八年级数学上册习题集
初二数学上册不等式练习题

初二数学上册不等式练习题一、基础练习1. 解下列不等式,并将解表示在数轴上:a) 3x + 7 < 10b) 2 - 5x ≥ 12. 计算下列不等式组成的区间的并集,并用数轴表示出来:a) 1 < x ≤ 3b) -4 ≤ x < -13. 如果 x + 2 < x - 3,问该不等式是否有解,为什么?4. 解下列不等式,并将解表示在数轴上:a) |x - 4| < 2b) -3x + 5 > 2x + 15. 解下列关于 x 的不等式,并将解表示在数轴上:a) x(x - 2) > 0b) (x - 3)(x - 5) ≤ 0二、综合练习1. 解下列关于 x 的不等式组,并将解表示在数轴上:a) (x - 3)(x - 4) > 0b) (2x - 3)(x + 1) ≥ 0c) x(x - 2)(x + 1) ≤ 02. 某校初二年级共有 180 名学生,已知男生人数超过女生人数的40%,求男生人数的范围。
3. 某公司的年收入是 300 万元以上,假设每年收入增长不少于 10% ,求 n 年后的最小年收入。
4. 已知两个不等式:2x - 3 < y ≤ 5x + 1 和 3y + 2 > 4x + 5,解该不等式组。
三、应用题1. 小明买了一辆自行车,已知原价为 2000 元,商场正在搞促销活动,每天降价 10%,问过了多少天后,自行车价格降到 1000 元以下?2. 某公交车站至某大厦,全程约 20 公里。
已知 7:00 时公交车从车站发车,每分钟行驶速度为 3 公里,而 7:30 时某早班车从大厦出发,每分钟行驶速度为 4 公里。
问早班车何时追上公交车?3. 某航班 8:00 从 A 市起飞,前往 B 市,航程 800 公里。
同时,一列动车列车 8:05 从 B 市开往 A 市,时速为 180 公里/小时。
问几点钟两车相遇?4. 甲、乙两人玩掷骰子游戏,假设出现的点数加起来是 x,已知甲的点数不能小于 3 ,乙的点数不能大于 9 。
人教版八年级上册 数学几何习题集含答案

1、如图:在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明AB=AC+CD2、如图,AD是∠BAC的角平分线,DE⊥AB垂足为E,DF⊥AC,垂足为点F,且BD=CD 求证:BE=CF3、如图,点B和点C分别为∠MAN两边上的点,AB=AC。
(1)按下列语句画出图形:①AD⊥BC,垂足为D;②∠BCN的平分线CE与AD的延长线交于点E;③连结BE;(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:____≌____,____≌____;(3)并选择其中的一对全等三角形予以证明。
已知:AB=AC,AD⊥BC,CE平分∠BCN,求证:△ADB≌△ADC;△BDE≌△CDE。
AB D CM NE4、如图,PB、PC分别是△ABC的外角平分线且相交于点P.求证:点P在∠A的平分线上AB CP5、如图,△ABC中,p是角平分线AD,BE的交点. 求证:点p在∠C的平分线上6、下列说法中,错误的是()A.三角形任意两个角的平分线的交点在三角形的内部B.三角形两个角的平分线的交点到三边的距离相等C.三角形两个角的平分线的交点在第三个角的平分线上D.三角形任意两个角的平分线的交点到三个顶点的距离相等7、如图在三角形ABC中BM=MC∠ABM=∠ACM求证AM平分∠BAC8、如图,AP、CP分别是△ABC外角∠MAC与∠NCA的平分线,它们相交于点P,PD⊥BM于点D,PF⊥BN于点F.求证:BP为∠MBN的平分线。
9、如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB 的平分线上.10、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.11、八(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.12、如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF。
人教版八年级数学上册 三角形与多边形习题集(含答案)

三角形一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是______三角形.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE 的度数为_____ .3.三角形中最大的内角不能小于_____,两个外角的和必大于_____ .4.三角形ABC中,∠A=40°,顶点C处的外角为110°,那么∠B=_____ .5.锐角三角形任意两锐角的和必大于_____.6.三角形的三个外角都大于和它相邻的内角,则这个三角形为 _____ 三角形.7.在三角形ABC中,已知∠A=80°,∠B=50°,那么∠C 的度数是.8.已知∠A=12∠B=3∠C ,则∠A= .9.已知,如图7-1,∠ACD=130°,∠A=∠B,那么∠A的度数是.10.如图7-2,根据图形填空:(1)AD是△ABC中∠BAC的角平分线,则∠=∠=∠.(2)AE是△ABC中线,则==.(3)AF是△ABC的高,则∠=∠=90°.11.如图7-3所示,图中有个三角形,个直角三角形.12.在四边形的四个外角中,最多有个钝角,最多有个锐角,最多有个直角.13.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C=.14.一个多边形的每个外角都为30°,则这个多边形的边数为;一个多边形的每个内角都为135°,则这个多边形的边数为.15.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.16.若一个n边形的边数增加一倍,则内角和将.17.在一个顶点处,若此正n边形的内角和为,则此正多边形可以铺满地面.18.如图7-4,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .图7-1 图7-2 图7-3图7-4 图7-519.