人教版高中数学必修四试题及答案

合集下载

高中数学必修4试题含答案

高中数学必修4试题含答案

11.设α角属于第二象限,且2cos 2cosαα-=,则2α角属于()A .第一象限B .第二象限C .第三象限D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有()A .①B .②C .③D .④3.02120sin 等于()A .23±B .23C .23-D .214.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于()A 43-B 34-C 43D .345.若α是第四象限的角,则πα-是()A .第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角6.4tan 3cos 2sin 的值()A .小于0B .大于0C .等于0D .不存在二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式:①0<<OM MP ;②0OM MP <<;③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________。

3.若角α与角β的终边关于y 轴对称,则α与β的关系是___________。

4.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是。

5.与02002-终边相同的最小正角是_______________。

三、解答题1.已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos+的值.2.已知2tan =x ,求xx x x sin cos sin cos -+的值。

3.化简:)sin()360cos()810tan()450tan(1)900tan()540sin(00000x x x x x x --⋅--⋅--4.已知)1,2(,cos sin ≠≤=+m m m x x 且,求(1)x x 33cos sin +;(2)x x 44cos sin +的值。

人教版高中数学必修4课后习题答案详细讲解

人教版高中数学必修4课后习题答案详细讲解

练习(第5页》1. 锐角是第一象限你第•象限你不一定是锐角;直角不膩于任何一个象限•不属于任何•个象限的角不一・定丛亢如:饨介迢第二象Wfft.第二绘限角不一定址钝介.说阴认识•说升广、-直角”•“mr和係限角”的区别埒联系.2•三•三• it.说明本題的II的足将终边相同的仰的符',;哦示应川到找他周期件何題匕题||联系实臥把教科筋中的除数360换戍毎个凡期的夭数7.利川了-M余”(这里余数是3)來确定7怡无氐7 k JjiU 也祁見川期•.这样的练习不难.町以II答.3•⑴第一魏探伽(2)第阿糾W伽(3)第二録限角$⑷第三簽限如.说明能作出结定的仰.并判定是第儿feRlfft・用略.4. ⑴305°・挖・第冋象Oh <2) 35鴛・第一象限伽⑶24『30'・第垛限处•说明能住给定范鬧内找出勺指定的角终边相同的角•并判定圧笫儿象瞅也・5. (1) «0|0 1303m 360°. AW引.-496*42\ —136°42‘・ 223。

叭(2) 〃|0= 225°M • 360°. W \、585°. - 225\ 135:说明用集合花示法和符号指定和终边柜同的介的集令•并在给定范田内找;l「j描定的角终边HI同的介. 练习C第9页)1. (1)令. (2)孕⑶攀说明能进行度U加度的换贰2. (!) 15°;<2) 210°€Ci) 54°.说明能进行瓶度9度的换◎・3. (I) {a | o= kK. it^Z}: (Z) ”!a=专十阪点€紂・说明川弧废;《丧示终边分别轴和y轴I:的"啲集舍.4. (I) cos 0. 75°・cos (L 75; (Z) tan L 2°"<^nni L 2$说明体会1诃数値不同的位的角对应的三角函数値町能不同•并进-步认识两种尬位制.注盘先用计算器求Jh函数血之前.耍先对il•算器中和的模式进行设證.如求cox«.75^i%•變将仰模人设比为"EG(用处制);求CON O.75之|條賞将巾校成设汽为RAIN丸懐制).r w5盲机说明通过分别込川佝加制和软度制下的孤氏公儿体会引人毎度制的必茨性・6. 如度数为1.2.说明进•少认沢弧直数的绝对備公式.匀題I. 1 (第9贡》A俎1. (I)95\第二彖服(2) «0\第一彖服(3) 236W.第三象Rh ⑷:iOO\第四象限.说明能任给定范附内找出习指定的角终边相同的角,并判定是第儿彖限角.2. S I cr A • |&)°・ itez}.说明将终边相I同的仰用集介表斥.3. ( I) {fl\p 60° + k - 360'• k^Z}.— 30O\ 60°;⑵ SI" -75+. 360°. «eZh 一75°. 285•:(3) SI” 一82十3()+・36(汽JtGZ). — 1(M'3()\ 255°30气⑷{p\p 475+• 3$(几翳幼-215% 115^⑸ }屮=90°+£・ 360°. &WZ). - 270°, 90°;<«)270° + 女• :<6(代JteZ}. - 90\ 270%(7){P\P IKO Q I - 360°, XZ}・ 1«0\ 18(f|(«)出|陰*任(几圧2}・-360°. 0°.说明川集伶衣〃湫和符号诸护孑出与能定角终边郴何的角的集合•并住绻定范IR内找出号指崔的角终边柏胡的角.5. (1> (:.说明14 为 <^< aV9O°・所以0°V 2a< 180\(2> I).说明冈为◎ • 360°0<90°十& • 360\ Jt€Z.所以k• 180'V号<45°十点• 1«()\ k"、半k为奇数时•;址第垛限伽臥为偶数时.号是第一象限角.6. 不等『1知址这是因为等于半轻长的弧所对的阀心角为】孤度•而零干半径氏的弦所对的弧比半径长.说明了解瓠度的槪念.说明能逬行麼吋加度的换算.& (1)— 210°; (2)600°;(3) 80.21\ (4) 3& 2°.说明能进行加度勺度的换算.9. 61°.说明町以先运用麵度制下的如氏公式求岀関心介的弧度数•卩術弧度换算为度・也町以K接运川血度制下的就尺公式.10. 11 CDL说明町以先将度换笫为匏度•再运川弧度制下的如氏公式•也可以M接运川角皮制卜的颅辰公式.1. <1)〈略)<2)设m子的阀心巾为0•山-7—52--------- =0.618.討(2兀一4〉0=0・ 618(2 穴一0).说明水題址一个数学实嘶动.Mil对“芙观的阳子"并没右给出标准.II的址止学生先占体验.然麻评运川所学知讲发现.大寥数血子之所以“芙观”是冈为射都満足舟Q・GI8(黄金分割比)的逍理.2. ⑴时针转了120\等于一竽弧喪)分针转了一14彳0°・筹于一&瓠度.(2)设经过八nin分针就9时针改合.川为两针31合的次数.因为分针旋转的如速朋为时什施转的如速度为矗5=盏(rad/min>-(計—希)用计算机或计算需作出函效戶誥的图象(如下页图)或汲格.从屮吋淸楚地介列时什'j分针每次1R 合所尙的吋间.因为HHI&E 转一夭所需的时何为24X60=1 440(min).所以等曲440. 川W22・故时fl 七分针一天内只会磴合22次.说明 通过时什与分针的旋转问題进…步地认识弧度的概念•并将何題引向深入•用南数思想进行 分析.在研究时针与分针一犬的亟合次数时.可利用计算器或计算机•从模拟的图形、衣格中的数 据.换数的解析式或图象等角度.不堆得到正确的结论.3・ 864\ 警• 15l ・27rna说明 通过W 轮的转动何题进一步地认识弧度的概念和弧长公式•当大垢轮转动•周时•小片轮转 动的加处器 X 360。

人教a版数学必修四测试题答案及解析

人教a版数学必修四测试题答案及解析

人教a版数学必修四测试题答案及解析一、选择题1. 若函数f(x)=x^2-6x+c的图象与x轴有两个交点,则c的取值范围是()A. c > 9B. c < 9C. c > 0D. c < 0答案:B解析:根据二次函数的图象与x轴交点个数与判别式的关系,当Δ=b^2-4ac > 0时,图象与x轴有两个交点。

