4.3.1刚体定轴转动的角动量
合集下载
定轴转动的角动量定理 角动量守恒定律

Iz
( 1 ml 2 12
mr 2 )
代入得 mgr cos 2mr dr
dt
v
dr dt
g cos 2
g
2
cos
t
7 lg 24v 0
cos(12v 7l
0t
)
L 0 J 常量
即:合外力为对转轴的力矩为零时,刚体的角动量守恒
讨论:
a.对于绕固定转轴转动的刚体,因J保持不变, 当合外力矩为零时,其角速度恒定。
当M z 0时, J =恒量 =恒量
b.若系统由若干个刚体构成,当合外力矩为零时,系
统的角动量依然守恒。J 大→ 小, J 小→ 大。
当M z 0时, Lz J11 J22 恒量
。这样,棒与物体相撞时,它们组成的系统所受的对
转轴O的外力矩为零,所以,这个系统的对O轴的角
动量守恒。我们用v表示物体碰撞后的速度,则
1
ml 2
mvl
1
ml 2
3
3
(2)
式中’为棒在碰撞后的角速度,它可正可负。
’取正值,表示碰后棒向左摆;反之,表示向右
摆。
第三阶段是物体在碰撞后的滑行过程。物体作匀减 速直线运动,加速度由牛顿第二定律求得为
例12、如图所示,长为L,质量为m1的均匀细棒 能绕一端在铅直平面内转动。开始时,细棒静止于
垂直位置。现有一质量为m2的子弹,以水平速度v0
射入细棒下断而不复出。求细棒和子弹开始一起运 动时的角速度?
题意分析:由于子弹射入细棒的时间极为短促,我们 可以近似地认为:在这一过程中,细棒仍然静止于垂 直位置。因此,对于子弹和细棒所组成的系统(也就 是研究对象)在子弹射入细棒的过程中,系统所受的 合外力(重力和轴支持力相等)对转轴O的力矩都为 零。根据角动量守恒定律,系统对于O轴的角动量守 恒。
刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。
2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。
(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。
3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。
练习:1角动量守恒的条件是 。
0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。
物理-定轴转动刚体的角动量定理和角动量守恒定律

或 Lz = I = 恒量
当刚体相对惯性系中某给定转轴的合外力矩为 零时,该刚体对同一转轴的角动量保持不变。
——对转轴的角动量守恒定律
二、定轴转动中的角动量守恒
说明 1、 关于该守恒定律的条件:
Mz Miz 0
特别地,若每一个力的力矩均为零,即 则
二、定轴转动中的角动量守恒
M iz ri Fi sini 0 的几种情况
10
f
20
O1 R1 A
R2 O2 fB
随堂练习
当两圆柱接触处无相对滑动时,两者转速相反
10
20
O1 R1 A
R2 O2 B
且两者接触点的线速率相等!
二、定轴转动中的角动量守恒
由定轴转动的角动量定理
Mz
dLz dt
若刚体所受对转轴的合外力矩 M z 0,则有
dLz d ( I ) 0
dt
dt
二、定轴转动中的角动量守恒
(3) 对共轴非刚体系(其中各质元到转轴的距离可 变则)系:统的转动惯量可变,此时系统对转轴的角动量守恒,
即:I =恒量
• 特别地,若各质元的 保持一致,
Lz =I =恒量
当 I 增大时, 就减小; 当 I 减小时, 就增大 。
二、定轴转动中的角动量守恒
例如:花样滑冰运动员在冰面上旋转时 运动了角动量守恒定律
(1)
(2)
(3)
二、定轴转动中的角动量守恒
2、对转轴的角动量守恒定律的适用范围: • 不仅适用于刚体, • 也适用于绕同一转轴转动的任意质点系。
二、定轴转动中的角动量守恒
3、对转轴的角动量守恒的几种典型表现 (1) 对定轴刚体:I 不变, 大小和方向均不变;
3_4角动量 角动量守恒定律.

