双曲线焦点三角形面积公式在高考中的妙用
高中数学破题致胜方法双曲线焦点三角形的面积

今天我们研究双曲线焦点三角形的面积。
12PF F ∆由两焦点和双曲线上一点形成,我们把这种三角形叫焦点三角形. 求焦点三角形的面积时,通常会利用双曲线的定义、正弦定理、余弦定理等,焦点三角形的面积主要有两种求法:1212121211sin =2c |y |22PF F PF F P S r r F PF S =∠和。
例:已知双曲线221916x y -=的左、右焦点分别为12F F 、,若双曲线上一点P 使 1290F PF ∠︒=,则1F PF 的面积是( ) A.12 B.16 C.24 D.32解:根据双曲线的定义有:126PF PF =- 两边平方得:221212236PF PF PF PF +-=由勾股定理有:222121212||10032PF PF F F PF PF ∴+==,=1212S PF PF ∴==16所以本题选B 。
整理: 焦点三角形的面积求法:2211||,||r PF r PF ==,12F PF θ∠=;12121sin 2PF F S r r θ=;121=2||2PF F P S c y ;注意:讨论焦点三角形的相关性质时,要结合双曲线的定义,简化运算。
再看一个例题,加深印象:例:已知12F F ,为双曲线221C x y -=:的左、右焦点,P 点在C 上,1260F PF ∠︒=,则P 到x 轴的距离为( )解:不妨设 设12(,),,,P x y PF m PF n == 由双曲线的定义有:12 2.PF PF mn -=-= 在△21PF F 中,由余弦定理得: 2222(22)-2cos 608(-).4m n mn m n mn mn =+︒=+=从而由三角形面积公式有:11sin 602214222y mn y y ⨯︒⨯⨯∴=,=总结:1.双曲线焦点三角形是一个很重要的三角形,相关的知识有双曲线的定义、余弦定理等.2.掌握双曲线焦点三角形的面积公式,根据已知条件合理选择面积公式计算.练习:1.已知双曲线的焦点在x 轴上,离心率为2,12,F F 为左右焦点, P 是双曲线上一点,且1260,F PF ∠=12PF F S ∆=.2.设P 为双曲线22112y x -= 上的一点,12,F F 是该双曲线的两个焦点.若 12||:||3:2PF PF =,则12PF F 的面积为( )A.B.12C. D.24已知点P 是双曲线22145x y -= 上一点,若PF 1⊥PF 2,则△PF 1F 2的面积为( ) A.54 B.52 C.5 D.10答案:1. 【解析】设双曲线方程为()222210,0x y a b a b -=>>2,2e c a =∴= 所以,2224,16,12a c b ===,双曲线标准方程为221412x y -=.。
双曲线过焦点的三角形面积

双曲线过焦点的三角形面积双曲线是数学中比较常见的一种曲线形态,其过焦点的三角形面积也是比较重要的一个概念。
本文将详细介绍双曲线过焦点的三角形面积相关知识。
第一部分:双曲线的定义与关键特征为了更好地理解双曲线过焦点的三角形面积,我们首先需要了解什么是双曲线以及其关键特征。
双曲线是一种平面曲线,其数学定义为:平面上一点到两个定点的距离之差等于常数的轨迹。
双曲线还有许多关键特征,包括:1.有两个焦点,距离为2a;2.没有对称轴;3.曲线无限接近两条渐近线。
第二部分:双曲线过焦点的三角形面积公式双曲线过焦点的三角形面积是指以双曲线两个焦点为两个端点,过曲线上任意一点的直线与两条坐标轴所构成三角形的面积。
该面积与该点的位置相关,但是其计算公式是固定的,即:S = (1/2)bh = (1/2)absinθ其中,S表示三角形的面积,a为双曲线的半轴长,b为过焦点的直线与x轴的夹角θ,以及h为三角形的高。