将函数f(x)=x^2-6x+c 的系数代入Δ=36-4c,要使Δ > 0,需满足c < 9。

2. 已知等比数列{a_n}的公比q=2,且a_1=1,则a_5的值为()A. 16B. 32C. 64D. 128答案:A解析:等比数列的通项公式为a_n = a_1 * q^(n-1),将已知条件代入公式得a_5 = 1 * 2^(5-1) = 2^4 = 16。

二、填空题3. 已知函数f(x)=x^3-3x+1,求f'(x)。

答案:f'(x) = 3x^2 - 3解析:根据导数的计算规则,对于函数f(x)=x^3-3x+1,其导数f'(x)为3x^2-3。

4. 求直线y=2x+3与x轴的交点坐标。

答案:(-3/2, 0)解析:令y=0,解方程2x+3=0,得到x=-3/2,所以交点坐标为(-3/2, 0)。

三、解答题5. 已知等差数列{a_n}的前n项和为S_n,若S_3=9,S_6=24,求a_4。

答案:a_4 = 5解析:设等差数列的首项为a_1,公差为d,则S_3 = 3a_1 + 3d = 9,S_6 = 6a_1 + 15d = 24。

联立解得a_1 = 1,d = 2。

因此a_4 = a_1 + 3d = 1 + 3*2 = 7。

6. 求函数f(x)=x^2-4x+c在区间[1,3]上的最小值。

答案:最小值为c-3解析:函数f(x)=x^2-4x+c的对称轴为x=2,开口向上。

在区间[1,3]上,函数在x=2处取得最小值,代入x=2得到f(2)=4-8+c=c-4。

高中数学必修4习题和复习参考题及对应答案

高中数学必修4习题和复习参考题及对应答案

高中数学必修4习题和复习参考题及对应答案A组1、在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是哪个象限的角:(1)-265°;(2)-1000°;(3)-843°10′;(4)3900°.答案:(1)95°,第二象限;(2)80°,第一象限;(3)236°50′,第三象限;(4)300°,第四象限.说明:能在给定范围内找出与指定的角终边相同的角,并判定是第几象限角.2、写出终边在x轴上的角的集合.答案:S={α|α=k·180°,k∈Z}.说明:将终边相同的角用集合表示.3、写出与下列各角终边相同的角的集合,并把集合中适合不等式-360°≤β<360°的元素β写出来:(1)60°;(2)-75°;(3)-824°30′;(4)475°;(5)90°;(6)270°;(7)180°;(8)0°.答案:(1){β|β=60°+k·360°,k∈Z},-300°,60°;(2){β|β=-75°+k·360°,k∈Z},-75°,285°;(3){β|β=-824°30′+k·360°,k∈Z},-104°30′,255°30′;(4){β|β=475°+k·360°,k∈Z},-245°,115°;(5){β|β=90°+k·360°,k∈Z},-270°,90°;(6){β|β=270°+k·360°,k∈Z},-90°,270°;(7){β|β=180°+k·360°,k∈Z},-180°,180°;(8){β|β=k·360°,k∈Z},-360°,0°.说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.4、分别用角度和弧度写出第一、二、三、四象限角的集合.说明:用角度制和弧度制写出各象限角的集合.5、选择题:(1)已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角C .小于180°的正角D .第一或第二象限角 (2)已知α是第一象限角,那么2α是( )、 A .第一象限角 B .第二象限角C .第一或第二象限角D .第一或第三象限角 答案:(1)C说明:因为0°<α<90°,所以0°<2α<180°. (2)D说明:因为k·360°<α<90°+k·360°,k∈Z ,所以180451802k k α︒<<︒+︒,k∈Z .当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角. 6、一条弦的长等于半径,这条弦所对的圆心角等于1弧度吗?为什么?答案:不等于1弧度.这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.说明:了解弧度的概念. 7、把下列各角度化成弧度: (1)36°;(2)-150°;(3)1095°;(4)1440°.答案:(1)5π;(2)56π;(3)7312π-;(4)8π.说明:能进行度与弧度的换算.8、把下列各弧度化成度: (1)76π-;(2)103π-;(3)1.4;(4)23. 答案:(1)-210°;(2)-600°;(3)80.21°;(4)38.2°.说明:能进行弧度与度的换算. 9、要在半径OA=100cm 的圆形金属板上截取一块扇形板,使其弧AB 的长为112cm ,求圆心角∠AOB 是多少度(可用计算器,精确到1°).答案:64°说明:可以先运用弧度制下的弧长公式求出圆心角的弧度数,再将弧度换算为度,也可以直接运用角度制下的弧长公式.10、已知弧长50cm 的弧所对圆心角为200°,求这条弧所在的圆的半径(可用计算器,精确到1cm ).答案:14cm .说明:可以先将度换算为弧度,再运用弧度制下的弧长公式,也可以直接运用角度制下的弧长公式.B 组1、每人准备一把扇子,然后与本小组其他同学的对比,从中选出一把展开后看上去形状较为美观的扇子,并用计算器算出它的面积S 1.(1)假设这把扇子是从一个圆面中剪下的,而剩余部分的面积为S 2,求S 1与S 2的比值; (2)要使S 1与S 2的比值为0.618,则扇子的圆心角应为几度(精确到10°)? 答案:(1)(略)(2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-,可得θ=0.618(2π-θ),则θ=0.764π≈140°.说明:本题是一个数学实践活动.题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足:120.618SS =(黄金分割比)的道理.2、(1)时间经过4 h (时),时针、分针各转了多少度?各等于多少弧度?(2)有人说,钟的时针和分针一天内会重合24次、你认为这种说法是否正确?请说明理由. (提示:从午夜零时算起,假设分针走了t min 会与时针重合,一天内分针和时针会重合n 次,建立t 关于n 的函数关系式,并画出其图象,然后求出每次重合的时间.)答案:(1)时针转了-120°,等于23π-弧度;分针转了-1440°,等于-8π弧度 (2)设经过t min 分针就与时针重合,n 为两针重合的次数. 因为分针旋转的角速度为2(rad /min)6030ππ=, 时针旋转的角速度为2(rad/min)1260360ππ=⨯,所以()230360t n πππ-=,即72011t n =. 用计算机或计算器作出函数72011t n =的图象(如下页图)或表格,从中可清楚地看到时针与分针每次重合所需的时间.n u1 15. 981.82 16. 1047.3 17. 1112.7 18. 1178.2 19. 1243.6 20. 1309.1 21. 1374.5 22.1440.因为时针旋转一天所需的时间为24×60=1440(min ),所以144011n ≤,于是n≤22.故时针与分针一天内只会重合22次.说明:通过时针与分针的旋转问题进一步地认识弧度的概念,并将问题引向深入,用函数思想进行分析.在研究时针与分针一天的重合次数时,可利用计算器或计算机,从模拟的图形、表格中的数据、函数的解析式或图象等角度,不难得到正确的结论.3、已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是__________度,即__________rad .如果大轮的转速为180r/min (转/分),小轮的半径为10.5cm ,那么小轮周上一点每1s 转过的弧长是__________.答案:864°,245π,151.2π cm. 说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式.当大齿轮转动一周时,小齿轮转动的角是4824360864rad.205π⨯︒=︒= 由于大齿轮的转速为3r/s ,所以小齿轮周上一点每1s 转过的弧长是483210.5151.2(cm)20ππ⨯⨯⨯=. P20习题1.2A 组1、用定义法、公式一以及计算器求下列角的三个三角函数值:(1)173π-;(2)214π;(3)236π-;(4)1500°.