t1
Mdt
J2
J1
4 – 4 角动量 角动量守恒定律
第四章 刚体的转动
刚体定轴转动的角动量定理
t2 t1
Mdt
J2
J1
刚体转动的角动量定理:刚体所受的冲量矩等于 刚体转动角动量的增量.
3 刚体定轴转动的角动量守恒定律
若 M 0 ,则 L J 常量
刚体所受的合力矩为零时,刚体转动角动量为一 恒矢量.
1 (1 ml 2 ma2 ) 2
23
W 1 J 2
2
mga(1 cos30) mg l (1 cos30)
2
v g(2 3)(ml 2ma)(ml2 3ma2 ) 6 ma
4 – 4 角动量 角动量守恒定律
第四章 刚体的转动
例3 质量很小长度为l 的均匀细杆,可绕过其中心 O
o
m'
30
L mr2 J
a
mva ( 1 ml 2 m a2 )
3
v m
3mva m'l 2 3ma2
4 – 4 角动量 角动量守恒定律
m'l
3mva 2 3ma2
射入竿后,以子弹、细杆和 地球为系统 ,机械能守恒 .
第四章 刚体的转动
o 30
a v m'
4 – 4 角动量 角动量守恒定律
第四章 刚体的转动
力的时间累积效应 冲量、动量、动量定理.
力矩的时间累积效应
冲量矩、角动量、
角动量定理.
一 质点的角动量定理和角动量守恒定律
质点运动状态的描述
p mv Ek mv2 2
Mdt
J2
J1
4 – 4 角动量 角动量守恒定律
第四章 刚体的转动
刚体定轴转动的角动量定理
t2 t1
Mdt
J2
J1
刚体转动的角动量定理:刚体所受的冲量矩等于 刚体转动角动量的增量.
3 刚体定轴转动的角动量守恒定律
若 M 0 ,则 L J 常量
刚体所受的合力矩为零时,刚体转动角动量为一 恒矢量.
1 (1 ml 2 ma2 ) 2
23
W 1 J 2
2
mga(1 cos30) mg l (1 cos30)
2
v g(2 3)(ml 2ma)(ml2 3ma2 ) 6 ma
4 – 4 角动量 角动量守恒定律
第四章 刚体的转动
例3 质量很小长度为l 的均匀细杆,可绕过其中心 O
o
m'
30
L mr2 J
a
mva ( 1 ml 2 m a2 )
3
v m
3mva m'l 2 3ma2
4 – 4 角动量 角动量守恒定律
m'l
3mva 2 3ma2
射入竿后,以子弹、细杆和 地球为系统 ,机械能守恒 .
第四章 刚体的转动
o 30
a v m'
4 – 4 角动量 角动量守恒定律
第四章 刚体的转动
力的时间累积效应 冲量、动量、动量定理.
力矩的时间累积效应
冲量矩、角动量、
角动量定理.
一 质点的角动量定理和角动量守恒定律
质点运动状态的描述
p mv Ek mv2 2
4.3.1刚体定轴转动的角动量

Or
Or
圆环转轴沿几何中心轴 薄圆盘转轴通过中心 与盘面垂直
l
细棒转轴通过中心与棒垂直
r
r
r
圆柱壳转轴沿几何轴 球壳转轴沿直径
球体转轴沿直径
4.3刚体定轴转动的角动量 转动惯量
➢ J 的计算方法
❖ 质量离散分布
J mjrj2 m1r12 m2r22 mjrj2
❖ 质量连续分布
J mjrj2 r2dm j
该轴平行,相距为 d 的
转轴的转动惯量
JO JC md 2
d
C mO
4.3刚体定轴转动的角动量 转动惯量
J Jc md2
圆盘对P 轴的转动惯量 P R O m
JP
1 2
mR 2
mR2
质量为m,长为L的细棒绕其一端的J
Jc
1 12
mL2
O1
O1’
J
Jc
m( L)2 2
1 3
mL2
d=L/2
r2dV V
dm:质量元 dV :体积元
4.3刚体定轴转动的角动量 转动惯量
说明
刚体的转动惯量与以下三个因素有关:
(1)与刚体的体密度 有关. (2)与刚体的几何形状及体密度 的分
布有关. (3)与转轴的位置有关.
4.3刚体定轴转动的角动量 转动惯量
平行轴定理
质量为m 的刚体,
如果对其质心轴的转动 惯量为 JC ,则对任一与
O2
O2’
4.3刚体定轴转动的角动量 转动惯量
例
如图所示,半径为R、质量为m的均匀
圆盘,绕垂直于圆盘平面的质心轴CP
转动.求圆盘对过其边缘的轴OO转动
的转动惯量J
解 圆盘对中心对称轴的转动惯量 O C R
大学物理-刚体绕定轴转动的角动量

