近世代数证明题
近世代数习题第二章

第二章 群论近世代数习题第二章 第一组 1-13题;第二组 14-26题;第三组 27-39题;第四组 40-52题,最后提交时间为11月25日1、设G 是整数集,则G 对运算4++=b a b a是否构成群?2、设G 是正整数集,则G 对运算b a b a =是否构成群?3、证明:正整数对于普通乘法构成幺半群.4、证明:正整数对于普通加法构成半群,不含有左右单位元.5、G 是整数集,则G 对运算1=b a是否构成群?6、设b a ,是群G 中任意两元素. 证明:在G 中存在唯一元素x ,使得b axba =.7、设u 是群G 中任意取定的元素,证明:G 对新运算aub b a = 也作成群.8、证:在正有理数乘群中,除1外,其余元素阶数都是无限.9、证:在非零有理数乘群中,1的阶是1,-1的是2,其余元素阶数都是无限.10、设群G 中元素a 阶数是n ,则m n e a m |⇔=.11、设群G 中元素a 阶数是n ,则 ),(||n m n a m =.,其中k 为任意整数. 设(m,n )=d,m=dk,n=dl,(k,l)=1. 则(a^m)^l=a^(ml)=a^(kdl)=(a^(n))^k=e. 设(a^m )^s=e,,即a^(ms)=e,所以n|ms,则l|ks,又因为(l,k)=1,所以l|s,即a^m 的阶数为l.12、证明:在一个有限群中,阶数大于2的元素个数一定是偶数.13、设G 为群,且n G 2||=,则G 中阶数等于2的一定是奇数.14、证明:如果群G 中每个元素都满足e x =2,则G 是交换群.对每个x ,从x^2=e 可得x=x^(-1),对于G 中任一元x ,y ,由于(xy )^2=e ,所以xy=(xy )^(-1)=y^(-1)*x(-1)=yx.或者 :(ab)(ba)=a(bb)a=aea=aa=e ,故(ab)的逆为ba ,又(ab)(ab)=e ,这是因为ab 看成G 中元素,元素的平方等于e. 由逆元的唯一性,知道ab=ba 15、证明:n 阶群中元素阶数都不大于n .16、证明:p 阶群中有1-p 个p 阶元素,p 为素数.17、设群G 中元素a 阶数是n ,则)(|t s n a a ts -⇔=.18、群G 的任意子群交仍是子群.19、设G 为群,G b a ∈,,证明:a a babbab k k =⇔=--11)(.20、证明:交换群中所有有限阶元素构成子群.21、证明:任何群都不能是两个真子群的并. 证明:任何群都不能是两个真子群的并. 可以用反证法,设G=HUK ,H 、K 均为真子群,存在a,b\in G, a\not\in H,b\not\in K ,从而a\in K, b\in H. ab\in G, 则ab\in H 或ab\in K. 若ab\in H 得出矛盾,ab\in K ,也可得出矛盾.22、设G 为群,H a a G a G H n m ∈∈≤,,,,证明:若1),(=n m ,则H a ∈.23、证明:整数加群是无限循环群.24、证明:n 次单位根群为n 阶循环群.25、证明:循环群的子群仍是循环群.26、设>=<a G 为6阶循环群,给出它的所有生成元及所有子群.27、求模18的剩余类加群(Z 18,+,[0])的所有子群及这些子群的生成元.28、设群G 是24阶群,G 中元素a 的阶是6,则元素a 2的阶为?28、解: 在群G 中,对于ㄧa ㄧ=n ,a^r ∈G ,有ㄧa^r ㄧ=n/(n ,r ),所以由 ㄧa ㄧ=6 可得:ㄧa^2ㄧ=6/(6,2)=3.29、设H 1和H 2分别是群(G , ,e )的子群,并且| H 1 |=m ,| H 2 | =n ,m 、n 有限,(m ,n )=1,试证:H 1∩H 2={e }.30、设群中元素a 的阶数为无限,证明:t s a a ts ±=>⇔>=<<.31、设群中元素a 的阶数为n ,证明:),(),(n t n s a a t s =>⇔>=<<.32、设G 是交换群,e 是G 的单位元,n 是正整数,},,|{e a G a a H n =∈=问:H 是否是G 的子群?为什么?32解:H 是G 的子群. 