答案:(1)1sin ,tan 22ααα===(2)sin tan 122ααα=-=-=;(3)1sin ,cos tan 2ααα===(4)1sin ,tan 2ααα=== 说明:先利用公式一变形,再根据定义求值,非特殊角的三角函数值用计算器求.2、已知角α的终边上有一点的坐标是P (3a ,4a ),其中a≠0,求sinα,cosα,tanα的三角函数值.答案:当a >0时,434sin ,cos ,tan 553ααα===;当a <0时,434sin ,cos ,tan 553ααα=-=-=-.说明:根据定义求三角函数值. 3、计算:(1)6sin (-90°)+3sin0°-8sin270°+12cos180°; (2)10cos270°+4sin0°+9tan0°+15cos360°;(3)22322costantan sin cos sin 2446663ππππππ-+-++;(4)2423sincos tan 323πππ+-. 答案:(1)-10;(2)15;(3)32-;(4)94-.说明:求特殊角的三角函数值.4、化简:(1)asin0°+bcos90°+ctan180°;(2)-p 2cos180°+q 2sin90°-2pqcos0°;(3)223cos 2sincos sin 22a b ab ab ππππ-+-; (4)13tan 0cos sin cos sin 222m n p q r ππππ+---.答案:(1)0;(2)(p -q )2;(3)(a -b )2;(4)0.说明:利用特殊角的三角函数值化简.5、根据下列条件求函数3()sin()2sin()4cos 23cos()444f x x x x x πππ=++--++的值. (1)4x π=;(2)34x π=. 答案:(1)-2;(2)2.说明:转化为特殊角的三角函数的求值问题. 6、确定下列三角函数值的符号:(1)sin186°; (2)tan505°; (3)sin7.6π; (4)23tan()4π-; (5)cos940°;(6)59cos()17π-. 答案:(1)负;(2)负;(3)负;(4)正;(5)负;(6)负. 说明:认识不同位置的角对应的三角函数值的符号. 7、确定下列式子的符号: (1)tan125°·sin273°;(2)tan108cos305︒︒;(3)5411sin cos tan 456πππ;(4)511cos tan 662sin 3πππ. 答案:(1)正;(2)负;(3)负;(4)正.说明:认识不同位置的角对应的三角函数值的符号. 8、求下列三角函数值(可用计算器):(1)67sin()12π-; (2)15tan()4π-;(3)cos398°13′; (4)tan766°15′. 答案:(1)0.9659;(2)1;(3)0.7857;(4)1.045.说明:可先运用公式一转化成锐角三角函数,然后再求出三角函数值. 9、求证:(1)角θ为第二或第三象限角当且仅当sinθ·tanθ<0; (2)角θ为第三或第四象限角当且仅当cosθ·tanθ<0; (3)角θ为第一或第四象限角当且仅当sin 0tan θθ>;(4)角θ为第一或第三象限角当且仅当sinθ·cosθ>0. 答案:(1)先证如果角θ为第二或第三象限角,那么sinθ·tanθ<0. 当角θ为第二象限角时,sinθ>0,tanθ<0,则sinθ·tanθ<0; 当角θ为第三象限角时,sinθ<0,tanθ>0,则sinθ·tanθ<0, 所以如果角θ为第二或第三象限角,那么sinθ·tanθ<0. 再证如果sinθ·tanθ<0,那么角θ为第二或第三象限角.因为sinθ·tanθ<0,即sinθ>0且tanθ<0,或sinθ<0且tanθ>0, 当sinθ>0且tanθ<0时,角θ为第二象限角; 当sinθ<0且tanθ>0时,角θ为第三象限角,所以如果sinθ·tanθ<0,那么角θ为第二或第三象限角. 综上所述,原命题成立. (其他小题略)说明:以证明命题的形式,认识位于不同象限的角对应的三角函数值的符号.10、(1)已知sin α=,且α为第四象限角,求cosα,tanα的值; (2)已知5cos 13α=-,且α为第二象限角,求sinα,tanα的值; (3)已知3tan 4α=-,求sinα,cosα的值;(4)已知cosα=0.68,求sinα,tanα的值(计算结果保留两个有效数字).答案:(1)1,2 (2)1212,135-;(3)当α为第二象限角时,34sin ,cos 55αα==-, 当α为第四象限角时,34sin ,cos 55αα=-=;(4)当α为第一象限角时,sinα=0.73,tanα=1.1,当α为第四象限角时,sinα=-0.73,tanα=-1.1. 说明:要注意角α是第几象限角.11、已知1sin 3x =-,求cosx ,tanx 的值.答案:当x 为第三象限角时,cos tan x x ==当x 为第四象限角时,cos tan 34x x ==- 说明:要分别对x 是第三象限角和第四象限角进行讨论.12、已知3tan 2απαπ=<<,求cosα-sinα的值.答案:11)2说明:角α是特殊角. 13、求证: (1)2212sin cos 1tan 1tan cos sin x x xxx x--=+-;(2)tan 2α-sin 2α=tan 2α·sin 2α;(3)(cosβ-1)2+sin 2β=2-2cosβ;(4)sin 4x +cos 4x=1-2sin 2xcos 2x .答案:(1)2(cos sin )cos sin 1tan (cos sin )(cos sin )cos sin 1tan x x x x xx x x x x x x---===+-++左边; (2)222222222211cos sin sin (1)sin sin sin tan cos cos cos x x x xxx x xxx-=-===左边;(3)左边=1-2cosβ+cos 2β+sin 2β=2-2cosβ;(4)左边=(sin 2x +cos 2x )2-2sin 2x·cos 2x=1-2sin 2x·cos 2x .说明:还可以从右边变为左边,或对左右同时变形.可提倡一题多解,然后逐渐学会选择较为简单的方法.B 组1、化简(1+tan 2α)cos 2α. 答案:1说明:根据同角三角函数的基本关系,将原三角函数式转化为正余弦函数式.2α为第二象限角. 答案:-2t anα说明:先变形,再根据同角三角函数的基本关系进行化简. 3、已知tanα=2,求sin cos sin cos αααα+-的值.答案:3说明:先转化为正切函数式. 4、从本节的例7可以看出,cos 1sin 1sin cos x x x x+=-就是sin 2x +cos 2x=1的一个变形.你能利用同角三角函数的基本关系推导出更多的关系式吗?答案:又如sin 4x +cos 4x=1-2sin 2x·cos 2x 也是sin 2x +cos 2x=1的一个变形;2211tan cos x x=+是sin 2x +cos 2x=1和sin tan cos xx x=的变形;等等. 说明:本题要求学生至少能写出每个同角关系式的一个变形.P29习题1.3A 组1、将下列三角函数转化为锐角三角函数,并填在题中横线上: (1)cos210°=__________; (2)sin263°42′=__________; (3)cos()6π-=__________; (4)5sin()3π-=__________;(5)11cos()9π-=__________;(6)cos (-104°26′)=__________; (7)tan632°24′=__________; (8)17tan6π=__________. 答案:(1)-cos30°; (2)-sin83°42′ (3)cos 6π;(4)sin3π; (5)2cos 9π-;(6)-cos75°34′; (7)-tan87°36′; (8)tan6π-. 说明:利用诱导公式转化为锐角三角函数. 2、用诱导公式求下列三角函数值: (1)17cos()4π-; (2)sin (-1574°); (3)sin (-2160°52′); (4)cos (-1751°36′);(5)cos1615°8′;(6)26sin()3π-.答案:(1)2;(2)-0.7193;(3)-0.0151;(4)0.6639;(5)-0.9964;(6)-说明:先利用诱导公式转化为锐角三角函数,再求值.3、化简:(1)sin(-1071°)·sin99°+sin(-171°)·sin(-261°);(2)1+sin(α-2π)·sin(π+α)-2cos2(-α).