第三部分:双曲线过焦点的三角形面积变化规律在实际运用中,我们常常需要研究双曲线过焦点的三角形面积的变化规律。
下面将重点介绍三角形面积的变化规律。
1.当b=0时,即直线过第一个焦点时,三角形的面积最小,为0。
2.随着直线离第一个焦点越远,三角形面积增大,达到最大值,并呈现出对称性,即离第二个焦点的距离与离第一个焦点的距离相等时,三角形面积最大。
3.当直线离第一个焦点过远时,三角形面积逐渐减小,直至趋于0。
第四部分:应用实例双曲线过焦点的三角形面积在数学和物理学等领域有广泛的应用,下面举一个具体的实例。
假设某国炮兵营地位于一座剖面为双曲线形山丘的中心,炮兵营地下方直线和x轴夹角为θ。
求最远射程。
分析:根据炮弹飞行的物理原理,可知,最远射程对应的炮弹角度应该是45度。
因此,问题的关键在于求出炮弹落点与炮兵营地之间的距离。
根据双曲线过焦点的三角形面积公式,可知三角形面积为:S = (1/2)absinθ将θ代入上式可得:S = (1/2)abtanh(b/a)根据对称性可知,炮弹落在剖面中点处的垂直距离应该是最大的,此时三角形的面积也是最大的。
双曲线焦点三角形面积公式在高考中的妙用

双曲线焦点三角形面积公式的应用广西南宁外国语学校 隆光诚(邮政编码530007)定理 在双曲线12222=-by a x (a >0,b >0)中,焦点分别为1F 、2F ,点P 是双曲线上任意一点,θ=∠21PF F ,则2cot221θ⋅=∆b S PF F . 证明:记2211||,||r PF r PF ==,由双曲线的第一定义得在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =-+-θ即.4)cos 1(242212c r r a =-+θ由任意三角形的面积公式得: 2cot 2sin 22cos 2sin 2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=-⋅==∆b b b r r S PF F . 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,公式仍然成立. 典题妙解例1 设1F 和2F 为双曲线1422=-y x 的两个焦点,P 在双曲线上,且满足︒=∠9021PF F ,则△21PF F 的面积是( )A. 1B.25 C. 2 D. 5 解:,145cot 2cot 221=︒=⋅=∆θb S PF F ∴选A.例2 (03天津)已知1F 、2F 为双曲线1422=-y x 的两个焦点,P 在双曲线上,若△21PF F 的面积是1,则21PF PF ⋅的值是___________.解: ,12cot 2cot 221==⋅=∆θθb S PF F ︒=∴452θ,即.90︒=θ ∴21PF PF ⊥,从而.021=⋅PF例3 已知1F 、2F 为双曲线的两个焦点,点P 在双曲线上,且︒=∠6021PF F ,△21PF F 的面积是312,离心率为2,求双曲线的标准方程.解:由31230cot 2cot 2221=︒=⋅=∆b b S PF F θ得:.122=b 又,2122=+=ab e .41212=+∴a从而.42=a ∴所求的双曲线的标准方程为112422=-y x ,或112422=-x y . 金指点睛1. 已知双曲线1422=-y x 的两个焦点为1F 、2F ,点P 在双曲线上,且△21PF F 的面积为3,则 21PF PF ∙的值为( )A. 2B. 3C. 2-D. 3-2.(05北京6)已知双曲线的两个焦点为)0,5(),0,5(21F F -,P 是此双曲线上的一点,且2||||,2121=⋅⊥PF PF PF PF ,则该双曲线的方程是( ) A. 13222=-y x B. 12322=-y x C. 1422=-y x D. 1422=-y x 3.