下证:① 由e ∈H ,故H 为非空子集;②对于任意a ,b ∈H ,a^n=e ,b^n=e ,故[b^(-1)]^n=e ,因为G 是交换群,所以有:(a^n)* ﹛[b^(-1)]^n ﹜=aa ···a*[b^(-1)] [b^(-1)]···[b^(-1)]= ﹛a[b^(-1)] ﹜^n=e ,从而a[b^(-1)] ∈H ,故 H 是G 的子群. 证毕.(注:刚才a 和[b^(-1)]展开均为n 个相乘)33、设群G 中两元素满足1|)||,(|,==b a ba ab ,证明:>>=<<ab b a ,. 34、证明:⎭⎬⎫⎩⎨⎧ ,!1,,21,1n 是有理数加群的一个生成系. 35、设b a ,是群G 的两个元,,ba ab =a 的阶是m ,b 的阶是n ,n m ,有限且)(),(,1),(b K a H n m ===,求K H 36、设S 3是3次对称群,a=(123)∈S 3.(1) 写出H =< a>的所有元素.(2) 计算H 的所有左陪集和所有右陪集.(3) 判断H 是否是S3的不变子群,并说明理由.37、在5次对称群S 5中,求(12)(145),(4521)-1以及(354)的阶数.37、解: (12)(145)的阶数为[2,3]=6 ; (4521)-1的阶数为4 ; (354)的阶数为3.38、设G 是一交换群,n 是一正整数,H 是G 中所有阶数是n 的因数的元素的集合. 试问:H 是否是G 的子群?为什么?39、设1||>M ,证明:M 的全体变换作成一个没有单位元的半群.40、设1||>M ,证明:M 的全体非双射变换关于变换的乘法不作成群.41、证明:不相连的循环相乘可以交换.42、将3S 所有元素用循环表示.43、将4S 所有元素用循环乘积表示.(1)(12), (13),(14),(23),(24),(34)(123),(124),(134),(132),(142),(143),(234),(243)(1234),(1243),(1324),(1342),(1423),(1432),(12)(34),(13)(24),(14)(23)44、3S 中不能同)123(交换的所有元素.45、写出5S 中阶数等于2的所有元素.46、置换δ与其逆1-δ具有相同的奇偶性.置换\delta=\delta_1\delta_2\cdots\delta_s,\delta_i 为对换,又因为(\delta_1\delta_2\cdots\delta_s )(\delta_s\delta_(s-1)\cdots\delta_1)=(1),从而得到\delta^{-1},进而得证结果.47、求下列置换的阶数)48)(3172(;)26)(5172(;⎪⎪⎭⎫ ⎝⎛641523123456. 48、设H ={(1),(123),(132)}是对称群S3的子群,写出H 的所有左陪集和所有右陪集,问H 是否是S3的不变子群?为什么?49、给出4S 的所有子群.50、证明:无限循环群的非e 子群指数均有限.H\not={e},H=(a^s)为G 的子群,其中s 为H 中所含元素的指数最小正整数. 证明G=a^0HUaHU\cdotsUa^{s-1}H,且a^iH 与a^jH 煤油交集,i\not=j.51、设G 是整数集,规定3-+=b a b a ,证明:G 关于此运算构成群,并求出单位元.52、证明:指数是2的子群必是正规子群.53、证明:素数阶群是循环单群.54、设>=<a N 是群G 的一个正规子群,若N H ≤,则H 也是G 的正规子群.55、证明:若群G 的n 阶子群有且仅有一个,则此子群必为G 的正规子群.56、四次对称群4S 关于Klein 四元群4K 的商群44/K S 与3S 同构.57、证明:群中子群的共轭关系是一个等价关系.58、证明:n S 的所有对换构成一个共轭类.59、写出3S 的所有Sylow p -子群.60、证明:15阶群都是循环群.61、证明:200阶群不是单群.62、证明:196阶群必有一个阶数大于1的Sylow 子群,此子群为正规子群.28、解: 在群G 中,对于ㄧa ㄧ=n ,a^r ∈G ,有ㄧa^r ㄧ=n/(n ,r ),所以由 ㄧa ㄧ=6 可得:ㄧa^2ㄧ=6/(6,2)=3.32解:H 是G 的子群. 下证:① 由e ∈H ,故H 为非空子集;②对于任意a ,b ∈H ,a^n=e ,b^n=e ,故[b^(-1)]^n=e ,因为G 是交换群,所以有:(a^n)* ﹛[b^(-1)]^n ﹜=aa ···a*[b^(-1)] [b^(-1)]···[b^(-1)]= ﹛a[b^(-1)] ﹜^n=e ,从而a[b^(-1)] ∈H ,故 H 是G 的子群. 证毕.(注:刚才a 和[b^(-1)]展开均为n 个相乘)37、解: (12)(145)的阶数为6 ; (4521)-1的阶数为4 ;(354)的阶数为3.。
