解一元二次方程练习题(直接开平方法、配方法)(入门简单))
(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题方法一:直接开平方法(依据平方根的定义)平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式一、 用直接开平方法解下列一元二次方程。
1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x方法二:配方法解一元二次方程1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。
2. 配方法解一元二次方程的步骤:(1) (2)(3) 4) (5)二、用配方法解下列一元二次方程。
1、.0662=--y y2、x x 4232=- 39642=-x x 、4、0542=--x x5、01322=-+x x6、07232=-+x x方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0)解:二次项系数化为1,得 ,移项 ,得 ,配方, 得 ,方程左边写成平方式 ,∵a ≠0,∴4a 2 0,有以下三种情况:(1)当b 2-4ac>0时,=1x , =2x(2)当b 2-4ac=0时,==21x x 。
(3)b 2-4ac<0时,方程根的情况为 。
3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因(1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。
当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。
一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题方法一:直接开平方法(依据平方根的定义)如果 a x =2那么 a x ±= 注意;x 可以是多项式一、用直接开平方法解下列一元二次方程。
1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22=--x方法二:配方法解一元二次方程1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。
配方法解一元二次方程的步骤:二、用配方法解下列一元二次方程。
1、.0662=--y y2、x x 4232=- 39642=-x x 、4、0542=--x x5、01322=-+x x6、07232=-+x x方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0)(1)当b 2-4ac>0时,=1x ,=2x 。
(2)当b 2-4ac=0时,==21x x 。
(3)当b 2-4ac<0时,方程根的情况为 。
二、用公式解法解下列方程。
1、0822=--x x2、22314y y -= 3、y y 32132=+ 4、01522=+-x x5、1842-=--x x6、02322=--x x 7.x 2+4x -3=0 8..03232=--x x方法四:因式分解法因式分解的方法:(1)提公因式法:(2)公式法:平方差: 完全平方:(3)十字相乘法:一、 用因式分解法解下列一元二次方程。
1、x x 22=2、0)32()1(22=--+x x3、0862=+-x x4、22)2(25)3(4-=+x x5、0)21()21(2=--+x x6、0)23()32(2=-+-x x二、 用适当的方法解下列一元二次方程。
解一元二次方程练习题(直接开平方法、配方法)

解一元二次方程练习题(直接开平方法、配方法)直接开平方法1. 题目:解方程 $x^2 - 5x + 6 = 0$解答:首先,根据直接开平方法,我们需要找到两个数,它们的和等于 $-5$,乘积等于 $6$。
很明显,这两个数分别是 $-2$ 和 $-3$。
因此,我们可以将方程变为两个线性方程:$x^2 - 2x - 3x + 6 = 0$。
接下来,我们可以对这两个线性方程进行因式分解:$x(x - 2) - 3(x - 2) = 0$。
再进一步化简,我们可以得到:$(x - 2)(x - 3) = 0$。
因此,方程的解是 $x = 2$ 或 $x = 3$。
2. 题目:解方程 $2x^2 - 7x + 3 = 0$解答:这个方程也可以使用直接开平方法来解决。
我们需要找到两个数,它们的和等于 $-\frac{7}{2}$,乘积等于 $3$。
通过观察系数,我们可以确定这两个数分别是 $-\frac{1}{2}$ 和 $-3$。
因此,我们可以将方程变为两个线性方程:$2x^2 - \frac{1}{2}x - 6x + 3 = 0$。
接下来,我们可以对这两个线性方程进行因式分解:$x(2x -\frac{1}{2}) - 3(2x - \frac{1}{2}) = 0$。
再进一步化简,我们可以得到:$(2x - \frac{1}{2})(x - 3) = 0$。
因此,方程的解是 $x =\frac{1}{4}$ 或 $x = 3$。
配方法1. 题目:解方程 $3x^2 + 2x - 1 = 0$解答:对于这个方程,我们可以使用配方法来解决。
首先,我们需要找到一个数 $m$,使得方程 $3x^2 + 2x - 1$ 可以被写成 $(x +m)^2$ 的形式。
我们可以通过观察常数项的符号来得到一个启示。
由于常数项是负数,我们可以猜测 $m$ 的值为 $-\frac{1}{3}$。
将方程重新写成 $(x - \frac{1}{3})^2 = 0$,然后展开,我们可以得到$x^2 - \frac{2}{3}x + \frac{1}{9} = 0$。
(完整版)配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1.用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-17.把方程x+3=4x配方,得A.2=7B.2=21 C.2=1D.2=28.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于7C.可为任何实数 D.可能为负数10.用配方法解下列方程:3x2-5x=2. x2+8x=9x2+12x-15=01x2-x-4=0所以方程的根为?11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。
一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。
21、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。
1、.y2?6y?6?0、3x2?2?4x、x2?4x?964、x2?4x?5?05、2x2?3x?1?0 、3x2?2x?7?07、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。
32y、3y2?1?2y1、x2?2x?8?0 、4y?1?4、2x2?5x?1?0、?4x2?8x??16、2x2?3x?2?0四、用因式分解法解下列一元二次方程。
1、x2?2x 、2?2?0 、x2?6x?8?04、42?2525、x2?x?0、?2?0五、用适当的方法解下列一元二次方程。
《配方法解一元二次方程》练习题

