用的情况下,角动量守恒,即物体的角动量保持 不变。这表明旋转运动的特性是保持不变的。
角动量的守恒定律
总结词
无外力矩作用时,系统角动量守恒。
详细描述
根据牛顿运动定律和角动量定理,当系统受到的外力矩为零时,系统角动量守恒。这意味着在封闭系 统中,如果没有外力矩作用,物体的旋转运动特性保持不变。这一原理在分析旋转机械、行星运动等 问题中具有重要应用。
角动量理论的发展
02
随着物理学的发展,角动量理论逐渐完善,被广泛应用于天体
物理、量子力学等领域。
角动量理论的挑战
03
随着研究的深入,角动量理论面临一些挑战,如对非线性系统
的描述、高维空间中的角动量等问题。
角动量理论的现代研究方法
数值模拟方法
利用计算机进行数值模拟,研究角动量在不同系 统中的演化规律。
详细描述
力可以改变物体的运动状态,包括速度和角速度。当物体受到外力作用时,其角动量会 发生变化。根据牛顿第二定律,力的大小等于角动量对时间的导数与质量的乘积。因此
,力、角动量和时间之间存在密切的联系。
06 角动量理论的发展与展望
角动量理论的历史发展
角动量理论的起源
01
角动量理论起源于经典力学,最初用于描述旋转运动的物体。
角动量课件
目录
CONTENTS
• 角动量基本概念 • 角动量在日常生活中的应用 • 角动量在科学实验中的应用 • 角动量在工程技术中的应用 • 角动量与其他物理量的关系 • 角动量理论的发展与展望
01 角动量基本概念

大学物理 角动量 角动量守恒定律课件

大学物理 角动量 角动量守恒定律课件

1 2 r gt , p mv mgt 2
r
v
2.4 角动量守恒定律
o
若以O为参考点,质点在任 意时刻的角动量为:
R
A
r
r
v
R
L0 r P ( R r ) p R mgt .
rmgt ; 方向垂直纸面向里
2.4 角动量守恒定律
• 若质点作匀速直线运动,以 O点为参考点,质点的角动 量为:
L0 r mv r mv const
L0 r mv sin r mv
• 注意:对不同的参考点有不同的角动量
开普勒第二定律 对于任一行星,由太阳 到行星的矢径在相等的 时间内扫过相等的面积
2.4 角动量守恒定律
3、质点系的角动量定理及守恒定律
质点系角动量对时间的变化率等 于质点系所受合外力矩,而与内 力矩无关。
写成积分式
dL 即: M 外 dt
L0

t
t0
L Mdt dL L L0 L
t0 L0
L Li ri pi ri mi vi
质点系的角动量守恒
当 M 外 0 时,L 恒矢量
2.4 角动量守恒定律 例1 一半径为 R 的光滑圆环置于竖直平面内.一质 量为 m 的小球穿在圆环上, 并可在圆环上滑动. 小球开始 时静止于圆环上的点 A (该点在通过环心 O 的水平面上), 然后从 A 点开始下滑.设小球与圆环间的摩擦略去不计.求 小球滑到点 B 时对环心 O 的角动量和角速度. 解 小球受重力和支持 力作用, 支持力的力矩为零, 重力矩垂直纸面向里