如图7-5,由平面上五个点A 、B 、C 、D 、E 连结而成,则∠A +∠B +∠C +∠D +∠E = .20.以长度为5cm 、7cm 、9cm 、13cm 的线段中的三条为边,能够组成三角形的情况有 种,分别是 .二、选择题21.已知三角形ABC 的三个内角满足关系∠B +∠C =3∠A ,则此三角形( ).A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形22.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为( ).A .4:3:2B .3:2:4C .5:3:1D .3:1:523.三角形中至少有一个内角大于或等于( ).A .45°B .55°C .60°D .65°24.如图7-6,下列说法中错误的是( ).A .∠1不是三角形ABC 的外角B .∠B <∠1+∠2C .∠ACD 是三角形ABC 的外角D .∠ACD >∠A +∠B25.如图7-7,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F =40°,∠C =20°,则∠FBA 的度数为( ).A .50°B .60°C .70°D .80°26.下列叙述中错误的一项是( ).A .三角形的中线、角平分线、高都是线段.B .三角形的三条高线中至少存在一条在三角形内部.C .只有一条高在三角形内部的三角形一定是钝角三角形.D .三角形的三条角平分线都在三角形内部.27.下列长度的三条线段中,能组成三角形的是( ). A .1,5,7 B .3,4,7 C .7,4,1 D .5,5,528.如果三角形的两边长为3和5,那么第三边长可以是下面的( ).A .1B .9C .3D .1029.三条线段a =5,b =3,c 的值为整数,由a 、b 、c 为边可组成三角形( ).A .1个B .3个C .5个D .无数个30.四边形的四个内角可以都是( ).A .锐角B .直角C .钝角D .以上答案都不对31.下列判断中正确的是( ).图7-6 图7-7A .四边形的外角和大于内角和B .若多边形边数从3增加到n (n 为大于3的自然数),它们外角和的度数不变C .一个多边形的内角中,锐角的个数可以任意多D .一个多边形的内角和为1880°32.一个五边形有三个角是直角,另两个角都等于n ,则n 的值为( ).A .108°B .125°C .135°D .150°33.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( ).A .7条B .8条C .9条D .10条34.如图7-9,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( ).A .高B .角平分线C .中线D .不能确定35.如图7-10,已知∠1=∠2,则AH 必为三角形ABC 的( ).A .角平分线B .中线C .一角的平分线D .角平分线所在射线36.现有长度分别为2cm 、4cm 、6cm 、8cm 的木棒,从中任取三根,能组成三角形的个数为( ).A . 1B . 2C . 3D . 437.如图7-11,三角形ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB 、AD 、AC 及BC 的延长线于点E 、H 、F 、G ,下列四个式子中正确的是( )38.如图7-12,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上的一点,CF ⊥AD 于H .下列判断正确的有( ).(1)AD 是三角形ABE 的角平分线. (2)BE 是三角形ABD 边AD 上的中线.(3)CH 为三角形ACD 边AD 上的高.A .1个B .2个C .3个D .0个三、解答题39.如图,在三角形ABC 中,∠B =∠C ,D 是BC 上一点,且FD ⊥BC ,DE ⊥AB ,∠AFD =140°,你能求出∠EDF 的度数吗?40.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那图7-9 图7-10 图7-11 图7-12么,丁岛分别在甲岛和乙岛的什么方向?41.如图,已知三角形ABC的三个内角平分线交于点I,IH⊥BC于H,试比较∠CIH和∠BID 的大小.42.如图,在三角形ABC中,AD⊥BC,BE⊥AC,CF⊥AB,BC=16,AD=3,BE=4,CF=6,你能求出三角形ABC的周长吗?43.如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?44.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.45.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE 与DF平行吗?为什么?46.某同学在计算多边形的内角和时,得到的答案是1125°,老师指出他少加了一个内角的度数,你知道这个同学计算的是几边形的内角和吗?他少加的那个内角的度数是多少?47.把边长为2cm的正方形剪成四个一样的直角三角形,如图所示.请用这四个直角三角形拼成符合下列条件的图形:(1)不是正方形的菱形;(2)不是正方形的长方形;(3)梯形;(4)不是长方形、菱形的的平行四边形.48.下面是数学课堂的一个学习片段,阅读后,请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题.“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经过片刻的思考与交流后,李明同学举手说: “其余两角是30°和120°”;王华同学说:“其余两角是75°和75°.” 还有一些同学也提出了自己的看法…(1)假如你也在课堂中, 你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受?(用一句话表示)49.如图,凸六边形ABCDEF的六个角都是120°,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?