《配方法解一元二次方程》练习题(一)1.用配方法解下列方程(1).210x x +-= (2).23610x x +-= (3).21(1)2(1)02x x ---+= 2. 用适当的数(式)填空: 23x x -+ (x =- 2); 2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ .3. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 4. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.5.(1)2(1)9x -=; (2)2(21)3x +=; (3)2(61)250x --=.6. 解方程281(2)16x -=.7. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=; (3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥.8. 填空(1)28x x ++( )=(x + )2. (2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 9. 用配方法解方程23610x x --=. 22310x x --=. 22540x x --=.10. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = .关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=. 13. 用配方法证明:(1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0.14. 解方程23270x +=,得该方程的根是( )A.3x =± B.3x =C.3x =- D.无实数根15. x 取何值时,2x -的值为2-?用配方法解一元二次方程练习题(二)1.用适当的数填空:①、x 2+6x+ =(x+ )2;②、x 2-5x+ =(x - )2;③、x 2+ x+ =(x+ )2;④、x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对6.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-17.把方程x+3=4x 配方,得( )A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为()A.2±B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7C.可为任何实数D.可能为负数10.用配方法解下列方程:(1)3x2-5x=2.(2)x2+8x=91x2-x-4=0(3)x2+12x-15=0 (4)411.用配方法求解下列问题(1)求2x2-7x+2的最小值;(2)求-3x2+5x+1的最大值。
配方法解一元二次方程练习题及答案

配方法解一元二次方程练习题及答案1.用适当的数填空:①、x22;③、x2=2;④、x2-9x+ =22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成2=b的形式为_______,_________.5.若x2+6x+m2是一个完全平方式,则m的值是A. B.- C.±3D.以上都不对6.用配方法将二次三项式a2-4a+5变形,结果是A.2+1B.2-1C.2+1D.2-17.把方程x+3=4x配方,得A.2=7B.2=21 C.2=1D.2=28.用配方法解方程x2+4x=10的根为A.2± B.-2C.D.9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值 A.总不小于B.总不小于7C.可为任何实数 D.可能为负数10.用配方法解下列方程:3x2-5x=2. x2+8x=9x2+12x-15=01x2-x-4=0所以方程的根为?11.用配方法求解下列问题求2x2-7x+2的最小值;求-3x2+5x+1的最大值。
一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。
21、4x?1?0、?、?x?1??、81?x?2??1622二、用配方法解下列一元二次方程。
1、.y2?6y?6?0、3x2?2?4x、x2?4x?964、x2?4x?5?05、2x2?3x?1?0 、3x2?2x?7?07、?4x2?8x?1?0 、x2?2mx?n2?09、x2?2mx?m2?0?m?0?三、用公式解法解下列方程。
32y、3y2?1?2y1、x2?2x?8?0 、4y?1?4、2x2?5x?1?0、?4x2?8x??16、2x2?3x?2?0四、用因式分解法解下列一元二次方程。
1、x2?2x 、2?2?0 、x2?6x?8?04、42?2525、x2?x?0、?2?0五、用适当的方法解下列一元二次方程。
配方法解一元二次方程基础练习30题含详细答案

即 ,
故选D.
10.B
【解析】
试题分析: , , .故选B.
考点:解一元二次方程-配方法.
11.C
【分析】
常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.
【详解】
解:∵ ,
∴ ,即 ,
故选:C.
【点睛】
本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.
【详解】
a=3,b=-2,c=-2,
b2-4ac=(-2)2-4×3×(-2)=28>0,
∴x= = ,
, .
【点睛】
本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.
19.(1) ;(2) 是方程的解.
【解析】
【详解】
A、由原方程,得 ,
等式的两边同时加上一次项系数2的一半的平方1,得 ;
故本选项正确;
B、由原方程,得 ,
等式的两边同时加上一次项系数−7的一半的平方,得, ,
故本选项正确;
C、由原方程,得 ,
等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;
故本选项错误;
D、由原方程,得3x2−4x=2,
12.用配方法解一元二次方程 ,配方正确的是().
A. B.
C. D.
13.用配方法解下列方程时,配方有错误的是()
A. 化为 B. 化为
C. 化为 D. 化为
14.用“配方法”解一元二次方程x2﹣16x+24=0,下列变形结果,正确的是( )
A.(x﹣4)2=8B.(x﹣4)2=40C.(x﹣8)2=8D.(x﹣8)2=40
解一元二次方程练习题(配方法)精编版

21.用适当的数填空:A . 3B . -3C .± 3D .以上都不对6.用配方法将二次三项式 a 2-4a+5 变形,结果是()2 2 2 2 A.(a-2) 2+1 B .(a+2)2-1 C .( a+2)2+1D .(a-2)2-1 7.把方程 x+3=4x 配方,得( )2 2 2 2A .(x-2)2=7B .( x+2) 2=21C .(x-2)2=1D .(x+2)2=2解一元二次方程练习题 ( 配方法 )21) 3x 2-5x=2 .2) x +8x=9①、 x+6x+=( x+ ) 2;②、 x 2-5x+ =( x - )2; ③、 x 2+ x+=( x+ )2;④、 x 2- 9x+ =(x - )223)x 2+12x-15=04) 1 x 2-x-4=042.将二次三项式 2x 2-3x-5 进行配方,其结果为 _________ . 3.已知 4x 2-ax+1 可变为( 2x-b ) 2的形式,则 ab= ____ .224.将一元二次方程 x 2-2x-4=0 用配方法化成( x+a )2=b 的形式为 方程的根为 ________ .5.若 x 2+6x+m 2 是一个完全平方式,则 m 的值是( )______ , ?所以 11.用配方法求解下列问题1)求 2x 2-7x+2 的最小值2)求 -3x 2+5x+1 的最大值。
一元二次方程解法练习题 一、用直接开平方法解下列一元二次方程。
221、 4x 21 02、 (x 3) 2 2223、 x 1 54、 81 x 2 163、 3y 21 2 3y24、 2x 25x 1 02 3、 x 4x 9624、 x 4x 5 025、 2x 23x 1 02 6、 3x 22x 7 027、 4x 8x 1 0228、 x 2mx n 09、 x 2 2mx m 20 m 0、用配方法解下列一元二次方程。