大学物理中的刚体运动转动惯量和角动量的研究

大学物理中的刚体运动转动惯量和角动量的研究

大学物理中的刚体运动转动惯量和角动量的研究在大学物理中,研究刚体运动的转动惯量和角动量是非常重要的。

本文将深入探讨刚体运动中转动惯量和角动量的概念、计算公式以及其在物理学中的应用。

一、转动惯量的概念及计算公式刚体的转动惯量,简称为惯量,是描述刚体旋转运动惯性大小的物理量。

转动惯量的计算与刚体的形状和质量分布有关。

刚体的转动惯量用符号"I"表示,其计算公式为:I = ∑mr²其中,"m"是刚体上各个质点的质量,"r"是该质点到转轴的距离。

对于连续分布的质量,转动惯量的计算将采用积分的方式。

二、角动量的概念及计算公式角动量是描述物体旋转状态的物理量。

在刚体运动中,角动量的大小和方向都很重要。

角动量(L)的计算公式为:L = Iω其中,"I"是刚体的转动惯量,"ω"是刚体的角速度。

刚体的角速度定义为单位时间内转过的角度。

对于质点和刚体的角动量,其大小和方向可以通过力矩(τ)和时间(t)的计算得到。

L = τt三、转动惯量和角动量的应用1. 刚体平衡在研究刚体的平衡时,转动惯量和角动量是非常重要的参考量。

通过计算刚体的转动惯量和角动量,可以确定平衡条件,从而解决物体受力平衡问题。

2. 陀螺原理陀螺是刚体运动转动惯量和角动量的经典应用之一。

陀螺的旋转方向不易改变,是因为陀螺具有较大的转动惯量,保持角动量守恒的特性。

3. 物体滚动在物体滚动的过程中,转动惯量和角动量的变化会影响物体的运动。

通过计算刚体的转动惯量和角动量,可以理解物体滚动的物理原理,并进行相关的问题求解。

4. 自行车行驶自行车作为一种常见的运动方式,其行驶原理也涉及到转动惯量和角动量。

通过刚体运动的转动惯量和角动量,可以分析自行车的稳定性和行驶效果,为相关问题提供解答。

总结:转动惯量和角动量是刚体运动中重要的物理概念。

它们的计算公式和理论基础为我们解决刚体运动问题提供了重要的数学工具。

第11章 动量矩定理

第11章 动量矩定理

M z Q(v1r1 cos1 v2r2 cos2 )
例 3 (书上例 11-7,动量矩守恒。)
质量为 m1 = 5kg,半径 r = 30cm 的均质圆盘,可绕铅直轴 z 转
动,在圆盘中心用铰链 D 连接一质量 m2 = 4kg 的均质细杆
AB,AB = 2r,可绕 D 转动。当 AB 杆在铅直位置时,圆盘的
三、 刚体 1. 平动刚体
11-1
LO r MvC
2. 转动刚体(对定轴或平面上定点)
Lz I z
LO IO
3. 平面运动刚体
对质心 C: LC IC
对定点 O: LO mO (MvC ) IC
对瞬心 C': LC IC
11.2 动量矩定理
一、 质点动量矩定理
由牛顿第二定律: ma F
l 3g
而 aC
2
4

W 3g W
NA W g
4
4
IV. 绳子剪断前后 A 反力的变化:
WW W ΔN A N A N A0
42 4
例 2 例 11-5 (较典型题目)
作业:11-18
11.4 质点系相对动点的动量矩定理(*)
此部分较难,特别是公式推导不易理解。主要掌握两种:①对质心的动量矩定理;②平
m2 g
转速为 n = 90rpm。试求杆转到水平位置,碰到销钉 C 而相对
静止时,圆盘的转速。
解:系统对 z 轴动量矩守恒。
初时系统动量矩: Lz I z盘 1 m1r 2 4
末时系统动量矩: Lz Iz盘 Iz杆 1 m1r2 1 m2 (2r)2
4
12
Lz Lz
11-4
1 4
m1r 2

大学物理—刚体的动轴转动

大学物理—刚体的动轴转动

25
麦克斯韦分布
2 1 2 d mgR J mR 3 2 dt
设圆盘经过时间t停止转动,则有
t 0 2 1 g dt R d 0 0 3 2
1
麦克斯韦分布
所以刚体内任何一个质点的运动,都可代表整个 刚体的运动。 刚体运动时,如果刚体的各个质点在运动中 都绕同一直线圆周运动,这种运动就叫做转动, 这一直线就叫做转轴。 3. 刚体的定轴转动 定轴转动: 刚体上各点都绕同一转轴作不同半径的圆周运 动,且在相同时间内转过相同的角度。 特点: (1) 角位移,角速度和角加速度均相同;
F
(3) F1 对转轴的力矩为零,
在定轴转动中不予考虑。
转动 平面
r
F2
(4)在转轴方向确定后,力对 转轴的力矩方向可用+、-号表示。
2. 刚体定轴转动定律 对刚体中任一质量元mi
O’
f i -内力
-外力