参考解析:一、填空题1.直角2.15°3.60°,180°4.70°5.90°6.锐角7.∠C=180°-80°-50°=50°.8.设∠A的度数为x.则∠B=2x,∠C=x.所以x+2x+x=180°,解得x=54°.所以∠A=54°.9.∠A=∠B=∠ACD=65°.10.(1)BAD,CAD,BAC;(2)BE,CE,BC;(3)AFB,AFC.11.解:有5个三角形,分别是△ABD,△ADE,△CDE,△ADC,△ABC;有4个直角三角形,分别是△ABD,△ADE,△CDE,△ADC.12.3,2,413.120°14.12,815.正三角形和正四边形、正三角形和正六边形、正四边形和正八边形中任选两种即可.16.增加(n-4)×180°17.360°或720°或180°18.解:因为∠BED=∠A+∠D=47°,所以∠B=180°-90°-47°=43°.所以∠BCD=27°+43°=70°.所以∠ACB=180°-70°=110°.19.解:连结BC,如图,则∠DBC+∠ECB=∠D+∠E.所以∠A+∠B+∠C+∠D+∠E=∠A+∠B+∠C+∠DBC+∠ECB=180°.20.解:有3种.分别以长为5cm,7cm,9cm;7cm,9cm13cm;5cm,9cm,13cm的线段为边能组成三角形.二、选择题21.A22.C23.C24.D25.C26.C27.D28.C29.C30.B31.B32.C33.C34.C(点拨:可能会错选A或B.有的同学一看到面积就认为与高相关,故错选A;有的同学认为平分内角必平分三角形的面积,故错选B.其实,因为△ABD与△ACD同高h,又S△ABD=S△ADC,即BD×h=·CD×h,所以,BD=CD,由此可知,AD为三角形ABC中BC边的中线.)35.D(点拨:可能会错选A或选C.错选A的同学,只注重平分内角而忽视了三角形的角平分线为一线段这一条件;而错选C的同学,实质上与错选A的同学犯的是同一个错误,显然这里“角平分线”与“一角的平分线”是一个意思,因为前提条件是说“AH必为三角形ABC 的”.)36.A(点拨:由三角形的三边关系知:若长度分别为2cm、4cm、6cm,不可以组成三角形;若长度分别为4cm、6cm、8cm,则可以组成三角形;若长度分别为2cm、4cm、8cm,则不可以组成三角形;若长度分别为2cm、6cm、8cm,则不可以组成三角形.即分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为1,故应选A.)37.C(点拨:因为EG⊥AD,交点为H,AD平分∠BAC,所以在直角三角形AHE中,∠1=90°-,在三角形ABC中,易知∠BAC=180°-(∠2+∠3),所以∠1=90°-[180°-(∠2+∠3)]=(∠3+∠2).又因为∠1是三角形EBG的外角,所以∠1=∠2+∠G.所以∠G=∠1-∠2=(∠3+∠2)-∠2=(∠3-∠2).)38.A(点拨:由∠1=∠2,知AD平分∠BAE,但AD不是三角形ABE内的线段,所以(1)不正确;同理,BE虽然经过三角形ABD边AD的中点G,但BE不是三角形ABD内的线段,故(2)不正确;由于CH⊥AD于H,故CH是三角形ACD边AD上的高,(3)正确.应选A.)三、解答题39.解析:要想求∠EDF的度数,我们可以利用平角定义,只要能求出∠EDB即可.而∠EDB 在三角形BDE中,只要能求出∠B就可以利用三角形内角和求∠EDB.而∠B又等于∠C,题中告诉了三角形DFC的一个外角∠AFD=140°,所以我们能得出∠C的度数.解:因为∠AFD是三角形DCF的一个外角.所以∠AFD=∠C+∠FDC.即140°=∠C+90°.解得∠C=50°.所以∠B=∠C=50°.所以∠EDB=180°-90°-50°=40°.所以∠FDE=180°-90°-40°=50°.40.解析:我们可以用字母代替甲、乙、丙、丁,用角度代表方向.把题中数据与图形一一对应,利用各方向的关系可求出丁岛分别在甲岛和乙岛的方向.解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.如图:因为丁岛在丙岛的正北方,所以CD⊥AB.因为甲岛在丁岛的南偏西52°方向,所以∠ACD=52°.所以∠CAD=180°-90°-52°=38°.所以丁岛在甲岛的东偏北38°方向.因为乙岛在丁岛的南偏东40°方向,所以∠BCD=40°.所以∠CBD=180°-90°-40°=50°.所以丁岛在乙岛的西偏北50°方向.41.解析:利用角平分线的性质解.解:因为AI、BI、CI为三角形ABC的角平分线,所以∠BAD=∠BAC,∠ABI=∠ABC,∠HCI=∠ACB.所以∠BAD+∠ABI+∠HCI=∠BAC+∠ABC+∠ACB=(∠BAC+∠ABC+∠ACB)=×180°=90°.所以∠BAD+∠ABI=90°-∠HCI.又因为∠BAD+∠ABI=∠BID,90°-∠HCI=∠CIH,所以∠BID=∠CIH.所以∠BID和∠CIH是相等的关系.42.解析:本题已知一边长和三条高,我们可以利用三角形的面积公式求得另外两边长,三边相加即可得到三角形的周长.解:由三角形面积公式可得S△ABC=BC×AD=AC×BE,即16×3=4×AC,所以AC=12.由三角形面积公式可得S△ABC=BC×AD=AB×CF,即16×3=6×AB.所以AB=8.所以三角形ABC的周长为16+12+8=36.43.解析:本题要求AC与AB的边长的差,且AC与AB的长度都不知道,不少同学感到无从下手.其实,只要我们仔细分析分析题中条件:三角形ABD的周长比三角形ACD的周长小5,即AC-AB+CD-BD=5,又AD是BC边上的中线,所以BD=CD.所以AC-AB=5.解:AC-AB=5.44.解析:在第(1)和第(2)问中,没有说明所给边长是腰长还是底边长,因此我们要进行分类讨论.在第(3)问中,只给出了三边长都是整数,而此三角形又是等腰三角形,所以其最长边小于8cm,我们可以用列表法一一列出各组边长.解:(1)如果腰长为4cm,则底边长为16-4-4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.所以应该是底边长为4cm.