答案:(1)0;(2)-cos2α说明:先利用诱导公式转化为角α的三角函数,再进一步化简.4、求证:(1)sin(360°-α)=-sinα;(2)cos(360°-α)=cosα;(3)tan(360°-α)=-tanα.答案:(1)sin(360°-α)=sin(-α)=-sinα;(2)略;(3)略.说明:有的书也将这组恒等式列入诱导公式,但根据公式一可知,它和公式三等价,所以本教科书未将其列入诱导公式.B组1、计算:(1)sin420°·cos750°+sin(-330°)·cos(-660°);(2)tan675°+tan765°-tan(-330°)+tan(-690°);(3)252525sin cos tan() 634πππ++-.答案:(1)1;(2)0;(3)0.说明:先利用诱导公式转化为锐角三角函数,再求值.2、已知1sin()2πα+=-,计算:(1)sin(5π-α);(2)sin()2πα+;(3)3cos()2πα-; (4)tan()2πα-. 答案:(1)12; (2)3,,23,;2αα⎧⎪⎪⎨⎪-⎪⎩当为第一象限角当为第二象限角(3)12-; (4)3,,3,αα⎧⎪⎨-⎪⎩当为第一象限角当为第二象限角.说明:先用诱导公式将已知式和待求式都转化为角α的三角函数,然后再根据同角三角函数的基本关系得解. P46习题1.4A 组1、画出下列函数的简图:(1)y=1-sinx ,x∈[0,2π]; (2)y=3cosx +1,x∈[0,2π]. 答案:(1)(2)说明:可以直接用“五点法”作出两个函数的图象;也可以先用“五点法”作出正弦、余弦函数的图象,再通过变换得到这两个函数的图象.2、求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值是什么.(1)11cos ,23y x x π=-∈R ; (2)3sin(2),4y x x π=+∈R ;(3)31cos(),226y x x π=--∈R ; (4)11sin(),223y x x π=+∈R .答案:(1)使y 取得最大值的集合是{x|x=6k +3,k∈Z },最大值是32; 使y 取得最小值的集合是{x|x=6k ,k∈Z },最大值是12; (2)使y 取得最大值的集合是{|,}8x x k k ππ=+∈Z ,最大值是3;使y 取得最小值的集合是3{|,}8x x k k ππ=-+∈Z ,最小值是-3; (3)使y 取得最大值的集合是{|2(21),}3x x k k ππ=++∈Z ,最大值是32; 使y 取得最小值的集合是{|4,}3x x k k ππ=+∈Z ,最小值是32-; (4)使y 取得最大值的集合是{|4,}3x x k k ππ=+∈Z ,最大值是12;使y 取得最小值的集合是5{|4,}3x x k k ππ=-+∈Z ,最小值是12-. 说明:利用正弦、余弦函数的最大值、最小值性质,研究所给函数的最大值、最小值性质.3、求下列函数的周期: (1)2sin 3y x =,x∈R ; (2)1cos 42y x =,x∈R . 答案:(1)3π;(2)2π说明:可直接由函数y=Asin (ωx+φ)和函数y=Acos (ωx+φ)的周期2T πω=得解.4、利用函数的单调性比较下列各组中两个三角函数值的大小: (1)sin103°15′与sin164°30′; (2)4744cos()cos()109ππ--与; (3)sin508°与sin144°;(4)cos760°与cos (-770°). 答案:(1)sin103°15′>sin164°130′; (2)4744cos()cos()109ππ->-; (3)sin508°<sin144°;(4)cos760°>cos (-770°).说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究. 5、求下列函数的单调区间: (1)y=1+sinx ,x∈R ; (2)y=-cosx ,x∈R . 答案:(1)当[2,2]22x k k ππππ∈-++,k∈Z 时,y=1+sinx 是增函数;当3[2,2]22x k k ππππ∈++,k∈Z 时,y=1+sinx 是减函数. (2)当x∈[(2k -1)π,2kπ],k∈Z 时,y=-cosx 是减函数; 当x∈[2kπ,(2k +1)π],k∈Z 时,y=-cosx 是增函数. 说明:利用正弦、余弦函数的单调性研究所给函数的单调性. 6、求函数tan()26y x π=-++的定义域.答案:{|,}3x x k k ππ≠+∈Z .说明:可用换元法.7、求函数5tan(2),()3122k y x x k πππ=-≠+∈Z 的周期. 答案:2π. 说明:可直接由函数y=Atan (ωx+φ)的周期T πω=得解. 8、利用正切函数的单调性比较下列各组中两个函数值的大小: (1)13tan()tan()57ππ--与; (2)tan1519°与tan1493°; (3)93tan 6tan(5)1111ππ-与; (4)7tantan 86ππ与. 答案:(1)13tan()tan()57ππ->-;(2)tan1519°>tan1493°;(3)93tan 6tan(5)1111ππ>-;(4)7tantan 86ππ<. 说明:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.9、根据正切函数的图象,写出使下列不等式成立的x 的集合:(1)1+tanx≥0;(2)tan 0x . 答案:(1){|,}42x k x k k ππππ-+<+∈Z ≤;(2){|,}32x k x k k ππππ+<+∈Z ≤.说明:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式. 10、设函数f (x )(x∈R )是以 2为最小正周期的周期函数,且x∈[0,2]时f (x )=(x -1)2.求f (3),7()2f 的值.答案:由于f (x )以2为最小正周期,所以对任意x∈R ,有f (x +2)=f (x ).于是:f (3)=f (1+2)=f (1)=(1-1)2=0;273331()(2)()(1)22224f f f =+==-=. 说明:利用周期函数的性质,将其他区间上的求值问题转化到区间[0,2]上的求值问题. 11、容易知道,正弦函数y=sinx 是奇函数,正弦曲线关于原点对称,即原点是正弦曲线的对称中心.除原点外,正弦曲线还有其他对称中心吗?如果有,对称中心的坐标是什么?另外,正弦曲线是轴对称图形吗?如果是,对称轴的方程是什么?你能用已经学过的正弦函数性质解释上述现象吗? 对余弦函数和正切函数,讨论上述同样的问题.答案:由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(kπ,0),k∈Z .正弦曲线是轴对称图形,其对称轴的方程是,2x k k ππ=+∈Z .由余弦函数和正切的周期性可知,余弦曲线的对称中心坐标为(,0)2k ππ+,k∈Z ,对称轴的方程是x=kπ,k∈Z ;正切曲线的对称中心坐标为(,0)2k π,k∈Z ,正切曲线不是轴对称图形. 说明:利用三角函数的图象和周期性研究其对称性.B 组1、根据正弦函数、余弦函数的图象,写出使下列不等式成立的x 的取值集合:(1)sin )2x x ∈R ≥;(22cos 0()x x ∈R ≥. 答案:(1)2{|22,}33x k x k k ππππ++∈Z ≤≤; (2)33{|22,}44x k x k k ππππ-++∈Z ≤≤. 说明:变形后直接根据正弦函数、余弦函数的图象写出结果,并不要求解三角方程或三角不等式.2、求函数3tan(2)4y x π=--的单调区间. 答案:单调递减区间5(,),2828k k k ππππ++∈Z . 说明:利用正切函数的单调区间求所给函数的单调区间.3、已知函数y=f (x )的图象如图所示,试回答下列问题: (1)求函数的周期;(2)画出函数y=f (x +1)的图象;(3)你能写出函数y=f (x )的解析式吗?答案:(1)2;(2)y=f (x +1)的图象如下;(3)y=|x -2k|,x∈[2k-1,2k +1],k∈Z .说明:可直接由函数y=f (x )的图象得到其周期.将函数y=f (x )的图象向左平行移动1个单位长度,就得到函数y=f (x +1)的图象.求函数y=f (x )的解析式难度较高,需要较强的抽象思维能力.