ω
Fi
ri
mi
fi
i i
Fi
应用牛顿第二定律,可得: O
Lz Li cos mi Ri v i cos mi ri v i
m r
2 i i
10
式中 mi ri2 叫做刚体对 Oz 轴的转动惯量, 用J表示。
麦克斯韦分布
刚体转动惯量:
J mi ri2
刚体绕定轴的角动量表达式:
Lz J
麦克斯韦分布
a m2 m1 g M / r 1 r m2 m1 m r 2 当不计滑轮质量及摩擦阻力矩即令 m=0 、 M=0 时,有
2m1m2 T1 T2 g m2 m1

大学物理 角动量 角动量守恒定律

大学物理 角动量 角动量守恒定律

z L mv

r
注意
L r mv
角动量 L在直角坐标系中各坐标轴的分量:
1. 质点的角动量与质点对固定点的矢径有关;同一质 点对不同的固定点角动量不同。 2. 讲角动量必须指明对哪一个固定点而言。
Lx ypz zp y Ly zpx xpz
角动量的单位:
例2.17 一质量为 m的质点t=0时位于 ( x1 , y1 )处,速度为 v0 v x 0 i v y 0 j ,质点受到恒力 f = f i 的作用,(1) 求t=0时相对于坐标原点的角动量以及作用于质点上的力 的力矩(2)求2s后相对于原点的角动量的变化中木块在水平面内只受指向O点的 弹性有心力,故木块对O点的角动量守恒,设 v 2 与OB方向成θ角,则有
l0 (m M ) v1 l (m M ) v2 sin
在由A→B的过程中,子弹、木块系统机械能守恒
1 1 1 2 2 (m M ) v1 (m M ) v2 k (l l0 ) 2 2 2 2
( x1mv y 0 y1mv x 0 )k
作用在质点上的力的力矩为
M 0 r0 f ( x1i y1 j ) ( f i )
y1 f k
t t (2) L Mdt (r f )dt t0 t0 f f f 2 a i x x1 vx 0t t m m 2m
k (l l0 ) 2 m2 2 v2 v0 (m M ) 2 mM
arcsin
l0 mv0
2 l m 2 v0 k (l l0 ) 2 (m M )
例 . 在光滑的水平桌面上有一小孔O,一细绳穿过小孔,其一端系 一小球放在桌面上,另一端用手缓慢拉绳,开始时小球绕孔运动, 半径为 r1 ,速率为 v1 ,当半径变为 r2 时,求小球的速率 v2?

理论力学:第11章 动量矩定理

理论力学:第11章 动量矩定理
对定点 O: LO mO (MvC ) IC
对瞬心 C': LC IC
11.2 动量矩定理
一、 质点动量矩定理
由牛顿第二定律: ma F
易证:
dmO (mv )
dt

mO
(F)
微分形式动量矩定理
其中 O 为定点。


dmO (mv) mO (dS )
LH

P vr
b
1
Q r2
Q vC
r
b
sin



1
Q r2
g 2 2 g
g 2 2g

(P

2Q)r

P
b b
(1

sin

)
vC g
系统外力对 H 的力矩:
11-3
ΣmH
(F
(e)
)

m

P
r

b


Q
b

Q
sin
绳子剪断前为静力学问题,易求反力。
绳子剪断后为定轴转动动力学问题,用质心运动定理求: MaC
F (e)
但需要先求出 aC ,用刚体定轴转动微分方程可求: Iz mz (F (e) )
11-5
解:I. 绳子剪断前,受力如图(a)。 W
由对称性: N A0 2
II. 绳子剪断瞬时,受力、运动如图(b)。
11-2
欲用动量矩定理求 aC , aC 只跟三个运动物体有关,并且有一个“轴”O,如图。 但其中的 N 如何处理?
事实上,滚子沿斜面法向是静平衡的, N = Q cosα。 解:① 求加速度 aC 。