近世代数初步石生明课后答案

近世代数初步石生明课后答案一、选择题部分1. 选出所有正整数 a,b,满足条件 a²– 6ab + b² > 0 的是:选 C:a ≠ b2. 在德国哈雷大学上课的学生人数是 210。
其中男生人数与女生人数之比为 3:1,则女生人数是多少人?选 B:703. 已知函数 f(x) = x²– 2x + 1,g(x) = (x + 1)²– 2,则 f(x) = g(x) 的解为:选 B:04. 已知函数 f(x) = 3x + 1,g(x) = 2x – 1,则 f(g(x)) = g(f(x)) 的解为:选 A:05. 设 P(x) = 2x²– 3ax + 2a²– 2,Q(x) = x²– ax + a²– 1。
则 P(x) – Q(x) =0 的解为:选 C:1 或 4a – 26. 已知不等式(x – 2)² + (y – 1)² > 1,则下列几何图形有哪些?选 AB:圆心为(2,1),半径为 1 的圆的外部面积。
7. 设方程 x²– kx + 2 = 0 有两个不同的根,则 k 的取值范围是:选 B:-4 < k < 48. 设 f(x) = x² + 2x + 1,则 f(f(x)) = 0 的根为:选 C:-19. 对于下列哪一个数 a,都不存在整数 b,使得 a = b²– 3b + 1选 B:a = 710. 已知函数 f(x) = x²– 6x + 13,则下列哪一个函数与 f(x) 完全相同?选 A:g(x) = (x – 3)² + 4二、计算题部分1. 联立方程组:y = 8x – 1y = -2x + 17求解:x = 2, y = 152. 计算 2(x – 2)(x + 3) – (x – 2)² + 5(x + 3) – 5 的值:= x² + 53. 已知函数 f(x) = (x + 3)² + 1,求 f(-2) 的值:= 104. 解方程:x²– 6x + 7 = 0x = 1 或 55. 解方程:(x – 1)(x + 1)(x – 4) = 0x = -1, 1, 或 46. 求函数 f(x) = x²– 4x + 4 在 x = 2 处的导数:= 07. 已知函数 f(x) = x² + 2x – 3,求函数 g(x) = f(x + 1) 的表达式:= (x + 3)²– 78. 已知函数 f(x) = x²– 2ax + a² + 1,求 a 的值,使得 f(x) 的最小值为 0:a = 19. 已知函数 f(x) = x²– 2x + 3,求 f(x) 的图象与 x 轴交点的坐标:(1,0)10. 解下列不等式:(x – 1)(x + 2) > 0x < -2 或 x > 1三、证明题部分1. 证明 x² + 4x + 3 > 0 对所有实数 x 成立。
近世代数

个代数运算以定义个元素的集合上总共可、含有 n n 12n ( ) )(群。
能作成对运算集合、由全体正整数作成的 a b a G 2b =3、循环群的子群仍是循环群。
( )4.正规子群的左陪集也一定是一个右陪集。
( )5.任何群G 都与其商群G/N 同态。
( ) 13123321 61)(、=⎪⎪⎭⎫ ⎝⎛- ( ) 也是循环群是循环群,则,若是两个群且与、设G G G ~G G G 78.整数环Z 的每个理想不一定是主理想。
( )9.设环R 有单位元且每个非零元素都有逆元,若 | R |>1,则R 一定是体。
( )10.无零因子的交换环不一定是整环。
( )11.环R 中所含元素的个数叫环R 的特征。
( )2、什么是理想?3什么是体? 的行列式。
是矩阵其中同态映射,且是满射,的一个到是:普通乘法,证明:,代数运算是数的;再令运算是方阵的普通乘法数阶方阵作成的集合,代上全体是数域分)令三、(A |A | M M |A |A F M n F M 15−→−ϕ=四、(15分)设G 是一个群,且H ≤G ,K ≤G ,证明:H 与K 的交集是G 的一个子群。