可先求出定义域为一个周期的函数y=f (x ),x∈[-1,1]的解析式为y=|x|,x∈[-1,1],再根据函数y=f (x )的图象和周期性,得到函数y=f (x )的解析式为y=|x -2k|,x∈[2k-1,2k +1],k∈Z . P57习题1.5A 组1、选择题:(1)为了得到函数1cos()3y x =+,x∈R 的图象,只需把余弦曲线上所有的点( )A .向左平行移动3π个单位长度 B .向右平行移动3π个单位长度C .向左平行移动13个单位长度 D .向右平行移动13个单位长度(2)为了得到函数cos5xy =,x∈R 的图象,只需把余弦曲线上所有的点的( )、 A .横坐标伸长到原来的5倍,纵坐标不变 B .横坐标缩短到原来的15倍,纵坐标不变 C .纵坐标伸长到原来的5倍,横坐标不变D .纵坐标缩短到原来的15倍,横坐标不变 (3)为了得到函数1cos 4y x =,x∈R 的图象,只需把余弦曲线上所有的点的( ).A .横坐标伸长到原来的4倍,纵坐标不变B .横坐标缩短到原来的14倍,纵坐标不变 C .纵坐标伸长到原来的4倍,横坐标不变 D .纵坐标缩短到原来的14倍,横坐标不变 答案:(1)C ;(2)A ;(3)D .2、画出下列函数在长度为一个周期的闭区间上的简图(有条件的可用计算器或计算机作图检验):(1)14sin 2y x =,x∈R ; (2)1cos32y x =,x∈R ; (3)3sin(2)6y x π=+,x∈R ;(4)112cos()24y x π=-,x∈R .答案:(1)(2)(3)(4)说明:研究了参数A 、ω、φ对函数图象的影响.3、不画图,直接写出下列函数的振幅、周期与初相,并说明这些函数的图象可由正弦曲线经过怎样的变化得到(注意定义域):(1)8sin()48xy π=-,x∈[0,+∞);(2)1sin(3)37y x π=+,x∈[0,+∞). 答案:(1)振幅是8,周期是8π,初相是8π-.先把正弦曲线向右平行移动8π个单位长度,得到函数1sin()8y x π=-,x∈R 的图象;再把函数y 1的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),得到函数2sin()48x y π=-,x∈R的图象;再把函数y 2的图象上所有点的纵坐标伸长到原来的8倍(横坐标不变),得到函数38sin()48x y π=-,x∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数8sin()48x y π=-,x∈[0,+∞)的图象.(2)振幅是13,周期是23π,初相是7π.先把正弦曲线向左平行移动7π个单位长度,得到函数1sin()7y x π=+,x∈R 的图象;再把函数y 1的图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到函数2sin(3)7y x π=+,x∈R的图象;再把函数y 2的图象上所有点的纵坐标缩短到原来的13倍(横坐标不变),得到函数31sin(3)37y x π=+,x∈R 的图象;最后把函数y 3的图象在y 轴左侧的部分抹去,就得到函数1sin(3)37y x π=+,x∈[0,+∞)的图象.说明:了解简谐振动的物理量与函数解析式的关系,并认识函数y=Asin (ωx+φ)的图象与正弦曲线的关系.4、图 1.5-1的电流i (单位:A )随时间t (单位:s )变化的函数关系是5sin(100),[0,)3i t t ππ=+∈+∞.(1)求电流i 变化的周期、频率、振幅及其初相; (2)当t=0,1171,,,(:s)60015060060单位时,求电流i . 答案:(1)周期为150,频率为50,振幅为5,初相为3π.(2)t=0时,2i =;1600t =时,i=5;1150t =时,i=0;7600t =时,i=-5;160t =时,i=0.说明:了解简谐振动的物理量与函数解析式的关系,并求函数值.5、一根长为l cm 的线,一端固定,另一端悬挂一个小球.小球摆动时,离开平衡位置的位移s (单位:cm )与时间t (单位:s)的函数关系是),[0,)3s t π=+∈+∞. (1)求小球摆动的周期;(2)已知g≈980cm/s 2,要使小球摆动的周期是1s ,线的长度l 应当是多少?(精确到0.1cm ) 答案:(1)2(2)约24.8cm . 说明:了解简谐振的周期.B 组1、弹簧振子的振动是简谐运动.下表给出了振子在完成一次全振动的过程中的时间t 与位移s答案:根据已知数据作出散点图(如图).由散点图可知,振子的振动函数解析式为020sin()62x y t ππ=-,x∈[0,+∞). 说明:作出已知数据的散点图,然后选择一个函数模型来描述,并根据已知数据求出该函数模型.2、弹簧挂着的小球作上下运动,它在t 秒时相对于平衡位置的高度h 厘米由下列关系式确定:2sin()4h t π=+.以t 为横坐标,h 为纵坐标,作出这个函数在一个剧期的闭区间上的图象,并回答下列问题: (1)小球在开始振动时(即t=0)的位置在哪里?(2)小球的最高点和最低点与平衡位置的距离分别是多少? (3)经过多少时问小球往复运动一次? (4)每秒钟小球能往复振动多少次?答案:函数2sin()4h t π=+在[0,2π]上的图象为(1)小球在开始振动时的位置在(0,2);(2)最高点和最低点与平衡位置的距离都是2;(3)经过2π秒小球往复运动一次;(4)每秒钟小球能往复振动12π次.说明:结合具体问题,了解解析式中各常数的实际意义.3、如图,点P是半径为r cm的砂轮边缘上的一个质点,它从初始位置P0开始,按逆时针方向以角速度ω rad/s做圆周运动.求点P的纵坐标y关于时间t的函数关系,并求点P的运动周期和频率.答案:点P的纵坐标关于时间t的函数关系式为y=rsin(ωt+φ),t∈[0,+∞);点P的运动周期和频率分别为2πω和2ωπ.说明:应用函数模型y=rsin(ωt+φ)解决实际问题.P65习题1.61、根据下列条件,求△ABC的内角A:(1)1sin2A=;(2)2cos A=-;(3)tanA=1;(4)3 tan A=-.答案:(1)30°或150°;(2)135°;(3)45°;(4)150°.说明:由角A是△ABC的内角,可知A∈(0°,180°).2、根据下列条件,求(0,2π)内的角x:(1)3sin x=-;(2)sinx=-1;(3)cosx=0;(4)tanx=1.答案:(1)4533ππ或;(2)32π;(3)322ππ或;(4)544ππ或.说明:可让学生再变换角x的取值范围求解.3、天上有些恒星的亮度是会变化的.其中一种称为造父(型)变星,本身体积会膨胀收缩造成亮度周期性的变化、下图为一造父变星的亮度随时间的周期变化图、此变星的亮度变化的周期为多少天?最亮时是几等星?最暗时是几等星?答案:5.5天;约3.7等星;约4.4等星.说明:每个周期的图象不一定完全相同,表示视星等的坐标是由大到小.4、夏天是用电的高峰时期,特别是在晚上.为保证居民空调制冷用电,电力部门不得不对企事业拉闸限电,而到了0时以后,又出现电力过剩的情况.因此每天的用电也出现周期性的变化.为保证居民用电,电力部门提出了“消峰平谷”的想法,即提高晚上高峰时期的电价,同时降低后半夜低峰时期的电价,鼓励各单位在低峰时用电.请你调查你们地区每天的用电情况,制定一项“消峰平谷”的电价方案.答案:先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.说明:建立周期变化的模型解决实际问题.B 组1、北京天安门广场的国旗每天是在日出时随太阳升起,在日落时降旗、请根据年鉴或其他的参考资料,统计过去一年不同时期的日出和日落时间.(1)在同一坐标系中,以日期为横轴,画出散点图,并用曲线去拟合这些数据,同时找到函数模型;(2)某同学准备在五一长假时去看升旗,他应当几点到达天安门广场? 答案:略.说明:建立周期变化的函数模型,根据模型解决实际问题.2、一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关的数据并提供理论证据支持你的结论.答案:略.说明:收集数据,建立周期变化的函数模型,根据模型提出个人意见.然后采取上网、查阅资料或走访专业人士的形式,获取这方面的信息,以此来说明自己的结论. P69复习参考题A 组1、写出与下列各角终边相同的角的集合S ,并且把S 中适合不等式-2π≤β≤4π的元素β写出来:(1)4π; (2)23π-;(3)125π; (4)0.答案:(1)79{|2,},,,4444k k ππππββπ=+∈-Z ;(2)22410{|2,},,,3333k k ββπππππ=-+∈-Z ;(3)128212{|2,},,,5555k k ββπππππ=+∈-Z ; (4){β|β=2kπ,k∈Z },-2π,0,2π.