所以腰长为(16-4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm.(2)如果腰长为6cm,则底边长为16-6-6=4cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理.所以另外两边长分别为6cm和4cm.如果底边长为6cm,则腰长为(16-6)÷2=5cm.三边长为6cm,5cm,5cm,符合三角形三边关系定理,所以另外两边长都为5cm.(3)因为周长为16cm,且三边都是整数,所以三角形的最长边不会超过8cm且是等腰三角形,我们可用列表法,求出其各边长如下:7cm,7cm,2cm;6cm,5cm,5cm;6cm,6cm,4cm,共有这三种情况.45.解析:要想BE与DF平行,就要找平行的条件.题中只给出了∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.那么我们是利用同位角相等呢还是利用同旁内角互补?经过仔细观察图形我们知道∠BFD是三角形ADF的外角,则∠BFD=∠A+∠ADF.而∠ADF是∠ADC的一半,∠ABE是∠ABC的一半,所以我们选择用同旁内角互补来证平行.解:BE与DF平行.理由如下:由n边形内角和公式可得四边形内角和为(4-2)×180°=360°.因为∠A=∠C=90°,所以∠ADC+∠ABC=180°.因为BE平分∠ABC,DF平分∠ADC,所以∠ADF=∠ADC,∠ABE=∠ABC.因为∠BFD是三角形ADF的外角,所以∠BFD=∠A+∠ADF.所以∠BFD+∠ABE=∠A+∠ADC+∠ABC=∠A+(∠ADC+∠ABC)=90°+90°=180°.所以BE与DF平行.46.解析:我们发现1125°不能被180°整除,所以老师说少加了一个角的度数.我们可设少加的度数为x,利用整除求解.解:设少加的度数为x.则1125°=180°×7-135°.因为0°<x<180°,所以x=135°.所以此多边形的内角和为1125°+135°=1260°.设多边形的边数为n,则(n-2)×180°=1260°,解得n=9.所以此多边形是九边形,少加的那个内角的度数是135°.47.解析:题中告诉了我们按要求拼成.解:如图:48.解析:本题首先要求考生在阅读数学课堂的一个学习片断后,对两名学生的说法提出自己的看法,这时考生应抓住题中条件“等腰三角形ABC的角A等于30°”这个不确定条件进行分析研究.当∠A是顶角时,设底角是α,∴30°+α+α=180°,α=75°,∴其余两底角是75°和75°.当∠A是底角时,设顶角是β,∴30°+30°+β=180°,β=120°,∴其余两角是30°和120°.由此说明李明和王华两同学都犯了以偏概全的答题的错误.对于第(2)问应在第(1)问的解答的基础上,可总结出“根据图形位置关系,实施分类讨论思想方法解多解型问题”,“考虑问题要全面”等.小结:三角形的中线、角平分线、高(线)是三角形中三条十分重要的线段,初学者常因不能准确理解其概念的实质内涵,而出现这样或那样的错误,现举例分析如下,以达到亡羊补牢或未雨绸缪的目的.49.解析:要求六边形的周长,必须先求出边EF和AF的长.由六边形ABCDEF的六个角都是120°,可知六边形的每一个外角的度数都是60°,如图4,如果延长BA,得到的∠PAF=60°,延长EF,得到的∠PFA=60°,两条直线相交形成三角形APF,在三角形APF 中,∠P的度数为180°-60°-60°=60°,因此三角形APF是等边三角形.同样的道理,我们分别延长AB、DC,交于点G,那么三角形BGC为等边三角形.分别延长FE、CD交于点H,则三角形DHE也是等边三角形.所以∠P=∠G=∠H=60°.所以三角形GHP也是等边三角形.于是我们得到三角形APF、三角形BGC、三角形DHE、三角形GHP四个等边三角形.于是就把多边形的问题转化为和等边三角形有关的问题.利用等边三角形的三边相等的性质,可以轻松的求出AF和EF的长,从而求出六边形ABCDEF的周长.解:如图4,分别作直线AB、CD、EF的延长线使它们交于点G、H、P.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以三角形APF、三角形BGC、三角形DHE、三角形GHP都是等边三角形.所以GC=BC=8cm,DH=DE=6cm.所以GH=8+11+6=25cm,FA=PA=PG-AB-BG=25-2-8=15cm,EF=PH-PF-EH=25-15-6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.多边形及其内角和一、选择题:(每小题3分,共24分)1.一个多边形的外角中,钝角的个数不可能是( )A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是( )A.120°B.(12847)° C.144° D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )A.2:1B.1:1C.5:2D.5:44.一个多边形的内角中,锐角的个数最多有( )A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角6.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形7.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形8.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )A.90°B.105°C.130°D.120°二、填空题:(每小题3分,共15分)1.多边形的内角中,最多有________个直角.2.从n边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形.3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________.4.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为_________.5.每个内角都为144°的多边形为_________边形.