五、(15分)设N 是群G 的任一正规子群,证明:G ~ G/N6、(15分)写出三次对称群S 3={(1),(12),(13),(23),(123),(132)}关于子群H={(1),(23)}的所有左陪集和所有右陪集。
一、判断题。
!个双射变换个元素的任意集合共有、含有 n n 12.在模8剩余类环Z 8中{}6,4,2,0 2>=<是一个极大理想。
( )4.整数环Z 的每个理想都是主理想。
( )二、单项选择题(每小题2分,共10分)1、关于半群的说法不正确的是: ( )(A )半群是带有一个代数运算的代数系统;(B) 半群的乘法一定适合结合律;(C) 半群的乘法不一定适合交换律;(D) 半群中一定有单位元。
2、设G 是一个群,H 是G 的一个非空子集,则H ≤G 的充要条件是 ( )(A ) H ab H b ,a ∈⇒∈ (B) H a H a 1∈⇒∈-(C)H ab H b ,a 1∈⇒∈- (D) H b a H b ,a ∈+⇒∈ 3、设R 是一个环,下面说法不正确的是 ( )(A )R 中若有零因子,则一定既有左零因子也有右零因子;(B) R 中若无零因子,则一定既无左零因子也无右零因子;(C) 一个环一定有零因子;(D) R 中若有左零因子也一定有右零因子。
近世代数考试复习

<近世代数复习题>一、定义描述(8’)1、群:设G是一个非空集合,是它的一个代数运算。
如果满足以下条件:(1)结合律成立,即对G中任意元素a,b,c都有(a b)c = a (b c).(2)G中有元素e.叫做G的左单位元,它对G中每个元素a都有e a = a .(3)对G中每个元素a,在G中都有元素a-1,叫做a的左逆元,使a-1 a = e .则称G对代数运算做成一个群。
2、正规子群:设N是群G的一个子群,如果对G中每个元素a都有aN=Na,即aNa-1=N ,则称N是群G的一个正规子群(或不变子群)。
3、环:设非空集合R有两个代数运算,一个叫做加法并用加号+ 表示,另一个叫做乘法用乘号表示,如果:(1)R对加法作成一个加群;(2)R对乘法满足结合律:(ab)c = a(bc);(3)乘法对加法满足左右分配率:a(b+c)= ab + ac ,(b+c)a = ba + ca .其中a,b,c为R中任意元素,则称R对这两个代数运算作成一个环。
4、极大理想:设N是环R的一个理想,且N≠R .如果除R和N外,R中没有包含N的其它理想,则称N为环R的一个极大理想。
5、惟一分解整环:设K是有单位元的整环。
如果K中每个既不是零又不是单位的元素都能惟一分解,则称K为惟一分解整环。
整数环Z及域F上多项式环F[ x ]都是惟一分解整环。
6、欧氏环:设K是一个有单位元的整环,如果(1)有一个从K的非零元集K – { 0}到非负整数集的映射ψ存在;(2)这个ψ对K中任意元素a及b≠0,在K中有元素q,r使a=bq + r,r=0 或ψ(r)<ψ(b),则称R关于ψ作成一个欧氏环。
-------------7、素理想:设R是一个交换环,P ◁R .如果ab∈P => a∈P或b∈P,其中a,b∈R,则称P是R的一个素理想。
显然,环R本身是R的一个素理想;又零理想{ 0}是R的素理想当且仅当R无零因子,亦即R是一个整环。
(精选)近世代数练习题题库

§1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )1.2 A ×B = B ×A ( )1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
( ) 1.4 如果ϕ是A 到A 的一一映射,则ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
( )1.6 设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。
( )1.8 整数的整除关系是Z 的一个等价关系。
( )2填空题:2.1 若A={0,1} , 则A A= __________________________________。
2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。