2024版年度《大学物理》全套教学课件(共11章完整版)

2024版年度《大学物理》全套教学课件(共11章完整版)

01课程介绍与教学目标Chapter《大学物理》课程简介0102教学目标与要求教学目标教学要求教材及参考书目教材参考书目《普通物理学教程》(力学、热学、电磁学、光学、近代物理学),高等教育出版社;《费曼物理学讲义》,上海科学技术出版社等。

02力学基础Chapter质点运动学位置矢量与位移运动学方程位置矢量的定义、位移的计算、标量与矢量一维运动学方程、二维运动学方程、三维运动学方程质点的基本概念速度与加速度圆周运动定义、特点、适用条件速度的定义、加速度的定义、速度与加速度的关系圆周运动的描述、角速度、线速度、向心加速度01020304惯性定律、惯性系与非惯性系牛顿第一定律动量定理的推导、质点系的牛顿第二定律牛顿第二定律作用力和反作用力、牛顿第三定律的应用牛顿第三定律万有引力定律的表述、引力常量的测定万有引力定律牛顿运动定律动量定理角动量定理碰撞030201动量定理与角动量定理功和能功的定义及计算动能定理势能机械能守恒定律03热学基础Chapter1 2 3温度的定义和单位热量与内能热力学第零定律温度与热量热力学第一定律的表述功与热量的关系热力学第一定律的应用热力学第二定律的表述01熵的概念02热力学第二定律的应用03熵与熵增原理熵增原理的表述熵与热力学第二定律的关系熵增原理的应用04电磁学基础Chapter静电场电荷与库仑定律电场与电场强度电势与电势差静电场中的导体与电介质01020304电流与电流密度磁场对电流的作用力磁场与磁感应强度磁介质与磁化强度稳恒电流与磁场阐述法拉第电磁感应定律的表达式和应用,分析感应电动势的产生条件和计算方法。

法拉第电磁感应定律楞次定律与自感现象互感与变压器电磁感应的能量守恒与转化解释楞次定律的含义和应用,分析自感现象的产生原因和影响因素。

介绍互感的概念、计算方法以及变压器的工作原理和应用。

分析电磁感应过程中的能量守恒与转化关系,以及焦耳热的计算方法。

电磁感应现象电磁波的产生与传播麦克斯韦方程组电磁波的辐射与散射电磁波谱与光子概念麦克斯韦电磁场理论05光学基础Chapter01光线、光束和波面的概念020304光的直线传播定律光的反射定律和折射定律透镜成像原理及作图方法几何光学基本原理波动光学基础概念01020304干涉现象及其应用薄膜干涉及其应用(如牛顿环、劈尖干涉等)01020304惠更斯-菲涅尔原理单缝衍射和圆孔衍射光栅衍射及其应用X射线衍射及晶体结构分析衍射现象及其应用06量子物理基础Chapter02030401黑体辐射与普朗克量子假设黑体辐射实验与经典物理的矛盾普朗克量子假设的提普朗克公式及其物理意义量子化概念在解决黑体辐射问题中的应用010204光电效应与爱因斯坦光子理论光电效应实验现象与经典理论的矛盾爱因斯坦光子理论的提光电效应方程及其物理意义光子概念在解释光电效应中的应用03康普顿效应及德布罗意波概念康普顿散射实验现象与经德布罗意波概念的提典理论的矛盾测不准关系及量子力学简介测不准关系的提出及其物理量子力学的基本概念与原理意义07相对论基础Chapter狭义相对论基本原理相对性原理光速不变原理质能关系广义相对论简介等效原理在局部区域内,无法区分均匀引力场和加速参照系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质点系的总角动量 质点系的总转动力矩
n
L Li
i 1


net i
1)系统内力作用于质点上的内力力矩
成对出现。大小相等、方向相 反,作用在同一条直线上
内力矩总和 为0
2)系统外力作用于质点上的外力矩
上页 下页 返回 退出



