变频器速度开环与速度闭环区别
变频器的PID控制(变频控制经典)

变频器工作原理变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。
1. 电机的旋转速度为什么能够自由地改变?*1: r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:2极电机50Hz 3000 [r/min]4极电机50Hz 1500 [r/min]结论:电机的旋转速度同频率成比例本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。
感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。
由电机的工作原理决定电机的极数是固定不变的。
由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。
另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。
因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。
n = 60f/pn: 同步速度f: 电源频率p: 电机极对数结论:改变频率和电压是最优的电机控制方法如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。
因此变频器在改变频率的同时必须要同时改变电压。
输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。
例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?*1: 工频电源由电网提供的动力电源(商用电源)*2: 起动电流当电机开始运转时,变频器的输出电流变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。
工频直接起动会产生一个大的起动起动电流。
而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。
变频器的调速原理)

变频器调速基本原理变频器调速基本原理 1、变频器概述。
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
它的主电路都采用交—直—交电路。
JP6C-T9/J9 系列低压通用变频器工作电压为:380~690V,功率为0.75~800kW,工作频率为0~400Hz;JP6C-YZ 系列中压通用变频器工作电压为:1140~2300V,功率为37~1000kW,工作频率为0~400Hz;JCS 系列高压变频器工作电压为:3KV / 6KV / 10KV,功率为280~20000kW,工作频率为0~60Hz;2、变频原理。
从理论上我们可知,电机的转速N 与供电频率f 有以下关系:)1(*60sPfN其中: p ——电机极数 S——转差率由式(1)可知,转速n 与频率f 成正比,如果不改变电动机的极数,只要改变频率f 即可改变电动机的转速,当频率f 在0~50Hz 的范围内变化时,电动机转速调节范围非常宽。
变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。
3、节能调速原理一般使用的风机、水泵类它们额定风量、水量都超过实际需要,又因工艺的需要,往往运行中要改变风量、水量,而目前多数采用档板或阀门来调节的,虽然方法简单,但实质是人为增加阻力的办法。
因此浪费大量电能,属不经济的调节方式。
从流体力学原理可知,风机的风量、水泵的流量与电机转速及电机功率的关系如下:当风机转速下降时,电动机的功率迅速降低,例风量下降到80%,转速亦下降到80%时,则轴功率下降到额定的51%,若风量下降到50%,轴功率将下降到额定的13%,其节电潜力非常大,并有下述曲线、阴影部分表示采用变频器调速方式的节电效果,其节电可达30-40%效果十分明显。
对不同使用频率时的节电率N%可查表。
上述原理也基本适用水泵,可见采用变频调速控制实现节电是有效的、惟一的途径。
变频调速特点是效率高,无附加转差损耗,调速范围大、精度高、无级的。
张力控制原理教程

10本文从应用的角度阐述了当前技术条件下,矢量变频技术在卷取传动中运用和设计的方法和思路。
有较强的实用性和理论指导性。
关键词:张力变频矢量转矩卷径引言:在工业生产的很多行业,都要进行精确的张力控制,保持张力的恒定,以提高产品的质量。
诸如造纸、印刷印染、包装、电线电缆、光纤电缆、纺织、皮革、金属箔加工、纤维、橡胶、冶金等行业都被广泛应用。
在变频技术还没有成熟以前,通常采用直流控制,以获得良好的控制性能。
随着变频技术的日趋成熟,出现了矢量控制变频器、张力控制专用变频器等一些高性能的变频器。
其控制性能已能和直流控制性能相媲美。
由于交流电动机的结构、性价比、使用、维护等很多方面都优于直流电动机,矢量变频控制正在这些行业被越来越广泛的应用,有取代直流控制的趋势。
张力控制的目的就是保持线材或带材上的张力恒定,矢量控制变频器可以通过两种途径达到目的:一、通过控制电机的转速来实现;另一种是通过控制电机输出转矩来实现。
速度模式下的张力闭环控制速度模式下的张力闭环控制是通过调节电机转速达到张力恒定的。
首先由带(线)的线速度和卷筒的卷径实时计算出同步匹配频率指令,然后通过张力检测装置反馈的张力信号与张力设定值构成PID闭环,调整变频器的频率指令。
同步匹配频率指令的公式如下:F=(V×p×i)/(π×D)其中:F 变频器同步匹配频率指令V 材料线速度p 电机极对数(变频器根据电机参数自动获得)i 机械传动比D 卷筒的卷径变频器的品牌不同、设计者的用法不同,获得以上各变量的途径也不同,特别是材料的线速度(V)和卷筒的卷径(D),计算方法多种多样,在此不一一列举。
这种控制模式下要求变频器的PID调节性能要好,同步匹配频率指令要准确,这样系统更容易稳定,否则系统就会震荡、不稳定。
这种模式多用在拉丝机的连拉和轧机的连轧传动控制中。
若采用转矩控制模式,当材料的机械性能出现波动,就会出现拉丝困难,轧机轧不动等不正常情况。
变频器的闭环速度控制功能