2.3 设={1,2,3} B={a,b},则A ⨯B=_______。
2.4 设A={1,2}, 则A A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},则A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},则A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件:_____________________________________________。
近世代数习题第一章

第一章 基本概念1、设B A ,是两个有限集,证明:||||||||B A B A B A +=+ .2、设Y X ,都是有理数集,证明:法则b a ab + :δ 不是X 到Y 的映射.3、设},3,2,1{ =X ,Y 是有理数集,证明:法则2:x x δ是X 到Y 的映射.4、设X 为数域F 上的全体n 维向量构成的集合,证明:法则121),,,(:a a a a n δ是X 到F 的映射.5、设},3,2,1{ =X ,},6,4,2{ =Y ,证明:法则x x 2: δ是X 到Y 的双射.6、设X 为数域F 上的全体n 阶方阵作成的集合,},2,1,0{ =Y ,用)(A r 表示矩阵A 的秩,证明:法则)(:A r A δ是X 到Y 的满射,但不是单射.7、设Y X ,是两个有限集且||||Y X =,则X 到Y 的映射δ是满设当且仅当δ是单射.8、设},3,2,1{ =X ,证明:法则2:x x δ是X 到Y 的单射,但不是满射.9、证明:具有n 个元素的集合共可构成!n 个双射.10、判断法则b a b a +=是不是整数集的代数运算.11、判断法则1+=ab b a是不是整数集的代数运算.12、判断法则B A B A ||=是不是数域F 上的全体n 阶方阵的集合的代数运算.13、设M 是自然数集合,则M 的代数运算1+=ab b a 不满足结合律.14、变换的乘法满足结合律.15、设M 是实数集合,则M 的代数运算b a b a 32+= 是否满足结合律和交换律.16、设M 全校学生全体,规定b a aRb ,⇔同在一系.证明:这一关系是M 上的一个等价关系.17、求由等价关系)4(mod b a aRb ≡⇔所决定的整数集Z 的分类.18、设}10,6,4,2,1{=M ,规定b a aRb +⇔|4问:R 是不是M 上关系,是否满足反身性、对称性与传递性.19、设A 、B 是集合,| A |=3,| B |=2,则共可定义多少个从A 到B 的映射,其中 有多少个个单射,有多少个个满射,有多少个个双射.。
近世代数试题

近 世 代 数 试 卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。
( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。
( )5、如果群G 的子群H 是循环群,那么G 也是循环群。
( )6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。
( )7、如果环R 的阶2≥,那么R 的单位元01≠。
( )8、若环R 满足左消去律,那么R 必定没有右零因子。
( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。
( )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。
( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。
答案选错或未作选择者,该题无分。
每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( )①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同;④一个元()n a a a ,,,21 的象可以不唯一。