M J
p mivi
角动量
L J
角动量定理 M d(J)
dt
质点的运动规律与刚体的定轴转动规律的比较(续)
质点的运动
动量守恒 力的功 动能
Fi 0时
mivi 恒量
Aab
b
F
dr
a
Ek
1 2
mv
2
动能定理
A
1 2
mv
2 2
1 2
mv12
重力势能
Ep mgh
机械能守恒
A外 A非保内 0时
进动特性的技术应用
翻转
外力
C
外力
进动
C
炮弹飞行姿态的控制:炮弹在飞行时,空气阻力对炮弹质心 的力矩会使炮弹在空中翻转;若在炮筒内壁上刻出了螺旋线 (称之为来复线),当炮弹由于发射药的爆炸所产生的强大 推力推出炮筒时,炮弹还同时绕自己的对称轴高速旋转。由 于这种自转作用,它在飞行过程中受到的空气阻力将不能使 它翻转,而只能使它绕着质心前进的方向进动。
pA pB
pA A
Bp B
s
s
O
x
结论:静止流体中任意两等高点的压强相等,即压强差为零。 若整个流体沿水平方向加速运动? 加速运动为a,压强差为?
2. 高度相差为 h 的两点的压强差(不可压缩的流体)
选取研究对象,受力分析:(侧面?)
沿 y 方向:
p C
Y C s
pB s pC s mg may
已知:p0=1.013×105 Pa , 0 1.29kg / m3
解 由等温气压公式
p
p e(0g / p0 ) y 0
0g 1.25104 m1
p0
p1 1.0 105 e1.251043.6103 0.64 105 Pa
4.3刚体转动角动量 角动量守恒定律

Mdt I2 I1
L I 常量
四 刚体定轴转动的角动量守恒定律 若 M 0 ,则 讨论
守 恒条件
M 0
内力矩不改变系统的角动量.
在冲击等问题中
M in M ex L 常量
角动量守恒定律是自然界的一个基本定律.
有许多现象都可以 用角动量守恒来说明. 花样滑冰 跳水运动员跳水 自然界中存在多种守恒定律 动量守恒定律 能量守恒定律 角动量守恒定律 电荷守恒定律 质量守恒定律 宇称守恒定律等
1 3 J 2 r dr l 0 12 1 ml 2 12
l/2 2
如转轴过端点垂直于棒
1 2 J r dr ml 0 3
l 2
例3 一质量为 m 、半径为 R 的均匀圆盘,求通 过盘中心 O 并与盘面垂直的轴的转动惯量 .
解 设圆盘面密度为 , 在盘上取半径为 ,宽为 dr 的圆环
注意
d
C
mO
I O I C md
2
1 圆盘对P 轴 J P mR 2 mR 2 的转动惯量 2
P
R O m
三 刚体定轴转动的角动量定理
由质点系角动量定理
dLz d ( I ) Mz dt dt
Hale Waihona Puke t2t1M z dt I2 I1
刚体定轴转动的角动量定理
t2
t1
克服直升飞机机身反转的措施:
装置尾浆推动大 气产生克服机身 反转的力矩 装置反向转动的双 旋翼产生反向角动 量而相互抵消
质量为M,长度为L的均匀杆可绕水平轴O在铅直面内 自由转动,一质量为m的小球以水平速度v与杆的下端 相碰,碰后以反向v’运动,求碰后杆的角速度?
刚体的定轴转动

