数据结构实验报告模板

合集下载

数据结构课程设计实验报告完整版

数据结构课程设计实验报告完整版

数据结构课程设计实验报告完整版【正文】一、实验目的本实验主要目的是通过实践,掌握数据结构的基本概念、常见数据结构的实现方式以及在实际应用中的应用场景和效果。

二、实验背景数据结构是计算机科学与技术领域中的一个重要概念,是研究数据的组织方式、存储方式、访问方式以及操作等方面的方法论。

在计算机科学领域,数据结构是实现算法和解决问题的基础,因此对数据结构的理解和应用具有重要意义。

三、实验内容本次数据结构课程设计实验主要分为以下几个部分:1. 实验环境的准备:包括选择合适的开发平台、安装必要的软件和工具。

2. 实验数据的收集和处理:通过合适的方式收集实验所需的数据,并对数据进行处理和整理。

3. 数据结构的选择和实现:根据实验需求,选择合适的数据结构,并进行相应的数据结构实现。

4. 数据结构的测试和优化:对所实现的数据结构进行测试,包括性能测试和功能测试,并根据测试结果对数据结构进行优化和改进。

5. 实验报告的撰写:根据实验过程和结果,撰写完整的实验报告,包括实验目的、实验背景、实验内容、实验结果和结论等。

四、实验过程1. 实验环境的准备本实验选择了Visual Studio作为开发平台,安装了相应版本的Visual Studio,并根据官方指引进行了相应的配置和设置。

2. 实验数据的收集和处理本实验选取了一份包含学生信息的数据集,包括学生姓名、学号、性别、年龄等信息。

通过编写Python脚本,成功提取了所需信息,并对数据进行了清洗和整理。

3. 数据结构的选择和实现根据实验需求,我们选择了链表作为数据结构的实现方式。

链表是一种常见的动态数据结构,能够高效地插入和删除元素,适用于频繁插入和删除的场景。

在实现链表时,我们定义了一个节点结构,包含数据域和指针域。

通过指针的方式将节点连接起来,形成一个链式结构。

同时,我们还实现了相关的操作函数,包括插入、删除、查找等操作。

4. 数据结构的测试和优化在完成链表的实现后,我们对其进行了性能测试和功能测试。

《数据结构》实验报告模板(附实例)--实验一线性表的基本操作实现

《数据结构》实验报告模板(附实例)--实验一线性表的基本操作实现

《数据结构》实验报告模板(附实例)---实验一线性表的基本操作实现实验一线性表的基本操作实现及其应用一、实验目的1、熟练掌握线性表的基本操作在两种存储结构上的实现,其中以熟悉各种链表的操作为重点。

2、巩固高级语言程序设计方法与技术,会用线性链表解决简单的实际问题。

二、实验内容√ 1、单链表的表示与操作实现 ( * )2、约瑟夫环问题3、Dr.Kong的艺术品三、实验要求1、按照数据结构实验任务书,提前做好实验预习与准备工作。

2、加“*”题目必做,其他题目任选;多选者并且保质保量完成适当加分。

3、严格按照数据结构实验报告模板和规范,及时完成实验报告。

四、实验步骤(说明:依据实验内容分别说明实验程序中用到的数据类型的定义、主程序的流程以及每个操作(成员函数)的伪码算法、函数实现、程序编码、调试与分析、总结、附流程图与主要代码)㈠、数据结构与核心算法的设计描述(程序中每个模块或函数应加注释,说明函数功能、入口及出口参数)1、单链表的结点类型定义/* 定义DataType为int类型 */typedef int DataType;/* 单链表的结点类型 */typedef struct LNode{ DataType data;struct LNode *next;}LNode,*LinkedList;2、初始化单链表LinkedList LinkedListInit( ){ // 每个模块或函数应加注释,说明函数功能、入口及出口参数 }3、清空单链表void LinkedListClear(LinkedList L){// 每个模块或函数应加注释,说明函数功能、入口及出口参数}4、检查单链表是否为空int LinkedListEmpty(LinkedList L){ …. }5、遍历单链表void LinkedListTraverse(LinkedList L){….}6、求单链表的长度int LinkedListLength(LinkedList L){ …. }7、从单链表表中查找元素LinkedList LinkedListGet(LinkedList L,int i){ //L是带头结点的链表的头指针,返回第 i 个元素 }8、从单链表表中查找与给定元素值相同的元素在链表中的位置LinkedList LinkedListLocate(LinkedList L, DataType x){ …… }9、向单链表中插入元素void LinkedListInsert(LinkedList L,int i,DataType x) { // L 为带头结点的单链表的头指针,本算法// 在链表中第i 个结点之前插入新的元素 x}10、从单链表中删除元素void LinkedListDel(LinkedList L,DataType x){ // 删除以 L 为头指针的单链表中第 i 个结点 }11、用尾插法建立单链表LinkedList LinkedListCreat( ){ …… }㈡、函数调用及主函数设计(可用函数的调用关系图说明)㈢程序调试及运行结果分析㈣实验总结五、主要算法流程图及程序清单1、主要算法流程图:2、程序清单(程序过长,可附主要部分)说明:以后每次实验报告均按此格式书写。