2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ;③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。
近世代数10套试题

《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。
2. ()满足左、右消去律的有单位元的半群是群。
3. ()存在一个4阶的非交换群。
4. ()素数阶的有限群G的任一子群都是G的不变子群。
5. ()无零因子环的特征不可能是2001。
6. ()无零因子环的同态象无零因子。
7. ()模97的剩余类环Z97是域。
8. ()在一个环中,若左消去律成立,则消去律成立。
9. ()域是唯一分解整环。
10. ()整除关系是整环R的元素间的一个等价关系。
一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。
2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。
3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。
4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。
5. 环Z6的全部零因子是。
6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。
(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。
3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。
四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明题1、设G 是群,a ∈G ,令C G (a )= {x |x ∈G ,xa = ax },证明:C G (a )≤G2、设G ~ G ,H ≤G ,H = {x | x ∈G ,f (x )∈ H }。
证明:H /Kerf ≌H .3、证明:模m 的剩余类环Zm 的每一个理想都是主理想。
4、设R = ⎪⎪⎭⎫ ⎝⎛c o b a ,a ,b ,c ∈Z ,I = ⎪⎪⎭⎫ ⎝⎛o o x o x ∈Z 。
(1)验证R 是矩阵环Z 2×2的一个子环。
(2)证明I 是R 的一个理想。
5、设G 是群,u 是G 的一个固定元,定义“o ”:aob = a u 2 b (a ,b ∈G ),证明 (G ,o )构成一个群.6、设R 为主理想整环,I 是R 的一个理想,证明R /I 是域⇔I 是由R 的一个素元生成的主理想.7、证明:模m 的剩余类环Zm 的每个子环都是理想.8、设G 是群,H ≤G 。
令N G (H ) = {x | x ∈G ,xH = Hx }.C G (H )= { x | x ∈G ,∀h ∈H ,hx = xh }.证明:(1)N G (H )≤G (2)C G (H )△N G (H )9、证明数域F = {a +b 7|a ,b ∈Q}的自同构群是一个2阶循环群.10、设R 是主理想环,I = (a )是R 的极大理想,ε是R 的单位,证明:εa 是R 的一个素元.11、设G 与G 是两个群,G ~ G ,K = Kerf ,H ≤G ,令H = {x |x ∈G ,f (x ) ∈H },证明:H ≤G 且H /K ≌H . 12、在多项式环Z [x ]中,证明:(1)(3,x )= {3a 0+a 1x +…+a n x n |a i ∈Z }.(2)Z [x ]/(3,x )含3个元素.13、设H 是群G 的子群,令N G (H )={x |xG , xH =Hx },证明N G (H)是G 的子群. 14、在整数环Z 中, a, bZ,证明(a, b )是Z 的极大理想的充要条件是a , b 的最大公因数是一个素数。
ff15、设R =⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z c b a c b a ,,0, I =⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛Z x x 0020. (1) 验证R 对矩阵的加法和乘法构成环。