说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角.2、在半径为15cm 的圆中,一扇形的弧含有54°,求这个扇形的周长与面积(π取3.14,计算结果保留两个有效数字).答案:周长约44cm ,面积约1.1×102cm 2.说明:可先将角度转化为弧度,再利用弧度制下的弧长和面积公式求解. 3、确定下列三角函数值的符号:(1)sin4; (2)cos5; (3)tan8; (4)tan (-3). 答案:(1)负;(2)正;(3)负;(4)正.说明:将角的弧度数转化为含π的形式或度,再进行判断. 4、已知1cos 4ϕ=,求sinφ,tanφ.答案:当φ为第一象限角时,sin tan 4ϕϕ==当φ为第四象限角时,sin tan ϕϕ== 说明:先求sinφ的值,再求tanφ的值.5、已知sinx=2cosx ,求角x 的三个三角函数值.答案:当x 为第一象限角时,tanx=2,cos x x ==;当x 为第三象限角时,tanx=2,cos x x == 说明:先求tanx 的值,再求另外两个函数的值.6、用cosα表示sin 4α-sin 2α+cos 2α.答案:cos 4α.说明:先将原式变形为sin 2α(sin 2α-1)+cos 2α,再用同角三角函数的基本关系变形. 7、求证:(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2;(2)sin 2α+sin 2β-sin 2α·sin 2β+cos 2α·cos 2β=1. 答案:(1)左边=2-2sinα+2cosα-2sinαcosα=1+sin 2α+cos 2α-2sinα+2cosα-2sinαcosα =右边. (2)左边=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=cos 2β(sin 2α+cos 2α)+sin 2β =1=右边.说明:第(1)题可先将左右两边展开,再用同角三角函数的基本关系变形. 8、已知tanα=3,计算:(1)4sin 2cos 5cos 3sin αααα-+;(2)sinαcosα;(3)(sinα+cosα)2. 答案:(1)57;(2)310;(3)85.说明:第(2)题可由222sin tan 9cos ααα==,得21cos 10α=,所以23sin cos tan cos 10αααα==.或2222sin cos tan 33sin cos 10sin cos tan 131αααααααα====+++. 9、先估计结果的符号,再进行计算. (1)252525sincos tan()634πππ++-; (2)sin2+cos3+tan4(可用计算器).答案:(1)0;(2)1.0771.说明:先根据各个角的位置比较它们的三角函数值的大小,再估计结果的符号. 10、已知1sin()2πα+=-,计算: (1)cos (2π-α);(2)tan (α-7π).答案:(1)当α为第一象限角时,cos(2)πα-=,当α为第二象限角时,cos(2)πα-=(2)当α为第一象限角时,tan(7)3απ-=,当α为第二象限角时,tan(7)απ-= 说明:先用诱导公式转化为α的三角函数,再用同角三角函数的基本关系计算. 11、先比较大小,再用计算器求值:(1)sin378°21′,tan1111°,cos642.5°; (2)sin (-879°),3313tan(),cos()810ππ--; (3)sin3,cos (sin2).答案:(1)tan1111°=0.601,sin378°21′=0.315,cos642.5°=0.216; (2)sin (-879°)=-0.358,3313tan()0.414,cos()0.588810ππ-=--=-; (3)sin3=0.141,cos (sin2)=0.614.说明:本题的要求是先估计各三角函数值的大小,再求值验证. 12、设π<x <2π,填表:说明:熟悉各特殊角的三角函数值. 13、下列各式能否成立,说明理由: (1)cos 2x=1.5;(2)3sin 4x π=-.答案:(1)因为cos x =cos x =1,1><-,所以原式不能成立;(2)因为sin x =,而|1<,所以原式有可能成立.说明:利用正弦和余弦函数的最大值和最小值性质进行判断.14、求下列函数的最大值、最小值,并且求使函数取得最大、最小值的x 的集合:(1)sin xy π=,x∈R ;(2)y=3-2cosx ,x∈R .答案:(11π,此时x 的集合为{|2,}2x x k k ππ=+∈Z ;1π,此时x 的集合为{|2,}2x x k k ππ=-+∈Z ;(2)最大值为5,此时x 的集合为{x|x=(2k +1)π,k∈Z }; 最小值为1,此时x 的集合为{x|x=2kπ,k∈Z }.说明:利用正弦、余弦函数的最大值和最小值性质,研究所给函数的最大值和最小值性质. 15、已知0≤x≤2π,求适合下列条件的角x 的集合: (1)y=sinx 和y=cosx 都是增函数; (2)y=sinx 和y=cosx 都是减函数;(3)y=sinx 是增函数,而y=cosx 是减函数; (4)y=sinx 是减函数,而y=cosx 是增函数. 答案:(1)3{|2}2x x ππ≤≤; (2){|}2x x ππ≤≤;(3){|0}2x x π≤≤;(4)3{|}2x x ππ≤≤. 说明:利用函数图象分析.16、画出下列函数在长度为一个周期的闭区间上的简图: (1)1sin(3),;23y x x π=-∈R (2)2sin(),;4y x x π=-+∈R (3)1sin(2),;5y x x π=--∈R(4)3sin(),.63xy x π=-∈R 答案:(1)(2)(3)(4)说明:可要求学生在作出图象后,用计算机或计算器验证. 17、(1)用描点法画出函数y=sinx ,[0,]2x π∈的图象.(2)如何根据第(1)小题并运用正弦函数的性质,得出函数y=sinx ,x∈[0,2π]的图象? (3)如何根据第(2)小题并通过平行移动坐标轴,得出函数y=sin (x +φ)+k ,x∈[0,2π]的图象?(其中φ,k 都是常数)答案:(1)x 0 18π9π 6π 29π 518π 3π 718π 49π 2π sinx0.170.340.500.640.770.870.940.981(2)由sin (π-x )=sinx ,可知函数y=sinx ,x∈[0,π]的图象关于直线2x =对称,据此可得函数y=sinx ,[,]2x ππ∈的图象;又由sin (2π-x )=-sinx ,可知函数y=sinx ,x∈[0,2π]的图象关于点(π,0)对称,据此可得出函数y=sinx ,x∈[π,2π]的图象.(3)先把y 轴向右(当φ>0时)或向左(当φ<0时)平行移动|φ|个单位长度,再把x 轴向下(当k >0时)或向上(当k <0时)平行移动|k|个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2π]之外的部分,便得出函数y=sin (x +φ)+k ,x∈[0,2π]的图象.说明:学会用不同的方法作函数图象.18、不通过画图,写出下列函数的振幅、周期、初相,并说明如何由正弦曲线得出它们的图象:(1)sin(5),;6y x x π=+∈R(2)12sin,.6y x x =∈R 答案:(1)振幅是1,周期是25π,初相是6π. 把正弦曲线向左平行移动6π个单位长度,可以得函数sin()6y x π=+,x∈R 的图象;再把所得图象上所有点的横坐标缩短到原来的15倍(纵坐标不变),就可得出函数sin(5)6y x π=+,x∈R 的图象.(2)振幅是2,周期是2π,初相是0.把正弦曲线上所有点的横坐标伸长到原来的6倍(纵坐标不变),得到函数1sin6y x =,x∈R 的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),就可得到函数12sin()6y x =,x∈R 的图象.说明:会根据解析式求各物理量,并理解如何由正弦曲线通过变换得到正弦函数的图象.B 组1、已知α为第四象限角,确定下列各角的终边所在的位置:(1)2α; (2)3α; (3)2α. 答案:(1)3(1)42k k παππ+<<+,所以2α的终边在第二或第四象限; (2)9012030901203k k α︒+︒<<︒+︒+︒,所以3α的终边在第二、第三或第四象限;(3)(4k +3)π<2α<(4k +4)π,所以2α的终边在第三或第四象限,也可在y 轴的负半轴上.说明:不要求探索α分别为各象限角时,nα和nα的终边所在位置的规律.。