三、基础训练:(每小题12分,共24分)1.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(n=20)时,需要多少根火柴?2.一个多边形的每一个外角都等于24°,求这个多边形的边数.四、提高训练:(共15分)一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.五、探索发现:(共18分)从n边形的一个顶点出发,最多可以引多少条条对角线?请你总结一下n边形共有多少条对角线.六、中考题与竞赛题:(共4分)若一个多边形的内角和等于1080°,则这个多边形的边数是( )A.9B.8C.7D.6答案:一、1.D 2.D 3.D 4.A 5.C 6.A 7.B 8.C二、1.4 2.(n-3) (n-2) 3.9 4.11 5.十三、1.630根 2.15四、边数为2()m nn+,n=1或2.五、(n-3)(3)2n n-条六、B.多边形练习题一、判断题.1.当多边形边数增加时,它的内角和也随着增加.()n=3 n=2n=12.当多边形边数增加时.它的外角和也随着增加.()3.三角形的外角和与一多边形的外角和相等.()4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.()5.四边形的四个内角至少有一个角不小于直角.()二、填空题.1.一个多边形的每一个外角都等于30°,则这个多边形为边形.2.一个多边形的每个内角都等于135°,则这个多边形为边形.3.内角和等于外角和的多边形是边形.4.内角和为1440°的多边形是.5.一个多边形的内角的度数从小到大排列时,恰好依次增加相同的度数,其中最小角为100°,最大的是140°,那么这个多边形是边形.6.若多边形内角和等于外角和的3倍,则这个多边形是边形.7.五边形的对角线有条,它们内角和为.8.一个多边形的内角和为4320°,则它的边数为.9.多边形每个内角都相等,内角和为720°,则它的每一个外角为.10.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D= .11.四边形的四个内角中,直角最多有个,钝角最多有个,锐角最多有个.12.如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.三、选择题.1.多边形的每个外角与它相邻内角的关系是()A.互为余角 B.互为邻补角 C.两个角相等 D.外角大于内角2.若n边形每个内角都等于150°,那么这个n边形是()A.九边形 B.十边形 C.十一边形 D.十二边形3.一个多边形的内角和为720°,那么这个多边形的对角线条数为()A.6条 B.7条 C.8条 D.9条4.随着多边形的边数n的增加,它的外角和()A.增加 B.减小 C.不变 D.不定5.若多边形的外角和等于内角和的和,它的边数是()A.3 B.4 C.5 D.76.一个多边形的内角和是1800°,那么这个多边形是()A.五边形 B.八边形 C.十边形 D.十二边形7.一个多边形每个内角为108°,则这个多边形()A.四边形 B,五边形 C.六边形 D.七边形8,一个多边形每个外角都是60°,这个多边形的外角和为()A.180° B.360° C.720° D.1080°9.n边形的n个内角中锐角最多有()个.A.1个 B.2个 C.3个 D.4个10.多边形的内角和为它的外角和的4倍,这个多边形是()A.八边形 B.九边形 C.十边形 D,十一边形四、解答题.1.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.2.一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n 边形呢?3.已知多边形的内角和为其外角和的5倍,求这个多边形的边数.4.若一个多边形每个外角都等于它相邻的内角的21,求这个多边形的边数.5.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数.6.n 边形的内角和与外角和互比为13:2,求n .7.五边形ABCDE 的各内角都相等,且AE =DE ,AD ∥CB 吗?8.将五边形砍去一个角,得到的是怎样的图形?9.四边形ABCD 中,∠A+∠B=210°,∠C =4∠D .求:∠C 或∠D 的度数.10.在四边形ABCD 中,AB =AC =AD ,∠DAC =2∠BAC .求证:∠DBC =2∠BDC .。
数学初二数学习题集

数学初二数学习题集题目一:整数的运算1. 计算:(-5) + 7 - (-2) + (-9) + 112. 将以下小数用分数表示:0.25, 0.6, -0.75, -3.23. 求以下两个数的积的相反数:-3(2/3)和-4(4/5)题目二:代数的基本概念1. 判断以下哪些是代数式,哪些是算式:3x + y, 4 + 2 = 6, 3 + 2y = 82. 用适当的数值代入变量,求解以下方程:a) 2x + 5 = 17b) 3y - 8 = 7题目三:平面图形的性质与计算1. 给出三角形ABC的三条边长分别为5cm, 8cm, 10cm,判断该三角形的类型并说明理由。
2. 已知平行四边形ABCD中,AB = 3cm,BC = 5cm,求对角线BD的长度。
3. 给出一个梯形ABCD,已知AD平行BC,AB = 6cm,BC = 9cm,CD = 12cm,求AD的长度。
题目四:数据的统计与分析1. 对以下一组数据进行频数统计,并绘制频数直方图:2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8, 9, 102. 某班级20位学生的数学成绩如下:78, 85, 92, 80, 88, 89, 76, 81, 95, 84, 79, 93, 87, 90, 83, 86, 91, 85, 88, 94a) 求该班级的平均数b) 求该班级的中位数c) 求该班级的众数题目五:概率与统计1. 一枚硬币抛掷3次,计算出现3次正面朝上的概率。
2. 一副标准扑克牌中,红桃牌有13张,从中抽取5张牌,计算抽到全是红桃牌的概率。