(2) 证明I 是R 的一个理想。
16、设G 是群,令 C ={x |x G, y G , xy =yx },证明C 是G 的正规子群。
17、在整数环Z 中, p , q 是不同的素数,证明 (p)⋂(q)=(pq ), (p ,q )=Z 。
18、若Q 是有理数域,证明(x )是Q [x ]的极大理想。
19、设G =(a )是一无限循环群,证明G 的生成元只有两个。
20、设G 是交换群,证明G 中一切有限阶元素组成的集合T 是G 的一个子群,且T G除单位元之外不含有限阶元素。
21、设⎭⎬⎫⎩⎨⎧=∈=是质数p p n Z n m n m R .1),(,,证明(R ,+,)是整环(+,是数的加法与乘法). 22、取定群G 的元u ,在G 中定义新的“o ” :a o b =1-∀∈证明(G,o )是群.23、设A 是实数域R 上一切三阶方阵关于方阵的加法、乘法作成的环。
证明⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎪⎭⎫ ⎝⎛=R c b a o o c o o b o o a N 111111,,是A 的一个左理想。
24、证明一个主理想环I 的每一非零极大理想都是一个素元所生成的。
25、证明循环群的子群也是循环群。
26、证明(3,x )是Z[x ]的一个极大理想。
27、I 是一个整环,a , b ∈I ,(a ),(b ),是两个主理想,证明(a )=(b )的充要条件是a 与b 相伴。
28、设p 是一个素数,证明2p 阶群G 中一定有一个p 阶子群N 。
29、若G 是一个群,e 是G 的单位元,G 中任何元都是方程e x =2的解,证明G 是一个交换群。
30、若G 是一个循环群,N 是G 的一个子群,证明G N 也是一个循环群.31、证明环R 的两个理想的交集仍是R 的一个理想。
32、设I 是一个主理想环,a, b ∈I , d 是a 是与b 的一个最大公因子,证明(a , b )=(d )。
33、设G 是一个43阶的有限群,证明G 的子群只有单位元群及G 本身。
34、在整数环Z 中,证明Z ∕(p )是域⇔p 为质数(素数)。
35、在多项式环Z [X ]中,证明(5,X )不是主理想。
36、证明群G 为交换群)(:1G x x x f ∈⇔-α为G 到G 的一个同构映射。
37、设R 是一有单位元的交换环,且R 只有平凡理想,证明R 是域。
38、证明阶是素数的群一定是循环群。
39、证明在高斯整数环Z [i ]={a +bi a ,b ∈Z , i 2=-1}中,3是一个素元。
40、设Z 是整数环, x 是Z 上的未定元, 证明Z [x ]的生成理想。
(3,x )={Z n Z a x a x a a i n ∈≤∈+++0,|310Λ},并且剩余类环Z x x [](,)3={[0],[1],[2]}。
41、 证明(5,x)不是Z[x]的主理想。
42、设G 是一个1000阶的交换群,a 是G 的一个100阶元,证明 10Z a G≅><。
43、证明整数环Z 到自身的所有同态映射为零同态和恒等同态。
44、设22F 是有理数域上的二阶方阵环,证明22F 只有零理想和单位理想,但22F 不是一个除环。
45、设G 是群,f :G →G ,a αa 2,(G a ∈)证明f 是群G 的自同态⇔G 是交换群。
46、设G ={(a, b )|a , b ∈|R ,0≠a },在G 上定义“ο”:(a , b )),(),(b ad ac d c +=ο 证明(G ,ο)构成一个群。
47、设G 是有限交换群,f :G →G,f(g)=g k (∀g ∈G )证明f ∈Aut(G)⇔(k,|G|)=1。
48、设G 是100阶的有限交换群,f: G →G, f(g)=g 49(∀g ∈G),证明f ∈Aut(G)。
49、设A ≤G,B ≤G 如果存在a, b ∈G,使得Aa=Bb ,则A=B 。
50、设G 是交换群,m 是固定的整数,令H ={a|a ∈G, a m =e },证明H ≤G 。
51、设H ≤G,令C G (H)={g|g ∈G,∀h ∈H,gh=hg },证明C G (H)≤G 。