(05全国Ⅲ)已知双曲线1222=-y x 的焦点为1F 、2F ,点M 在双曲线上,且021=⋅MF MF ,则点M 到x 轴的距离为( ) A. 34 B. 35 C. 332 D. 3 4. 双曲线116922=-y x 两焦点为F 1,F 2,点P 在双曲线上,直线PF 1,PF 2倾斜角之差为,3π则 △F 1PF 2面积为( )A .163B .323C .32D .42 5. 双曲线14491622=-y x ,1F 、2F 为双曲线的左、右焦点,点P 在双曲线上,且32||||21=⋅PF PF ,求21PF F ∠的大小. 6. 已知双曲线12222=-by a x (a >0,b >0)的焦点为1F 、2F ,P 为双曲线上一点,且021=⋅PF PF ,ab PF PF 4||||21=⋅,求双曲线的离心率.参考答案1. 解:32cot 2cot 221===∆θθb S PF F ,∴︒=︒=60,302θθ.又3sin ||||212121=⋅⋅=∆θPF PF S PF F ,∴4||||21=⋅PF PF . ∴21PF PF ∙=2214cos ||||21=⨯=⋅⋅θPF PF . 故答案选A.2. 解: ,21PF PF ⊥∴1221||||212121=⨯=⋅=∆PF PF S PF F . 又145cot 2cot22221==︒==∆b b b S PF F θ,∴1=b ,而5=c ,∴2=a . 故答案选C.3. 解: 021=⋅MF ,∴21MF MF ⊥. ∴245cot 22cot 221=︒==∆θb S MF F .点M 到x 轴的距离为h ,则23||212121===⋅⋅=∆h ch h F F S MF F ,∴332=h . 故答案选C.4. 解:设θ=∠21PF F ,则3πθ=. ∴3166cot 162cot 221===∆πθb S PF F .故答案选A.5. 解:由14491622=-y x 得116922=-y x . 设θ=∠21PF F (︒≤︒1800 θ). ∴2cot 162cot221θθ==∆b S PF F . 又θθsin 16sin ||||212121=⋅⋅=∆PF PF S PF F . ∴2cot sin θθ=,即2sin 2cos 2cos 2sin 2θθθθ=. 整理得:212sin 2=θ,∴222sin =θ,︒=452θ,︒=90θ. 故21PF F ∠的大小为︒90.6. 解:设θ=∠21PF F , 021=⋅PF PF ∴︒=90θ. ∴22245cot 2cot 21b b b S PF F =︒==∆θ. 又 ab ab PF PF S PF F 2421||||212121=⨯=⋅=∆, ∴ab b 22=. 得2=a b . ∴离心率5)(12=+=abe .。
椭圆和双曲线的焦点三角形面积公式——解决客观题的法宝

椭圆和双曲线的焦点三角形面积公式——解决客观题的法宝董晖
【摘要】利用椭圆和双曲线焦点三角形面积公式可以大大简化解决圆锥曲线相关问题的步骤,节省时间,是解决此类客观题的法宝公式.
【期刊名称】《数学教学通讯:中教版》
【年(卷),期】2018(000)006
【总页数】2页(P79-80)
【关键词】椭圆;双曲线;焦点三角形面积公式;客观题
【作者】董晖
【作者单位】甘肃省武威第六中学 733000
【正文语种】中文
全国卷高考数学的客观题有16道,共90分,占总分的60箛.小题小解,解决客观题能否快而准,是考试成败的关键,其中椭圆和双曲线焦点三角形面积公式可以大大简化解决圆锥曲线相关试题的步骤,节省时间,是解决小题的法宝公式.
定理:已知椭圆方程为b>0),它的两焦点分别为F1,F2,设在焦点三角形
PF1F2中,∠F1PF2=θ,则S△F1PF2=
图1
由椭圆的第一定义得s+t=2a,所以(s+t)2=4a2.