/m/b/1411607.html丹佛斯VLT2800系列变频器的闭环速度控制功能一、概述:丹佛斯VLT2800系列变频用具有响应时间快、速度控制精度高等特点,通过内部的滑差补偿功能,可以在开环速度控制中将转速误差控制在+/-23rpm之内(4极电机,90~3600rpm)。
假如对转速精度有更高的要求,可以采用速度闭环的方式:通过速度传感器反馈信号与给定信号的比较进行PID运算,控制电机的实际转速。
通过速度闭环控制,VLT2800系列变频器可将转速误差控制在+/-7.5rpm之内(4极电机,30~3600rpm)。
二、实施方法:将速度传感器安装于电机轴上,通过对实际转速信号的采集达到精确控制转速的目的。
速度传感器一般采用旋转编码器,而旋转编码器根据工作原理、分辨率、电源类型和输出形式的不同又分为很多不同类型,如下表所列。
在此,我们选用增量型、24V电源供电、集电极开路(PNP)输出、分辩率为1024的旋转编码器,按下表方式接线:一般使用旋转编码器需要判定电机转向和定位控制时需要使用A/B/Z三相信号。
在此,我们仅需要A相信号传感实际转速。
需重新设定的参数见下表(以四极电动机为例,由电位器给定转速信号):基于S7-200 PLC USS协议通信的速度闭环定位控制系统设计时间:2013-11-20 来源:作者:可以应用于多个自动化控制系统中,大大节约了项目的开发时间和成本,在实际应用中取得了良好的效果。
0 引言随着电力电子技术以及控制技术的发展,交流变频调速在工业电机拖动领域得到了广泛应用;可编程控制器PLC作为替代继电器的新型控制装置,简单可靠,操作方便、通用灵活、体积小、使用寿命长且功能强大、容易使用、可靠性高,常常被用于现场数据采集和设备的控制;在此,本次设计就是基于S7-200PLC的USS通信方式的速度闭环定位控制。
将现在应用最广泛的PLC和变频器综合起来通过USS协议网络控制实现速度闭环定位控制。
直流调速中开环机械特性与闭环静特性的关系