3. 某农场有100头奶牛,统计数据显示,每头奶牛生第二胎是公牛的概率为0.5,如果第二胎是母牛,则生第三胎是公牛的概率为0.4。
根据这些数据,计算该农场最终会有多少头公牛。
题目六:几何体的计算1. 给定一个正方体的棱长为3cm,求其体积和表面积。
2. 某房间的长、宽、高分别为4m,3m,2.5m,求其体积。
新版人教版八年级数学上册全册习题集

新版人教版八年级数学上册全册习题集目录1. 第一章:整数2. 第二章:有理数3. 第三章:代数式4. 第四章:图形的认识5. 第五章:图形的性质6. 第六章:相交线与平行线7. 第七章:三角形8. 第八章:全等三角形9. 第九章:五边形与多边形10. 第十章:集合第一章:整数本章介绍整数的概念、整数之间的大小比较、整数的加减法运算以及整数的乘法运算。
通过题练,加深对整数概念的理解,并掌握整数的运算方法和技巧。
第二章:有理数本章介绍有理数的概念、有理数之间的大小比较、有理数的加减法运算以及有理数的乘除法运算。
通过题练,巩固对有理数概念的掌握,提高有理数运算的能力。
第三章:代数式本章介绍代数式的概念、代数式的计算与化简、代数式的值、代数式的应用等内容。
通过题练,培养代数思维能力,掌握代数式的运算技巧。
第四章:图形的认识本章介绍图形的基本概念和常见图形的性质。
通过题练,加深对图形认识的理解,掌握图形的命名、计算面积和周长的方法。
第五章:图形的性质本章介绍圆和与圆有关的性质,以及相似图形的性质。
通过题练,加深对圆和相似图形性质的理解,提高解决相关问题的能力。
第六章:相交线与平行线本章介绍平行线和相交线的性质,以及平行线与相交线间夹角和对应角的关系。
通过题练,掌握平行线和相交线的性质,提高几何问题的解决能力。
第七章:三角形本章介绍三角形的定义、分类和性质,以及三角形的角平分线和垂线的性质。
通过题练,加深对三角形性质的理解,提高解决相关问题的能力。
第八章:全等三角形本章介绍全等三角形的概念和性质,以及全等三角形的判定方法。
通过题练,掌握全等三角形的判定和应用,提高解决相关问题的能力。
第九章:五边形与多边形本章介绍五边形和多边形的定义、分类和性质,以及多边形的内角和外角的关系。
通过题练,加深对五边形和多边形性质的理解,提高解决相关问题的能力。
第十章:集合本章介绍集合及其表示方法、集合的运算和集合的应用。
通过题练,培养集合思维能力,巩固对集合概念的掌握。
人教版八年级数学上册几何证明习题集

C八年级上册几何证明题题集1、 已知:在⊿ABC 中,AB=AC ,延长AB 到D ,使AB=BD ,E 是AB 的中点。
求证:CD=2CE 。
2、 已知:在⊿ABC 中,作∠FBC=∠ECB=21∠A 。
求证:BE=CF 。
B3、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
CB4、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
ABB DCA B C DE P 图 ⑴5、如图甲,Rt ∆ABC 中,AB=AC ,点D 、E 是线段AC 上两动点,且AD=EC ,AM ⊥BD ,垂足为M ,AM 的延长线交BC 于点N ,直线BD 与直线NE 相交于点F 。
(1)试判断∆DEF 的形状,并加以证明。
(2)如图乙,若点D 、E 是直线AC 上两动点,其他条件不变,试判断∆DEF 的形状,并加以证明。
6、已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
7、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .①②③图88、△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点,就下面给出的三种情况,如图8中的①②③,先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度.并利用图③证明你的结论.9、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
初二上学期数学练习题

初二上学期数学练习题在初二上学期,数学是一门重要的学科,它帮助我们培养逻辑思维和解决问题的能力。
下面是一些初二上学期数学练习题,帮助同学们巩固所学的知识,并提升数学解题能力。
1. 判断题:(每题2分,共10个小题)( ) 1. 两个互质的数的最大公因数一定是1。
( ) 2. 分子比分母小的真分数一定小于1。
( ) 3. 两个相交的直线一定共有一个交点。
( ) 4. 正方形是长方形的一种特殊情况。
( ) 5. 对称轴将图形分为两个对称的部分。
2. 选择题:(每题3分,共15个小题)( ) 1. 下列哪个数是无理数?A. 4B. -3C. 2.5D. √5( ) 2. 下列哪个点不在坐标图中?A. (2, 3)B. (-5, 0)C. (0, 0)D. (1, -1)( ) 3. 若1/2 ÷ a = 2/3,则a的值为多少?A. 1B. 3/4C. 3/2D. 4/3( ) 4. 解方程2x + 3 = 7的解是:A. x = 2B. x = 3C. x = 5D. x = 7( ) 5. 一个立方体的体积是64立方厘米,它的边长是多少?A. 2 cmB. 4 cmC. 6 cmD. 8 cm3. 计算题:(每题5分,共3个小题)1) 计算:20 ÷ (4 - 2) + 5 × 2 = ?2) 某员工的每小时工资是30元,他这个月工作了20天,每天工作8小时,应发工资是多少?3) 一个数字的十分之一加上三分之一等于2,这个数字是多少?4. 解答题:(每题15分,共2个小题)1) 分解因数:将36分解为两个不同的质数之积。
2) 已知两个直角边的长分别是3cm和4cm,求斜边的长。
5. 应用题:(每题20分,共2个小题)1) 一袋米重4.5千克,小明买了9袋米,问他买了多少千克的米?2) 小华每天骑自行车去上学,单程用时30分钟,来回用时1小时。
如果每天骑行的距离是12公里,求小华骑自行车的平均速度。
八年级上册数学练习题