在△F1PF2中,由余弦定理得:s2+t2-2stcosθ=(2c)2.。
有关圆锥曲线的焦点三角形面积公式的证明及其应用

圆锥曲线的焦点三角形面积问题比较常见,这类题目常以选择题、填空题、解答题的形式出现.圆锥曲线主要包括抛物线、椭圆、双曲线,每一种曲线的焦点三角形面积公式也有所不同,其适用情形和应用方法均不相同.在本文中,笔者对圆锥曲线的焦点三角形面积公式及其应用技巧进行了归纳总结,希望对读者有所帮助.1.椭圆的焦点三角形面积公式:S ΔPF 1F 2=b 2tan θ2若椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∠F 1PF 2=θ,则三角形ΔF 1PF 2的面积为:S ΔPF 1F 2=b 2tan θ2.对该公式进行证明的过程如下:如图1,由椭圆的定义知||F 1F 2=2c ,||PF 1+||PF 2=2a ,图1可得||PF 12+2||PF 1||PF 2+||PF 22=4a 2,①由余弦定理可得||PF 12+||PF 22-2||PF 1||PF 2cos θ=4c 2,②①-②可得:2||PF 1||PF 2(1+cos θ)=4b 2,所以||PF 1||PF 2=2b 21+cos θ,则S ΔPF 1F2=12|PF 1||PF 2|sin θ=12×2b 21+cos θsin θ,=b 22sin θ2cos 2θ22cos 2θ2=b 2tan θ2.若已知椭圆的标准方程、短轴长、两焦点弦的夹角,则可运用椭圆的焦点三角形面积公式S ΔPF 1F 2=b 2tan θ2来求椭圆的焦点三角形面积.例1.(2021年数学高考全国甲卷理科)已知F 1,F 2是椭圆C :x 216+y 24=1的两个焦点,P ,Q 为椭圆C 上关于坐标原点对称的两点,且||PQ =||F 1F 2,则四边形PF 1QF 2的面积为________.解析:若采用常规方法解答本题,需根据椭圆的对称性、定义以及矩形的性质来建立关于||PF 1、||PF 2的方程,通过解方程求得四边形PF 1QF 2的面积.而仔细分析题意可发现四边形PF 1QF 2是一个矩形,且该矩形由两个焦点三角形构成,可利用椭圆的焦点三角形面积公式求解.解:S 四边形PF 1QF 2=2S ΔPF 1F 2=b 2tan θ2=2×4×tan π2=8.利用椭圆的焦点三角形面积公式,能有效地简化解题的过程,有助于我们快速求得问题的答案.例2.已知F 1,F 2是椭圆C:x 2a 2+y 2b2=1()a >b >0的两个焦点,P 为曲线C 上一点,O 为平面直角坐标系的原点.若PF 1⊥PF 2,且ΔF 1PF 2的面积等于16,求b的值.解:由PF 1⊥PF 2可得∠F 1PF 2=π2,因为ΔF 1PF 2的面积等于16,所以S ΔPF 1F 2=b 2tan θ2=b 2tan π2=16,解得b =4.有关圆锥曲线的焦点三角形面积公式的思路探寻48的面积,2.则ΔF 1PF 如|||PF 1-|得:|||PF 2cos θ即|由②所以则S Δ夹角、例3.双曲线C 是().A.72且)设双曲F 1,F 2,离△PF 1F 2=1.本题.运用该=p 22sin θ,且与抛S ΔAOB =图3下转76页)思路探寻49考点剖析abroad.解析:本句用了“S+Vt+动名词”结构,能用于此结构的及物动词或词组有mind ,enjoy ,finish ,advise ,consider ,practice ,admit ,imagine ,permit ,insist on ,get down to ,look forward to ,put off ,give up 等。
高考数学中,有心二次曲线的焦点三角形面积公式怎么用?

高考数学中,有心二次曲线的焦点三角形面积公式怎么用?
答:
有心二次曲线的焦点三角形是高考的常考内容之一,它综合了圆锥曲线的定义、余弦定理、三角形的面积公式等知识点,往往计算量相对较大。
但是,如果能应用焦点三角形的面积公式,那么许多题都可以大大减少运算量,同时提升正确率。
一·椭圆的焦点三角形
二·双曲线的焦点三角形
焦点三角形问题实际上是有心二次曲线定义的应用,通过上述两道高考真题不难发现,掌握焦点三角形面积公式的正确打开方式,某些题堪称秒杀。
另外,有些题目看似与焦点三角形没有关系,实际上经过转化便可使用,因此,注意体会。
以上。
专题12 焦点三角形的面积公式(教师版)-2024年高考二级结论速解技巧

b2 θ 求解焦点三角形面积适用选择填空题,解答题需先证后用.
tan
2
例题
3.(2023·全国·高三专题练习)设双曲线 C
: x2 a2
−
y2 b2
= 1(a>0,b>0)的左、右焦点分别为 F1 , F2
离心率为 5 . P 是 C 上一点,且 F1P ⊥ F2P .若 ∆PF1F2 的面积为 4,则 a =(
1 A. 3
B. 2 3
C.