net i ext
总结
1、质点角动量
L r p
2、刚体绕固定轴旋转的角动量 L I
3、刚体定轴转动定律


dL dt
L

I


dL dt
4、角动量守恒定律:当刚体所受的合外力矩为零时,
即有
dL dt

0
,L
为常量
上页 下页 返回 退出
习题 : 5,17,19
上页 下页 返回 退出
例题11-4 :在一个圆形平台上奔跑 假设一个60kg的人站在直径为6米的圆形平台的边缘, 平台安装在无摩擦的轴承上,其转动惯量为1800 kg m2。
最初平台是静止的,当人开始以4.2m/s的速度(相对于 地球)在平台的边缘奔跑时,这个平台开始沿相反的方 向旋转,如图所示。计算平台的角速度。


i
dL dLi
dt i dt

ext

dL
dt
ext
质点系的总角动量的变化率等于作用于系统的 合外力矩
注意:
上述公式适用于 (1)参考点为惯性参考系中的原点; (2)参考点为质点系或刚体的质心。
上页 下页 返回 退出
§11-2 刚体的角动量
对于绕固定轴oz转
动的质元
解答:我们将桌子、人、自行车轮看作 一个系统,系统角动量守恒。 故自行车轮反方向旋转后系统仍需保持 此角动量。因此可以断言:此人将按照 自行车轮初始的旋转方向开始转。
如果此人将自行车转轴旋转90°至 水平状态,会发生什么状况?(a) 和此例中相同的方向和速度;(b) 和此例中相同的方向,但速度减慢; (c)和此例相反的结果
§11-1 角动量 物体绕定轴旋转

一、质点的角动量
L
对于定点转动而言:
L

r

P
r mv
r o
r sin
P

mv

m
上页 下页 返回 退出
二、质点角动量定理
平动中合外力和动量的关系 相对于惯性参考系原点

F

dp dt
L rp
对角动量取微分
dL

d
r
t
2s
(c) 起初,MA是以不变的1 旋转(我们
忽略摩擦)。此时应用角动量守恒定律
IA1 IA IB 2
2


I
A
IA
IB
1


MA MA MB
1


165..00kkgg7.2 rad
s
2.9 rad
s
上页 下页 返回 退出
上页 下页 返回 退出
§11-3 角动量守恒


dL dt
由上式可知合外力矩为零时,角动量守恒,即:
当 0时,L I 常数
角动量守恒定律:当物体合外力矩为零时,转 动物体的角动量守恒,即转动物体总角动量保 持恒定不变。
上页 下页 返回 退出
例如:花样滑冰运动员 的“旋”动作 再如:跳水运动员的“团 身--展体”动作
R12
R
2 2


R2
v1 R1

R12
R
2 2


v1
R1 R2


2.4m/s

0.80m 0.48m


4.0m/s
可见当小球旋转半径减小时,速度增加
上页 下页 返回 退出
例题11-2 离合器 一个简单的离合器包括两个圆盘,通过压紧 可实现传动。这两块圆盘的质量分别是MA = 6.0 kg,MB = 9.0 kg,半径均为Ro = 0.60 m。最初两圆盘分开(如图所示)。圆 盘MA的角速度从0增加到 1=7.2 rad/s,所需时间Δt=2s。计算 (a)MA的角动量;(b)MA角速度从0增加到7.2 rad/s所需要的 力矩;(c)圆盘MB最初在无摩擦力作用的情况下可以自由旋 转,将其与另一个自由旋转圆盘MA紧密连接,两个圆盘都以一 个恒定的角速度 旋2转, 大大低于 ,1为什么会发生这种现象? 等于多2少?
上页 下页 返回 退出
花样滑冰运动员通过改变身体姿态 即改变转动惯量来改变转速
上页 下页 返回 退出
解题思路:作用在小球上的拉力沿径向,对转轴的力臂为零, 因此作用在小球m上合外力矩为零,体系角动量守恒。
I11 I22 I mR 2
v R,
v2