52、设G 是非空有限集合,“ο”是G 的一个二元运算,“ο”适合结合律及左、右消去律,证明:(G,ο)构成一个群,当G 是无限集时呢?53、设G 是2000阶的交换群,H ≤G,|H|=200,证明:H G 是一个循环群。
54、证明:无限循环群的生成元的个数只有两个。
反之,一个循环群G 的生成元只有两个,则G 是否一定同构于Z ?55、设G 是一个循环群,|G|≠3,4,G 的生成元的个数为2,证明G ≅Z 。
56、设G 是有限群,H ≤G, a ∈G,证明存在最小正整数m ,使a m ∈H,且m|a 。
57、设G 是奇阶群,则对任意g ∈G, 存在唯一元x ∈G, 使g=x 2。
58、证明:整数加群Z 与偶数加群2Z 同构。
59、设H ≤G, g 是G 的一个固定元素,gHg -1={ghg -1|h ∈H }(1)证明: gHg -1≤G 。
(2)证明: H 1-≅gHg 。
60、设G={}⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛=∈+Q b a a b b a H Q b a b a ,|2,,|2,G 对复数的加法构成群,H 对矩阵的加法也构成群,证明:G ≅H 。
61、设H 是群G 的非空子集, 且H 中元的阶都有限,证明:H ≤G H H ⊆⇔2。
62、设N <G, |G/N|=10, g ∈G, |g|=12, 证明: g 2∈N 。
63、设G 是群,a, b ∈G, ab=ba,|a|=m, |b|=n, <a>∩<b>={e }.证明:|ab|=[m, n] ([m, n]是m, n 的最小公倍数)。
64、设σ是一个n 次置换,集合X ={1, 2, 3, …, n },在X 中,规定关系“~”为k~l Z r ∈∃⇔, 使σr (k)=l.证明:“~”是X 上的一个等价关系。
65、设K ={(1), (12)(34), (13)(24), (14)(23)}证明:K ≤S 4。
66、设G 是群,H ≤G, 规定关系“~”a ~b G b a H ab ∈∀∈⇔-,,1 证明:~是G 的一个等价关系,且a 所在的等价类[a ]=Ha 。
67、证明:15阶群至多含有一个5阶子群。
68、设H ≤G, 若H 的任意两个左陪集的乘积仍是一个左陪集,证明H <G 。
69、设N <G, [G:N]=2004, 证明:对G x ∈∀, 恒有N x ∈2004。
70、设N <G, [G:N]=4,证明:存在M ≤G,且[G:M ]=2。
71、设H ,N <G, {}3||,2||,,,==∈∈=⋂b a N b H a e N H 证明:|ab |=6。
72、设H ≤G, 证明:H <G ,,G b a ∈∀⇔如果由H ba H ab ∈⇒∈。
73、设k|m, 证明:[]k m Z k Z ≅。
74、群G 的非平凡子群N 称为G 的极小子群,如果不存在子群B 使得{}N B e <<, 证明:整数加群Z 没有极小子群。
75、如果)(G C G是循环群,证明:G 是交换群(其中C(G)是群G 的中心)。
76、证明:6阶交换群是循环群。
举例说明6阶群不一定是循环群。
77、证明:在一个有单位元的环R 中,全体可逆元组成的集合对R 的乘法构成一个群。
78、设R 为环,如果每个元素R a ∈都满足a 2=a ,证明R 为交换环。
79、环R 中元素a 称作幂零的,是指存在正整数m ,使得a m =0,证明:当R 为交换环时,两个幂零元素之和,两个幂零元素之积都为幂零元素。
80、设R 和_R 都是含单位元的环,R R 01≠, f 是R 到_R 的满同态,证明:(1)f(1R )=R 1;(2)如果a 是R 的单位,则f (a )是_R 的单位。
81、设⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫ ⎝⎛=R y x y x A ,|00证明:A 是关于矩阵的加法和乘法构成一个无单位元的环。
82、证明:一个具有素数个元素的环是交换环。
83、设R 是一个有单位元1R 的无零因子环,证明:如果ab=1R 则ba=1R84、设R 是交换环,X 是R 的非空子集,令{}X x rx R r r X Ann ∈∀=∈=,0,|)( 证明:Ann(X)是R 的理想。