1 2
D. 2 2
【答案】A
【详解】设双曲线右焦点为 F2 ,连接 AF2 , BF2 ,由图形的对称性知 AFBF2 为矩形,则有 | AF | − AF2 = 2a ,
| AF | ⋅ AF2 = 3a2 ,
= ∴| AF |
3= a, AF2
a ,在 Rt AFF2 中, kAF
b2 tan θ = ⇒ 4 2
b2 tan π ⇒= b2 4
4 ,又离心率 c = a
5 ,结合 c=2
a2 + b2 ,可求出 a = 1.
【反思】焦点三角形问题,常规方法往往涉及到圆锥曲线的定义,利用定义,余弦定理求解,特别提醒,
在圆锥曲线中,定义是解题的重要工具.另外作为二级结论,S∆PF1F2
× sin
60°
=4 3 3
.
故选:C
4.(2022·高二课时练习)已知点 P 在椭圆 x2 16
+
y2 4
= 1上,F1 与 F2 分别为左右焦点,若 ∠F1PF2
= 2π ,则 3
△F1PF2
的面积为( )
A. 4 3
B. 6 3
C.8 3
D.16
高中数学论文双曲线焦点三角形面积公式在高考中的妙用

双曲线焦点三角形面积公式的应用定理 在双曲线12222=-by a x (a >0,b >0)中,焦点分别为1F 、2F ,点P 是双曲线上任意一点,θ=∠21PF F ,则2cot 221θ⋅=∆b S PF F . 证明:记2211||,||r PF r PF ==,由双曲线的第一定义得.4)(,2||222121a r r a r r =-∴=-在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =-+-θ即.4)cos 1(242212c r r a =-+θ .cos 12cos 1)(222221θθ-=--=∴b a c r r 由任意三角形的面积公式得:2cot 2sin 22cos 2sin 2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=-⋅==∆b b b r r S PF F . .2cot 221θ⋅=∴∆b S PF F 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,公式仍然成立. 典题妙解例1 设1F 和2F 为双曲线1422=-y x 的两个焦点,P 在双曲线上,且满足︒=∠9021PF F ,则△21PF F 的面积是( )A. 1B.25 C. 2 D. 5 解:,145cot 2cot 221=︒=⋅=∆θb S PF F ∴选A.例2 (03天津)已知1F 、2F 为双曲线1422=-y x 的两个焦点,P 在双曲线上,若△21PF F 的面积是1,则21PF PF ⋅的值是___________.解: ,12cot 2cot 221==⋅=∆θθb S PF F ︒=∴452θ,即.90︒=θ ∴21PF PF ⊥,从而.021=⋅PF例3 已知1F 、2F 为双曲线的两个焦点,点P 在双曲线上,且︒=∠6021PF F ,△21PF F 的面积是312,离心率为2,求双曲线的标准方程. 解:由31230cot 2cot 2221=︒=⋅=∆b b S PF F θ得:.122=b 又,2122=+=ab e .41212=+∴a从而.42=a ∴所求的双曲线的标准方程为112422=-y x ,或112422=-x y . 金指点睛1. 已知双曲线1422=-y x 的两个焦点为1F 、2F ,点P 在双曲线上,且△21PF F 的面积为3,则 21PF PF ∙的值为( )A. 2B. 3C. 2-D. 3-2.(05北京6)已知双曲线的两个焦点为)0,5(),0,5(21F F -,P 是此双曲线上的一点,且2||||,2121=⋅⊥PF PF PF PF ,则该双曲线的方程是( ) A. 13222=-y x B. 12322=-y x C. 1422=-y x D. 1422=-y x 3.(05全国Ⅲ)已知双曲线1222=-y x 的焦点为1F 、2F ,点M 在双曲线上,且021=⋅MF ,则点M 到x 轴的距离为( ) A.34 B. 35 C. 332 D. 34. 