C第一章 勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 (A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.58. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ).(A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元10.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). (A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米. 12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:EABCDBDE ABCD第18题图7cm“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册习题集第一章勾股定理1、勾股定理及其逆定理一、填空题1.△ABC,∠C=90°,a=9,b=12,则c=__________。
2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°。
3.等边三角形的边长为6 cm,则它的高为__________。
4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________。
5.直角三角形两直角边长分别为3 和4,则斜边上的高为__________。
6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________。
7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________。
8.等腰三角形的两边长为2和4,则底边上的高为__________。
9.如图1,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米。
10.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x2的值是__________。
图1 图2 图3 图4二、选择题11.下列各组数中,不能构成直角三角形的一组是()A.1,2,5B.1,2,3C.3,4,5 D.6,8,1212.如图2,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.6C.5D.413.已知三角形的三边长之比为1∶1∶2,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形14.直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长()A.4 cm B.8 cm C.10 cm D.12 cm15.如图3,以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较大的半圆面积,则这个三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形三、解答题18、在某山区需要修建一条高速公路,在施工过程中要沿直线AB 打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD =150°,∠D =60°,BD =10 k m ,请根据上述数据,求出隧道BC 的长。
19、如图,要从电线杆离地面5米处向地面拉一条13米长的拉线,求地面拉线固定点A 到电线杆底部B 的距离。
20、如图,校园内有两棵树,相距BC=12米,一棵树高AB 为13米,另一棵树高CD 为8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多远?21、如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时梯子底部B 到墙底端的距离为0.7米,BCAD考虑爬梯子的稳定性,现要将梯子顶部A沿墙下移0.4米到A′处,问梯子底部B将外移多少米?2、用勾股定理解古代趣题一、古代趣题1、12世纪印度著名数学家婆什迦罗给出了一个歌谣式的问题:波平如镜一湖面,3尺高处出红莲。
亭亭多姿湖中立,突遭狂风吹一边。
离开原处6尺远,花贴湖面像睡莲。
请君动脑想一想,湖水在此深若干尺?2、《九章算术》中的“折竹抵地”问题上:今有竹高一丈,末折抵地,去本四尺。
问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远。
问折断后的竹子有多高?3、苍鹰与蛇的问题:树根下有一蛇洞,树高15米,树顶有一只苍鹰,它看见一条蛇迅速向洞口爬去,与洞口的距离还有三倍树高时,鹰向蛇直扑过去。
如果鹰、蛇的速度相等,鹰扑击蛇的路线是直线段,请说出,鹰向何处扑击才能恰好抓住蛇?4、有一棵古树直立在地上,树高2丈,粗3尺,有一根藤条从根处缠绕而上,缠绕5周到达树顶,请问这根藤条有多长?(注:古树可以看成圆柱体;树粗3尺指的是圆柱底面周长为3尺。
1丈=10尺)二、最短距离问题5、如图,有一个底面半径为6cm,高为24cm的圆柱,在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物后再返回到A点处休息,请问它需爬行的最短路程约是多少?(π取整数3)6、有一个长宽高分别为2cm,1cm,3cm的长方体,如图,有一只小蚂蚁想从点A爬到点C1处,请你帮它设计爬行的最短路线,并说明理由。
7、一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?8、若△ABC的三边长为a、b、c,根据下列条件判断△ABC的形状。