数据结构实验实训报告范文

数据结构实验实训报告范文

一、实验目的1. 理解并掌握数据结构的基本概念和常用算法。

2. 学会使用C语言实现线性表、栈、队列、树和图等基本数据结构。

3. 培养动手实践能力,提高编程水平。

二、实验内容1. 线性表(1)顺序表(2)链表2. 栈(1)顺序栈(2)链栈3. 队列(1)顺序队列(2)链队列4. 树(1)二叉树(2)二叉搜索树5. 图(1)邻接矩阵表示法(2)邻接表表示法三、实验环境1. 操作系统:Windows 102. 编程语言:C语言3. 编译器:Visual Studio 20194. 实验软件:C语言开发环境四、实验步骤1. 线性表(1)顺序表1)定义顺序表结构体2)实现顺序表的初始化、插入、删除、查找等基本操作3)编写测试程序,验证顺序表的基本操作(2)链表1)定义链表结构体2)实现链表的创建、插入、删除、查找等基本操作3)编写测试程序,验证链表的基本操作2. 栈(1)顺序栈1)定义顺序栈结构体2)实现顺序栈的初始化、入栈、出栈、判空等基本操作3)编写测试程序,验证顺序栈的基本操作(2)链栈1)定义链栈结构体2)实现链栈的初始化、入栈、出栈、判空等基本操作3)编写测试程序,验证链栈的基本操作3. 队列(1)顺序队列1)定义顺序队列结构体2)实现顺序队列的初始化、入队、出队、判空等基本操作3)编写测试程序,验证顺序队列的基本操作(2)链队列1)定义链队列结构体2)实现链队列的初始化、入队、出队、判空等基本操作3)编写测试程序,验证链队列的基本操作4. 树(1)二叉树1)定义二叉树结构体2)实现二叉树的创建、遍历、查找等基本操作3)编写测试程序,验证二叉树的基本操作(2)二叉搜索树1)定义二叉搜索树结构体2)实现二叉搜索树的创建、遍历、查找等基本操作3)编写测试程序,验证二叉搜索树的基本操作5. 图(1)邻接矩阵表示法1)定义邻接矩阵结构体2)实现图的创建、添加边、删除边、遍历等基本操作3)编写测试程序,验证邻接矩阵表示法的基本操作(2)邻接表表示法1)定义邻接表结构体2)实现图的创建、添加边、删除边、遍历等基本操作3)编写测试程序,验证邻接表表示法的基本操作五、实验结果与分析1. 线性表(1)顺序表实验结果表明,顺序表的基本操作实现正确,测试程序运行稳定。

大学数据结构实验报告模板

大学数据结构实验报告模板

1、实验目的本实验旨在通过实际操作和代码编写,掌握数据结构的基本概念、常用算法和数据结构的应用能力。

2、实验内容2.1 实验一、线性表的基本操作2.1.1 实验介绍在本实验中,我们将实现线性表的基本操作,包括初始化线性表、插入元素、删除元素、查找元素等。

通过这些基本操作的实现,我们可以加深对线性表的理解。

2.1.2 实验步骤步骤一、初始化线性表步骤二、插入元素步骤三、删除元素步骤四、查找元素2.2 实验二、栈的应用——括号匹配2.2.1 实验介绍在本实验中,我们将使用栈来实现括号匹配。