双曲线116922=-y x 两焦点为F 1,F 2,点P 在双曲线上,直线PF 1,PF 2倾斜角之差为,3π则 △F 1PF 2面积为( )A .163B .323C .32D .42 5. 双曲线14491622=-y x ,1F 、2F 为双曲线的左、右焦点,点P 在双曲线上,且32||||21=⋅PF PF ,求21PF F ∠的大小.6. 已知双曲线12222=-by a x (a >0,b >0)的焦点为1F 、2F ,P 为双曲线上一点,且021=⋅PF PF ,ab PF PF 4||||21=⋅,求双曲线的离心率.参考答案1. 解:32cot 2cot 221===∆θθb S PF F ,∴︒=︒=60,302θθ. 又3sin ||||212121=⋅⋅=∆θPF PF S PF F ,∴4||||21=⋅PF PF . ∴21PF PF ∙=2214cos ||||21=⨯=⋅⋅θPF PF . 故答案选A. 2. 解: ,21PF PF ⊥∴1221||||212121=⨯=⋅=∆PF PF S PF F . 又145cot 2cot22221==︒==∆b b b S PF F θ,∴1=b ,而5=c ,∴2=a .故答案选C. 3. 解: 021=⋅MF ,∴21MF MF ⊥. ∴245cot 22cot 221=︒==∆θb S MF F .点M 到x 轴的距离为h ,则23||212121===⋅⋅=∆h ch h F F S MF F ,∴332=h . 故答案选C.4. 解:设θ=∠21PF F ,则3πθ=. ∴3166cot 162cot 221===∆πθb S PF F .故答案选A. 5. 解:由14491622=-y x 得116922=-y x . 设θ=∠21PF F (︒≤︒1800 θ). ∴2cot 162cot221θθ==∆b S PF F . 又θθsin 16sin ||||212121=⋅⋅=∆PF PF S PF F .∴2cot sin θθ=,即2sin 2cos 2cos 2sin 2θθθθ=. 整理得:212sin 2=θ,∴222sin =θ,︒=452θ,︒=90θ. 故21PF F ∠的大小为︒90.6. 解:设θ=∠21PF F , 021=⋅PF PF ∴︒=90θ. ∴22245cot 2cot21b b b S PF F =︒==∆θ. 又 ab ab PF PF S PF F 2421||||212121=⨯=⋅=∆, ∴ab b 22=. 得2=ab . ∴离心率5)(12=+=ab e .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线焦点三角形面积公式的应用
广西南宁外国语学校 隆光诚(邮政编码530007)
定理 在双曲线122
22=-b
y a x (a >0,b >0)中,焦点分别为1F 、2F ,点P 是双曲线上任意一点,θ=∠21PF F ,则2cot
221θ⋅=∆b S PF F . 证明:记2211||,||r PF r PF ==,由双曲线的第一定义得
在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ
配方得:.4cos 22)(22121221c r r r r r r =-+-θ
即.4)cos 1(242212c r r a =-+θ
由任意三角形的面积公式得: 2cot 2sin 22cos 2sin 2cos 1sin sin 2122
222121θθθ
θθθθ⋅=⋅=-⋅==∆b b b r r S PF F . 同理可证,在双曲线122
22=-b
x a y (a >0,b >0)中,公式仍然成立. 典题妙解
例1 设1F 和2F 为双曲线14
22
=-y x 的两个焦点,P 在双曲线上,且满足︒=∠9021PF F ,则△21PF F 的面积是( )
A. 1
B.
25 C. 2 D. 5 解:,145cot 2cot 221=︒=⋅=∆θb S PF F ∴选A.
例2 (03天津)已知1F 、2F 为双曲线14
22
=-y x 的两个焦点,P 在双曲线上,若△21PF F 的面积是1,则21PF PF ⋅的值是___________.