4按转子磁链定向控制的基本思想:通过坐标变换,在按转子磁链定向同步旋转正交坐标系中,得到等效的直流电动机模型,仿照直流电动机模型的控制方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量反变换得到三相坐标系的对应量,以实施控制。
5 按转子磁链定向同步旋转正交坐标系上的数学模型是同步旋转正交坐标系模型中的一个特例。
通过按转子磁链定向,将定子电流分解为励磁风量和转矩分量,转子磁链仅由励磁分量产生,而电磁转矩正比于转子磁链和定子电流分量的乘积,实现了定子电流两个分量的解耦,而且还降低了微分方程组的阶次。
6转速闭环控制能够通过调节电流转矩分量来抑制转子磁链波动所引起的电磁转矩变化,但这种调节只有当转速变化后才起作用。
为了改善动态性能,可以采用转矩控制方式,常用的转矩控制方式有两种:转矩闭环控制和在转速调节器的输出增加除法环节。
7矢量控制系统的特点(1)按转子磁链定向,实现了定子电流励磁分量和转矩分量的解耦,需要电流闭环控制。
(2)转子磁链系统的控制对象是稳定的惯性环节,可以采用磁链闭环控制,也可以采用开环控制。
(3)采用连续的PI控制,转矩与磁链变化平稳,电流闭环控制可以有效的限制起制动电流。
8矢量控制系统的问题(1转子磁链计算精度易受易于变化的转子电阻的影响,转子磁链的角度精度影响定向的准确性。
(2需要进行矢量变换,系统结构复杂,运算量大。
9直接转矩控制系统的基本思想“根据定子磁链幅值偏差的正负符号和电磁转矩的正负符号,再根据当前定子磁链矢量所在的位置,直接选取合适的电压空间矢量,减小定子磁链幅值的偏差和电磁转矩的偏差,实现电磁转矩与定子磁链的控制。
10 usd决定电子磁链幅值的增减,而usq决定定子磁链矢量的旋转角速度,从而决定转差频率和电磁转矩。
11直接转矩控制系统的特点(1 转矩与磁链的控制采用双位式控制器,并在PWM逆变器中直接用着两个控制信号产生输出电压,省去了旋转变换和电流控制,简化了控制器的结构。
2-交流电机变频调速详解

以下情况要选用交流输出电抗器
变频器到电机线路超过100米(一般原则)
以下情况一般要选用制动单元和制动电阻 提升负载 频繁快速加减速 大惯量(自由停车需要1min以上,恒速运行电流小于加速电流的设备)
变频器选型—选型原则
使用通用变频器的行业和设备 使用矢量变频器的行业和设备
纺织绝大多数设备
冶金辅助风机水泵、辊道、高炉卷扬 石化用风机、泵、空压机 电梯门机、起重行走 供水 油田用风机、水泵、抽油机、空压机
多
0.4-315KW
EV1000 EV2000
TD3000 2.2-75KW TD3100 高 TD3300
高动态性能 动态性能好 总线设计 精确控制 网络化应用 行业专用
0.4-5.5KW
功 能
TD900
调速、通讯 操作简便
功能丰富 适用面广
高稳态性能
成 本
完整的功率段 行业专用
少
宽电压范围
元件化设计
R S T P1 (+) PB (-) U V
MOTOR
W
PE
POWER SUPPLY
制动电阻
工频电网输入 380V 3PH/220V 3PH
直流电抗器
三相交流电机
220V 1PH
变频器的构成—控制回路接口
接口类型 主要特点 主要功能
开关量输入
开关量输出 模拟量输入
无源输入,一般由变频 启/停变频器,接收编码器信号、多 器内部24V供电, 段速、外部故障等信号或指令
2.3 交流电机变频调速
•概 述
异步电机的变压变频调速系统一 般简称为变频调速系统。由于在调速 时转差功率不随转速而变化,调速范 围宽,无论是高速还是低速时效率都 较高,在采取一定的技术措施后能实 现高动态性能,可与直流调速系统媲 美。因此现在应用面很广,是本篇的 重点。
“开环控制”与“闭环控制”的区别学习总结