高中数学必修四试卷(含详细答案)

高中数学必修四试卷(含详细答案)

高中数学必修四试卷(含详细答案)高中数学必修四试卷(含详细答案)考试时间:2小时总分:100分一、选择题(共30小题,每小题2分,共60分)从每题所给的四个选项中,选出一个最佳答案。

1. 已知数列{an}的通项公式为an = 3n - 2,其中n为正整数。

则数列S = a1 + a2 + a3 + ... + a10的值为:A. 135B. 145C. 155D. 1652. 若函数f(x) = ax^3 + bx + 1在区间[-1,1]上具有单调性,则a和b 的关系是:A. a > 0,b > 0B. a > 0,b < 0C. a < 0,b > 0D. a < 0,b < 03. 曲线y = 2x^2 - 3x + c与x轴相交于两点,若这两点的横坐标之和为1,则c的值为:A. -1B. 0C. 1D. 24. 在△ABC中,已知∠A = 30°,边a = 5,边b = 10。

则△ABC的面积为:A. 10√3B. 15√3C. 20√3D. 25√3...(题目继续,共30题)二、解答题(共4题,共40分)题目1:已知函数f(x) = x^3 - 3x^2 - 4x + 2。

(1)求f(x)的零点;(2)求函数f(x)在区间[-2,2]上的最大值和最小值。

(1)令f(x) = 0,得到x^3 - 3x^2 - 4x + 2 = 0,进行因式分解得(x-1)(x+2)(x-1)=0,所以零点为x=-2, x=1。

(2)在区间[-2,2]上,先求f'(x)的值为0的点,即f'(x)=3x^2-6x-4=0。

通过求解方程可得x=2和x=-2/3。

将这三个点代入f(x)的表达式中,比较大小可得最大值和最小值。

题目2:若函数g(x)满足g(3)=1,并且对任意实数x有g(ax)=g(x)-3ax,其中a是一个常数。

求g(x)的表达式。

人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)

人教版高中数学必修4综合测试试题含答案(原创,难度适中)高中数学必修4综合测试满分:150分时间:120分钟注意事项:客观题请在答题卡上用2B铅笔填涂,主观题请用黑色水笔书写在答题卡上。

一、选择题:(共12小题,每小题5分,共60分。

)1.sin300°的值为A。

-31 B。

3 C。

22 D。

1/22.角α的终边过点P(4,-3),则cosα的值为A。

4 B。

-3 C。

2/5 D。

-4/53.cos25°cos35°-sin25°sin35°的值等于A。

3/11 B。

3/4 C。

2/11 D。

-2/114.对于非零向量AB,BC,AC,下列等式中一定不成立的是A。

AB+BC=AC B。

AB-AC=BCC。

AB-BC=BC D。

AB+BC=AC5.下列区间中,使函数y=sinx为增函数的是A。

[0,π] B。

[π,2π] C。

[-π/2,π/2] D。

[-π,0]6.已知tan(α-π/3)=1/√3,则tanα的值为A。

4/3 B。

-3/5 C。

-5/3 D。

-3/47.将函数y=sinx图象上所有的点向左平移π/3个单位长度,再将图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象的函数解析式为A。

y=sin(2x+π/3) B。

y=sin(2x+2π/3)C。

y=sin(2x-π/3) D。

y=sin(2x-2π/3)8.在函数y=sinx、y=sin(2x+π/2)、y=cos(2x+π)中,最小正周期为π的函数的个数为()A。

1个 B。

2个 C。

3个 D。

4个9.下列命题中,正确的是A。

|a|=|b|→a=b B。

|a|>|b|→a>bC。

|a|=0→a=0 D。

a=b→a∥b10.函数y=Asin(ωx+φ)在一个周期内的图象如右图所示,此函数的解析式为y=2sin(2x-π/3)11.方程sin(πx)=x的解的个数是()A。

人教版高中数学必修四第一章单元测试(一)及参考答案

人教版高中数学必修四第一章单元测试(一)及参考答案

人教版高中数学必修四第一章单元测试(一)及参考答案2018-201年必修四第一章训练卷三角函数(一)注意事项:1.答题前请填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上。