解: ,12cot 2cot 221==⋅=∆θ
θb S PF F ︒=∴452θ
,即.90︒=θ ∴21PF PF ⊥,从而.021=⋅PF
例3 已知1F 、2F 为双曲线的两个焦点,点P 在双曲线上,且︒=∠6021PF F ,△21PF F 的面积是312,
离心率为2,求双曲线的标准方程.
解:由31230cot 2cot 2221=︒=⋅=∆b b S PF F θ得:.122=b 又,2122
=+=a
b e .41212=+∴a
从而.42=a ∴所求的双曲线的标准方程为112422=-y x ,或112
42
2=-x y . 金指点睛
1. 已知双曲线14
22
=-y x 的两个焦点为1F 、2F ,点P 在双曲线上,且△21PF F 的面积为3,则 21PF PF •的值为( )
A. 2
B. 3
C. 2-
D. 3-
2.(05北京6)已知双曲线的两个焦点为)0,5(),0,5(21F F -,P 是此双曲线上的一点,且2||||,2121=⋅⊥PF PF PF PF ,则该双曲线的方程是( ) A. 13222=-y x B. 12322=-y x C. 1422=-y x D. 14
2
2=-y x 3.(05全国Ⅲ)已知双曲线122
2
=-y x 的焦点为1F 、2F ,点M 在双曲线上,且021=⋅MF ,则点M 到x 轴的距离为( ) A. 34 B. 3
5 C. 332 D. 3 4. 双曲线116922=-y x 两焦点为F 1,F 2,点P 在双曲线上,直线PF 1,PF 2倾斜角之差为,3
π则 △F 1PF 2面积为( )
A .163
B .323
C .32
D .42 5. 双曲线14491622=-y x ,1F 、2F 为双曲线的左、右焦点,点P 在双曲线上,且32||||21
=⋅PF PF ,求2
1PF F ∠的大小. 6. 已知双曲线122
22=-b
y a x (a >0,b >0)的焦点为1F 、2F ,P 为双曲线上一点,且021=⋅PF PF ,ab PF PF 4||||21=⋅,求双曲线的离心率.
参考答案
1. 解:32cot 2cot 221===∆θ
θb S PF F ,∴︒=︒=60,302θθ
.
又3sin ||||2
12121=⋅⋅=
∆θPF PF S PF F ,∴4||||21=⋅PF PF . ∴21PF PF •=2214cos ||||21=⨯=⋅⋅θPF PF . 故答案选A.
2. 解:Θ,21PF PF ⊥∴1221||||212121=⨯=⋅=
∆PF PF S PF F . 又145cot 2cot
22221==︒==∆b b b S PF F θ,∴1=b ,而5=c ,∴2=a . 故答案选C.
3. 解:Θ021=⋅MF ,∴21MF MF ⊥. ∴245cot 22cot 221=︒==∆θb S MF F .
点M 到x 轴的距离为h ,则23||212121===⋅⋅=
∆h ch h F F S MF F ,∴332=h . 故答案选C.
4. 解:设θ=∠21PF F ,则3π
θ=. ∴3166cot 162cot 221===∆π
θb S PF F .
故答案选A.
5. 解:由1449162
2=-y x 得11692
2=-y x . 设θ=∠21PF F (︒≤︒1800πθ). ∴2cot 162cot
221θθ==∆b S PF F . 又θθsin 16sin ||||2
12121=⋅⋅=∆PF PF S PF F . ∴2cot sin θθ=,即2
sin 2cos 2cos 2sin 2θ
θθθ=. 整理得:212sin 2=θ
,∴222sin =θ,︒=452θ,︒=90θ. 故21PF F ∠的大小为︒90.
6. 解:设θ=∠2
1PF F ,Θ021=⋅PF PF ∴︒=90θ. ∴22245cot 2
cot 21b b b S PF F =︒==∆θ. 又Θab ab PF PF S PF F 2421||||212121=⨯=⋅=∆, ∴ab b 22=. 得2=a b . ∴离心率5)(12=+=a b
e .。