半径为R、质量为 m3的均质圆盘,忽略轴 的摩擦。求:(1) m1 、m2的加速度;(2)滑 轮的角加速度 及绳中的张力。(绳轻且
不可伸长)
R m3
m1
m2
24
R
m1
m2
解 对m1 、m2,滑轮作受力分析, m1 、 m2作平动,滑轮作转动,
(T1 T1,T2 T2)
m1g T1 m1a
T2 m2 g m2a
其一 此处滑轮质量不可忽略,大小不可忽略,所以要用到转动定律;
其二 绳与滑轮间无相对滑动,所以
;因a R
故滑轮两边绳之张力不相等。
26
例2-33 质量m=1.0kg、半径 r=0.6m 的匀质圆盘,可以绕通过其中心且垂直盘面的水
平光滑固定轴转动,对轴的转动惯量 I=mr2/2。圆盘边缘绕有绳子,绳子下端挂一质量
质量分布均匀而有一定几何形 状的刚体,质心的位置为它的 几何中心。
X
32
五、机械能守恒定律 若 A外 0 A内非 =0 (或只有保守力作功)
系统机械能守恒,即
1 2
mv2
1 2
I2
mghc
1 2
k x2
恒量
33
例2-35 一均匀细杆长为l,质量为m,垂直放置,o点着地。杆绕过o的光滑水平轴
m=1.0kg 的物体,如图所示。起初在圆盘上加一恒力矩使物体以速率 v0=0.6m/s 匀速上 升,如撤去所加力矩,问经历多少时间圆盘开始作反方向运动?
r
T
m、r
T
a
v0
mg
解;受力分析如图所示
mg T ma
Tr I
a r
v0 at 0
I 1 mr2 2
解得 a mgr mr I r 2g 3
不可伸长)
R m3
m1
m2
24
R
m1
m2
解 对m1 、m2,滑轮作受力分析, m1 、 m2作平动,滑轮作转动,
(T1 T1,T2 T2)
m1g T1 m1a
T2 m2 g m2a
其一 此处滑轮质量不可忽略,大小不可忽略,所以要用到转动定律;
其二 绳与滑轮间无相对滑动,所以
;因a R
故滑轮两边绳之张力不相等。
26
例2-33 质量m=1.0kg、半径 r=0.6m 的匀质圆盘,可以绕通过其中心且垂直盘面的水
平光滑固定轴转动,对轴的转动惯量 I=mr2/2。圆盘边缘绕有绳子,绳子下端挂一质量
质量分布均匀而有一定几何形 状的刚体,质心的位置为它的 几何中心。
X
32
五、机械能守恒定律 若 A外 0 A内非 =0 (或只有保守力作功)
系统机械能守恒,即
1 2
mv2
1 2
I2
mghc
1 2
k x2
恒量
33
例2-35 一均匀细杆长为l,质量为m,垂直放置,o点着地。杆绕过o的光滑水平轴
m=1.0kg 的物体,如图所示。起初在圆盘上加一恒力矩使物体以速率 v0=0.6m/s 匀速上 升,如撤去所加力矩,问经历多少时间圆盘开始作反方向运动?
r
T
m、r
T
a
v0
mg
解;受力分析如图所示
mg T ma
Tr I
a r
v0 at 0
I 1 mr2 2
解得 a mgr mr I r 2g 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O2
O2’
4.3刚体定轴转动的角动量 转动惯量
例
如图所示,半径为R、质量为m的均匀
圆盘,绕垂直于圆盘平面的质心轴CP
转动.求圆盘对过其边缘的轴OO转动
的转动惯量J
解 圆盘对中心对称轴的转动惯量 O C R
JC
1 2
mR2
O′
P
平行轴定理 圆盘对边缘垂直盘面的轴转动惯量
Jo
1 mR2 2
mR2
3 mR2 2
该轴平行,相距为 d 的
转轴的转动惯量
JO JC md 2
d
C mO
4.3刚体定轴转动的角动量 转动惯量
J Jc md2
ቤተ መጻሕፍቲ ባይዱ
圆盘对P 轴的转动惯量 P R O m
JP
1 2
mR 2
mR2
质量为m,长为L的细棒绕其一端的J
Jc
1 12
mL2
O1
O1’
J
Jc
m( L)2 2
1 3
mL2
d=L/2
υi
国际单位(SI)制中,转动惯量的单位是千克二次方米,符号为kgm2
4.3刚体定轴转动的角动量 转动惯量
4.3.2 转动惯量的计算
离散分布的刚体系
转动惯量
J mjrj2
j
连续散分布的刚体
J r2dm
➢ J 的意义:转动惯性的量度 .
4.3刚体定轴转动的角动量 转动惯量
L
细棒转轴通过端点与棒垂直
r2dV V
dm:质量元 dV :体积元
4.3刚体定轴转动的角动量 转动惯量
说明
刚体的转动惯量与以下三个因素有关:
(1)与刚体的体密度 有关. (2)与刚体的几何形状及体密度 的分
布有关. (3)与转轴的位置有关.
4.3刚体定轴转动的角动量 转动惯量
平行轴定理
质量为m 的刚体,
如果对其质心轴的转动 惯量为 JC ,则对任一与
4.3刚体定轴转动的角动量 转动惯量
垂直轴定理 ---薄板正交轴定理
薄板 x轴 y轴 z轴 为正交轴
Jz Jx Jy
z y
x
对z轴的转动惯量为对x轴 和对y轴转动惯量之和
4.3刚体定轴转动的角动量 转动惯量
例 求半径为R、质量为m的圆盘绕其直径轴转动的
转动惯量J
解 取x、y轴如图,均为圆盘的直径轴 y
Jx Jy
Oz x
Jz
1 2
mR2
Jz Jx Jy 2Jy
Jy
1 mR2 4
分析:如何求半圆盘对直径的转动惯量?
4.3刚体定轴转动的角动量 转动惯量
Or
Or
圆环转轴沿几何中心轴 薄圆盘转轴通过中心 与盘面垂直
l
细棒转轴通过中心与棒垂直
r
r
r
圆柱壳转轴沿几何轴 球壳转轴沿直径
球体转轴沿直径
4.3刚体定轴转动的角动量 转动惯量
➢ J 的计算方法
❖ 质量离散分布
J mjrj2 m1r12 m2r22 mjrj2
❖ 质量连续分布
J mjrj2 r2dm j
4.3刚体定轴转动的角动量 转动惯量
4.3.1 刚体定轴转动的角动量
刚体定轴转动的角动量
质元mi对z轴的角动量 刚体对z轴的总角动量
刚体对z轴的角动量表示
Li z rimii miri2
z
Lz Liz ( miri2 )
i
i
J miri2 刚体对z轴转动惯量
i
Lz J
O mi
ri