R 22

R 21

所以L为常量,即dA/dt为常量。 开普勒定律得证
上页 下页 返回 退出
例11-12 一个质量为m的子弹以速度v击中一个质量为M半径为 R0的圆柱边缘,且子弹嵌入圆柱中,如图所示。圆柱原来静止 ,被子弹击中后开始绕其对称轴(位置固定)转动。假设无摩 擦力矩。子弹击中后圆柱的角速度为多少?动能是否守恒?
p
dr

p

r
dp
dt dt
dt
dt
其中 所以
dr

p

v

mv

mv

v

0
dt dL

r

dp
r F
dt
dt
上页 下页 返回 退出
三、质点系的角动量和转动力矩:一般运动
质点系由n个质点组成,角动量分别是 L1,L2 ,L3........, Ln
上页 下页 返回 退出
例11-8 阿特伍德机 阿特伍德机包含两个物体,m1(mA)和m2(mB),这两个物体用一 根无弹性的不计质量的绳子通过滑轮相连,如图所示。若滑轮 的半径为R0,对轮轴的转动惯量为I,求两物体的加速度,并将 此结果同忽略滑轮转动惯量的结果进行对比。
系统总角动量
系统对O轴的合外力矩(顺时针方向为正)
L I
解:(a)MA的角动量是
LA

IA1

1 2
MA
R
2
01
1 6.0kg 0.60m2 7.2rad/s 7.8kg m2 /s
2
上页 下页 返回 退出
(b)圆盘从0开始加速,假设力矩为常数,则力矩为:
L 7.8kg m2/s - 0 3.9m N
上页 下页 返回 退出
练习:假设你站在一张很大,且匀速转动的桌面边沿。 如果你朝桌子中心走去,那么(a)桌子转速将减慢; (b)桌子转速加快;(c)转速不变;(d)需先知道 行走的速度才能回答。
上页 下页 返回 退出
猫从很高的地方跳下来,通常 都是脚着地,为什么呢?
上页 下页 返回 退出
思考:直升机的尾桨起了什么作用?
解题思路:
角动量守恒 L Lper Lplat
Lper mR2 v R
L plat I
mRv 60kg 3.0m4.2m/s 0.42rad/s
I
1800 kg m 2
上页 下页 返回 退出
例11-5 一人站在一个静止的、无摩擦的、可自由旋转的 台面上,手持一个旋转的自行车轮(如图所示)。如果 突然翻转旋转的车轮,即车轮向相反方向旋转,想想看 会发生什么情况?
解题思路:将子弹和圆柱看作一 个系统 系统合外力矩为0,角动量守恒 初始圆柱静止,系统对参考点O 的角动量=子弹角动量=mvR0 子弹击中后,圆柱和嵌入其中的 子弹一起运动
上页 下页 返回 退出
因为角动量守恒,所以
<0
子弹与圆柱体做完全非弹性碰撞, 系统损失的动能转换为系统的热能。
上页 下页 返回 退出
应用公式


பைடு நூலகம்
dL dt
上页 下页 返回 退出
加速度为
若忽略滑轮的转动惯量I 由此可知转动惯量的存在将使系统的加速度变小
例11-11 开普勒第二定律的推导
在dt时间内,行星移动的距离为vdt 扫过的面积dA等于图中阴影部分面积
上页 下页 返回 退出
行星以太阳为参考点的角动量大小为
所以
因为万有引力沿太阳-行星连线,此力产生的力矩为0,
rv
ω
角动量的方向沿轴的正向或负向,所以可 用代数量来描述.
上页 下页 返回 退出
二、刚体角动量定理
牛顿第二运动定律
F ma 或者写成动量形式
F dp dt
类比写出刚体沿转轴方向力矩和角动量的关系
I
I

I
d
dt

d(I)
dt

dL
dt
d dt
dLdt
Li
ri
m而i 言:
mivi
miri2k
对于绕固定轴oz 转动 的整个刚体而言:
L


N
miri2 I
i

z

L
vi ri
mi
上页 下页 返回 退出
刚体角动量的方向特性
角动量是一个矢量

L I

方向的确定:右手定则


相关文档
最新文档