2.选择题请用2B铅笔将答案标号涂黑,非选择题请用签字笔直接答在答题卡上。

3.考试结束后,请将试题卷和答题卡一并上交。

一、选择题1.sin²120°等于( )A。

±33B。

2C。

±3/2D。

1/22.已知点P的坐标为(sin(3π/4)。

cos(3π/4)),则点P落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A。

π/4B。

3π/4C。

5π/4D。

7π/43.已知tanα=3/4,α∈(3π/2.2π),则cosα的值是( )A。

±4/5B。

±3/5C。

±5/4D。

±5/34.已知sin(2π-α)=4/5,α∈(2π/3.π),则sinα+cosα的值等于( )A。

1/7B。

-1/7C。

-7D。

75.已知函数f(x)=sin(2x+θ)的图象关于直线x=π/8对称,则θ可能取值是( )A。

π/2.3π/2B。

-π/4C。

4πD。

4π/36.若点P(sinα-cosα。

tanα)在第一象限,则在[0,2π)内α的取值范围是( )A。

(π/2.π)B。

(0.π/2)C。

(π/3.π/2)D。

(π/4.π/3)7.已知a是实数,则函数f(x)=1+asinax的图象不可能是( )A。

一条直线B。

一段正弦曲线C。

一段余弦曲线D。

一段正切曲线8.为了得到函数y=sin(2x+π/3)的图象向左平移π/12个单位,应该将x改为( )A。

2x+π/12B。

2x-π/12C。

2(x+π/12)D。

2(x-π/12)A.将函数y=cos2x的图象向右平移π/6个单位长度。

B.已知函数y=Asin(ωt+φ)的图象如右图所示,当t=1/100秒时,电流强度是5A。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)高一数学试题(必修4)第一章三角函数一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C的关系是()A.B=A∩C。

B.B∪C=C。

C.AC。

D.A=B=C2.已知$\sin\theta=\frac{1}{2}$,$\theta\in\mathrm{Q}$,则$\cos\theta$等于()A。

$\frac{\sqrt{3}}{2}$。

B。

$-\frac{\sqrt{3}}{2}$。

C。

$\frac{1}{2}$。

D。

$-\frac{1}{2}$3.已知$\sin\alpha=-\frac{2}{\sqrt{5}}$,$\alpha\in\mathrm{III}$,则$\cos\alpha$等于()A。

$-\frac{1}{\sqrt{5}}$。

B。

$\frac{1}{\sqrt{5}}$。

C。

$-\frac{2}{\sqrt{5}}$。

D。

$\frac{2}{\sqrt{5}}$4.下列函数中,最小正周期为$\pi$的偶函数是()A。

$y=\sin2x$。

B。

$y=\cos x$。

C。

$y=\sin2x+\cos2x$。

D。

$y=\cos2x$5.若角$\theta$的终边上有一点$P$,则$\sin\theta$的值是()A。

$\frac{OP}{1}$。

B。

$\frac{1}{OP}$。

C。

$\frac{OA}{1}$。

D。

$\frac{1}{OA}$6.要得到函数$y=\cos x$的图象,只需将$y=\sin x$的图象()A。

向左平移$\frac{\pi}{2}$个单位。

B。

向右平移$\frac{\pi}{2}$个单位C。

向左平移$\pi$个单位。

D。

向右平移$\pi$个单位7.若函数$y=f(x)$的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿$x$轴向左平移1个单位,沿$y$轴向下平移1个单位,得到函数$y=\sin x$的图象,则$y=f(x)$是()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修四·数学试卷Ⅲ
Ⅰ、选择题
一、选择题
1
、若cos 2sin αα+=tan α等于 ( )
A 、12
B 、2
C 、1
2
- D 、-2
2、已知函数2sin()(0)y x ωϕω=+>在区间[]0,2π上的图像如图所示,那么ω的值为 ( )
A 、1
B 、2
C 、
12 D 、13
3、函数sin y x =的值域为 ( )
A 、[]1,1- B
、⎡⎣ C
、⎡⎤⎣⎦ D
、⎡-⎣
4、已知函数sin()y A x ωϕ=+,把它的图像向左平移
3
π
个单位,再使其图像上每点的纵坐标不变,横坐标缩小为原来的13倍,所得的图像对应的函数解析式为2sin 23y x π⎛
⎫=- ⎪⎝
⎭,则原函数的解析式为 ( )
A 、22sin 39y x π⎛⎫=- ⎪⎝⎭
B 、2
22sin 3
3y x π⎛⎫=- ⎪⎝⎭
C 、252sin 39y x π⎛⎫=-
⎪⎝⎭ D 、72sin 63y x π⎛
⎫=- ⎪⎝

5、设(1,2),(3,4),(3,2)a b c =-=-=,则(2)a b c +g 等于 ( )
A 、(-15,12)
B 、0
C 、-3
D 、2
5
-
6、若两个非零向量,a b 使得a b a b -=+成立,则下列各式成立的是 ( ) A 、1a b =g B 、a b a b =g C 、a b a b =-g D 、a b a b a b -<<g
7、设1,2a b ==,且,a b 的夹角为120︒,则2a b +等于 ( )
A 、2
B 、4
C 、12
D 、 8、已知(2cos ,2sin ),,,(0,1)2a b πθθθπ⎛⎫
=∈=-
⎪⎝⎭
,则向量a 与b 的夹角α为 ( ) A 、3
2
πθ- B 、
2
π
θ+ C 、2
π
θ-
D 、θ
9、已知cos sin 6παα⎛

-
+= ⎪⎝
⎭,则7sin 6πα⎛

+ ⎪⎝

等于
( ) A 、5-
、5 C 、45- D 、4
5
10、函数()2)f x x π=
≤≤的值域为 ( )
A 、2⎡⎤
-⎢⎥⎣⎦
B 、[]1,0-
C 、⎡⎤⎣⎦
D 、⎡⎤⎣⎦
11、若0,sin cos ,sin cos 4
a b π
αβααββ<<<
+=+=,则 ( )
A 、a b <
B 、a b >
C 、1ab <
D 、2ab >
12、函数y =的最小正周期是 ( ) A 、
2π B 、π C 、3
2
π D 、2π Ⅱ、非选择题
二、填空题
13、已知tan 3,α=则
2
22sin 4cos 3
αα+= . 14、函数2
1sin 2cos y x x =-+的最大值是 .最小值是 .
15、已知(3,2),(1,1)a b ==-r r
,则,a b r r 的夹角的余弦值为 .
16、已知44
cos(),cos(),90180,27036055
αβαβαβαβ-=-
+=︒<-<︒︒<+<︒,则sin2α= .
第2题
三、解答题 17、化简:
(1)sin(1071)sin99sin(171)sin(261)-︒︒+-︒-︒g g ;
(2)2
1sin(2)sin()2cos ()αππαα+-+--g
.
18、如图所示,表示电流轻度I (A )与时间t (s )的关系sin()I A t ωϕ=+在一个周期内的图像 (1)写出解析式;
(2)为使sin()I A t ωϕ=+中,t 在任意一段
1
100
s
时取到最大值A 和最小值A -,那么正整数ω的最小值是多少?
19、在ABC V 中,(2,3),(1,)AB AC k ==u u u r u u u r
,且ABC V 的一个内角为直角,求k 的值.
19、已知,a b r r ,3,2a b ==r r ,a 和b 的夹角60︒,设m R ∈,35,3.c a b d ma b =+=-r r r u r r r
(1)当m 为何值时,c b ⊥r r
? (2)当m 为何值时,c b r r
P ?
20、已知5512cos ,sin 43413παπβ⎛⎫⎛⎫-=+=- ⎪ ⎪⎝⎭⎝⎭,且0,4πβ⎛⎫∈ ⎪⎝⎭,3,44παπ⎛⎫
∈ ⎪⎝⎭
,求()sin αβ+的值.
21、已知31sin cos 444x x ππ⎛
⎫⎛
⎫--=- ⎪ ⎪⎝
⎭⎝
⎭,求cos4x 的值.。

相关文档
最新文档