(1)a2+b2+c2+200=12a+16b+20c(2) a3-a2b+ab2-ac2+bc2-b3=0 B CAD第二章 实数 1、平方根一、选择题1、下列各式中,正确的是( ) A .-49-=-(-7)=7B .412=121 C .1694+=2+43=243D .25.0=±0.52、下列说法正确的是( )A .5是25的算术平方根B .±4是16的算术平方根C .-6是(-6)2的算术平方根D .0.01是0.1的算术平方根3、36的算术平方根是( )A .±6B .6C .±6D .64、一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是( )A .m +2B .m +2C .22+mD .2+m5、当1<x <4时,化简221x x +--1682+-x x 结果是( ) A .-3 B .3 C .2x -5D .56、下列各数中没有平方根的数是( )A .-(-2)3B .3-3 C .a 0D .-(a 2+1)7、下列结果错误的个数是( )①(-2)2的算术平方根是-2 ②16的算术平方根是4 ③1241的算术平方根是27④(-π)2的算术平方根是±π A.1 B.2 C.3 D.48、若正方形的边长是a ,面积为S ,那么( )A. S 的平方根是aB. a 是S 的算术平方根C. a =±SD. S =a9、7-2的算术平方根是( )A.71 B.7 C.41 D.410、169+的值是( )A.7B.-1C.1D.-7二、填空题11、若x 2=(-7)2,则x =__________。
12.若2+x =2,则2x+5的平方根是__________。
13、若14+a 有意义,则a 能取的最小整数为____________。
14.已知0≤x ≤3,化简2x +2)3(-x =__________。
15.若|x -2|+3-y =0,则x·y =______。
16、如果a <0,那么2a =________,(a -)2=________。
三、解答题17、计算题 (1)25.05109.031+ (2)412-2(0.5)-(3)64171971⨯ (418、已知某数有两个平方根分别是a +3与2a -15,求这个数。
19、|2a -5|与2+b 互为相反数,求ab 的值。
20、甲乙二人计算a +221a a +-的值,当a =3的时候,得到下面不同的答案: 甲的解答:a +221a a +-=a +2)1(a -=a +1-a =1; 乙的解答:a +221a a +-=a +2)1(-a =a +a -1=2a -1=5。
哪一个解答是正确的?错误的解答错在哪里?为什么?2、立方根一、选择题1、如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-332、若x <0,则332x x -等于( )A.xB.2xC.0D.-2x 3、若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-104、如右图:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2 5、如果2(x -2)3=643,则x 等于( ) A.21B.27C.21或27 D.以上答案都不对6、在下列各式中:327102=343001.0=0.1,301.0 =0.1,-33)27(-=-27,其中正确个数是( ) A.1 B.2C.3D.47、若m <0,则m 的立方根是( )A.3mB.-3mC.±3mD.3m -8、如果36x -是6-x 的三次方根,那么( )A.x <6B.x =6C.x ≤6D.x 是任意数9、若规定误差小于1,那么60的估算值为( )A.3B.7C.8D.7或8 10、立方根等于本身的数是( )A.-1B.0C.±1D.±1或0 二、填空题11、若x <0,则2x =______;33x =________。
12、若x =(35-)3,则1--x =__________。
若a <0,则(3a -)-3=___________。
13、a 是10的整数部分,b 是5的整数部分,则a 2+b 2=____________。
14、大于-317且小于310的整数有________________。
三、解答题15、估算下列数的大小:(1)3261(误差小于1) (2)5.25(误差小于0.1)16、通过估算,比较下列数的大小.(1)215-和21(2)5117+与10917、下列估算结果是否正确?为什么?(1)2.374≈6.8; (2)3800≈20.18、(1)要造一个面积为230m 的圆形花坛,它的半径应是多少(π取3.14,结果保留2个有效数字)?(2)要造一个高与底面圆直径相等的圆柱形容器,并使它的容积为。
这个容器的底面圆半径是多少(π取3.14,结果保留2个有效数字)?3、实数的有关运算一、选择题1、下列说法中,正确的是( )A .任何实数的平方都是正数B .正数的倒数必小于这个正数C .绝对值等于它本身的数必是非负数D .零除以任何一个实数都等于零 2、若m 是一个整数的平方数,那么和m 相邻且比它大的那个平方数是( )A .m +2m +1B .m +1C .m 2+1D .以上都不对3、若a ,b 为实数,下列命题中正确的是( )A .若a >b ,则a 2>b 2B .若a >|b |,则a 2>b 2C .若|a |>b ,则a 2>b 2D .若a >0,a >b ,则a 2>b 2 4、全体小数所在的集合是( )A .分数集合B .有理数集合C .实数集合D .无理数集合 5、无理数46的值在( )A .8和9之间B .9和10之间C .10和11之间D .11和12之间6、下列说法正确的是( )A .无限小数都是无理数B .带根号的数都是无理数C .开方开不尽的数是无理数D .π是无理数,故无理数也可能是有限小数7、已知实数a 、b 、c 在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是( )A .a+cB .-a-2b+cC .a+2b-cD .-a-c8、已知a-b=23-1,ab=3,则(a+1)(b-1)的值为( )A .3-B .33C .22D .22-二、填空题9.下列各数中:-41,7,3.14159,π,310,-34,0,0.⋅3,38,16,2.121122111222…其中有理数有___________________________ ;无理数有_________________________________。