“开环控制”与“闭环控制”的区别就在于控制系统中有无反馈环节,所谓闭环控制就是存在反馈环节的控制。
这样的系统能够适时地检测控制的输出结果,并将检则到的信息通过反馈环节反映到输入端,调整输入童,达到修正控制误差、提高控制精确度的目的。
反馈技术被广泛应用在各种需要精确控制的系统中,尤其是电子控制系统,比如:各种放大电路中的增益控制:环境的温度、湿度、水位、压力的控制:机械结构的位置控制、速度控制等等。
因此常常使人觉得:闭环控制是复杂的、精确的、自动的控制方式,而开环控制相对的简单、粗糙和非自动。
这种感觉常常造成初学者在分析系统时的误判,需要特别注意。
以普通家用压力锅的温度控制过程为例,在密闭状态下,锅内的温度与压力呈对应关系。
加热锅体,锅内温度逐步升高,锅内压力也随之升高;当锅内的压力达到设定值时,高压将顶开压在排气阀上的重锤,排出蒸汽,使锅内压力降低,压力的降低又造成温度的降低。
由于重锤的重里是恒定,因此当温度达到设定值之后,加热里和排气里将呈动态平衡,锅内压力保持在高于大气压力的一个恒定值上,锅内温度也保持在高于常压水的沸点温度的-一个恒定值上(一般为110?左右),不再继续升高。
过程如下图所示:分析这样-个控制问题,首先要界定所考察的系统范围。
从整体效果上看,该控制过程的输入里是加热锅体,加热锅体导致的三个结果:锅体升温、锅内升压以及排气孔排气,都是输出童,而输出量并未反馈回来影响输入里,因此它是一个开环控制系统。
而更细致的分析,应该把升温过程与恒压/恒温过程分别进行分析。
分析时考察的系统范围不同,结论也不同。
压力锅的加热、升温、升压过程把加热炉具与压力锅看成一个系统,压力锅体因外部加热而升温,分析加热的过程。
输入童一-接通电源或点火,输出童- -锅体升温、锅内升压以及排气孔排气。
控制过程如下图所示,与用炉火加热普通锅体的过程相同,属于开环自动控制。
压力锅的恒压、恒温控制过程压力锅能够保持锅内压力与温度恒定,主要是依靠了压在排气阀上的重锤的作用,因此还可以分析重锤对锅内压力的控制过程。
变频调速开环vf控制系统参数的设置与应用

课程设计三相异步电动机(15KW电机)变频调速开环V/F控制系统参数的设置与应用(616G5)学校:XXXX大学院系:机电工程学院专业:电气工程及其自动化指导老师:XXX姓名:XXX学号:0805107XX设计要求学生应熟悉各种电气设备,电动机,变频器,传感器,PID调节器等。
要求完成资料收集工作、提出设计方案并完成全部设计工作。
在设计工作中,对所提供的各部分图纸应符合制图标准,并要求所有电气工程符号应采用国家统一标准。
目录一交流调速系统概述二变频调速系统概述三电机选择及参数四安川变频器(616g5)特点与优势五三相异步电动机(5.5KW)变频调速开环V/F控制系统(616g5)参数设定六结束语参考文献一交流调速系统概述1.1 交流调速系统的特点对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。
这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的,所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。
纵观电力拖动的发展过程,交、直流两大调速系统一直并存于各个工业领域,虽然由于各个时期科学技术的发展使得它们所处的地位有所不同,但它们始终是随着工业技术的发展,特别是随着电力电子元器件的发展而在相互竞争。
在过去很长一段时期,由于直流电动机的优良调速性能,在可逆、可调速与高精度、宽调速范围的电力拖动技术领域中,几乎都是采用直流调速系统。
然而由于直流电动机其有机械式换向器这一致命的弱点,致使直流电动机制造成本高、价格昂贵、维护麻烦、使用环境受到限制,其自身结构也约束了单台电机的转速,功率上限,从而给直流传动的应用带来了一系列的限制。
相对于直流电动机来说,交流电动机特别是鼠笼式异步电动机具有结构简单,制造成本低,坚固耐用,运行可靠,维护方便,惯性小,动态响应好,以及易于向高压、高速和大功率方向发展等优点。
因此,近几十年以来,不少国家都在致力于交流调速系统的研究,用没有换向器的交流电动机实现调速来取代直流电动机,突破它的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济南创恒科技发展有限公司 变频器速度控制分为速度开环和速度闭环。
速度开环控制为电机轴后无编码器,控制简单,给定速度后变频器会输出一定的频率给电机,电机的转速会根据负载的变换有所波动,并且电机的动态响应和精确度不如闭环系统。
速度闭环控制使用编码器进行实时测速,转矩变化对系统速度扰动影响几乎不记。
具有较好的动态性能和转矩特性,较高的转速精确度。
丹佛斯变频器支持5V 增量差分输入编码器,24V 编码器,旋转变压器,绝对值编码器。
丹佛斯变频器开环和闭环比较:
速度控制范围 :开环 1:100
闭环 1: 1000
速度控制精度
开环 (4000rpm) 8rpm
闭环 (6000rpm) 0.15rpm
转矩精度
开环 <5%
闭环 1%。