通过这个应用实例,我们可以更好地理解栈的特性和应用场景。

2.2.2 实验步骤步骤一、括号匹配算法的实现步骤二、测试括号匹配算法3、实验结果与分析3.1 实验一结果分析3.1.1 初始化线性表的效率分析3.1.2 插入操作的效率分析3.1.3 删除操作的效率分析3.1.4 查找操作的效率分析3.2 实验二结果分析3.2.1 括号匹配算法的验证3.2.2 算法的时间复杂度分析3.2.3 算法的空间复杂度分析4、实验总结通过本次实验,我们进一步了解了数据结构的基本概念和应用。

我们通过实际操作和代码编写,加深了对线性表和栈的理解,并且掌握了相关算法的实现和分析方法。

5、附件本实验报告涉及的附件包括:- 代码实现文件- 实验数据统计表格6、法律名词及注释在本文档中,涉及的法律名词和注释包括:- 数据结构:指在计算机科学中,我们用来组织和存储数据的方式或格式。

- 线性表:是最基本、最简单、也是最常用的一种数据结构。

线性表中的数据元素之间是一对一的关系。

- 栈:是一种特殊的线性表,它的插入和删除操作只能在同一端进行。

后进先出(Last In First Out,LIFO)是栈的特性之一。

- 括号匹配:是指检查一个字符串中的所有括号是否匹配完整的过程。

数据结构实验报告2篇

数据结构实验报告2篇

数据结构实验报告数据结构实验报告精选2篇(一)实验目的:1. 熟悉数据结构的基本概念和基本操作;2. 掌握线性表、栈、队列、链表等经典数据结构的实现方法;3. 掌握数据结构在实际问题中的应用。

实验内容:本次实验主要包括以下几个部分:1. 线性表的实现方法,包括顺序表和链表,分别使用数组和链表来实现线性表的基本操作;2. 栈的实现方法,包括顺序栈和链式栈,分别使用数组和链表来实现栈的基本操作;3. 队列的实现方法,包括顺序队列和链式队列,分别使用数组和链表来实现队列的基本操作;4. 链表的实现方法,包括单链表、双链表和循环链表,分别使用指针链、双向链和循环链来实现链表的基本操作;5. 综合应用,使用各种数据结构来解决实际问题,例如使用栈来实现括号匹配、使用队列来实现马铃薯游戏等。

实验步骤及结果:1. 线性表的实现方法:a) 顺序表的基本操作:创建表、插入元素、删除元素、查找元素等;b) 链表的基本操作:插入节点、删除节点、查找节点等;c) 比较顺序表和链表的优缺点,分析适用场景。

结果:通过实验,确认了顺序表适用于频繁查找元素的情况,而链表适用于频繁插入和删除节点的情况。

2. 栈的实现方法:a) 顺序栈的基本操作:进栈、出栈、判空、判满等;b) 链式栈的基本操作:进栈、出栈、判空、判满等。

结果:通过实验,掌握了栈的基本操作,并了解了栈的特性和应用场景,例如括号匹配。

3. 队列的实现方法:a) 顺序队列的基本操作:入队、出队、判空、判满等;b) 链式队列的基本操作:入队、出队、判空、判满等。

结果:通过实验,掌握了队列的基本操作,并了解了队列的特性和应用场景,例如马铃薯游戏。

4. 链表的实现方法:a) 单链表的基本操作:插入节点、删除节点、查找节点等;b) 双链表的基本操作:插入节点、删除节点、查找节点等;c) 循环链表的基本操作:插入节点、删除节点、查找节点等。

结果:通过实验,掌握了链表的基本操作,并了解了链表的特性和应用场景。

《数据结构》实验报告参考模板

《数据结构》实验报告参考模板

图的创建与遍历.一、实验目的1.掌握图的含义;2.掌握用邻接矩阵和邻接表的方法描述图的存储结构;3.理解并掌握深度优先遍历和广度优先遍历的存储结构。

二、实验要求1.认真阅读和掌握本实验的参考程序。

2.按照对图的操作需要,在创建好图后再通过遍历算法验证创建结果。

3.保存程序的运行结果,并结合程序进行分析。

三、实验内容以下参考程序是按邻接表的方法创建图,然后用深度优先遍历方法遍历图。

请认真理解程序,然后实现图的广度优先遍历。

四、程序流程图、算法及运行结果5-1#include "stdio.h"#define maxsize 1024 /*假定线性表的最大长度为1024*/#define n 100 /* 图的顶点最大个数 */typedef int datatype; /*假定线性表元素的类型为整型*/typedef char VEXTYPE; /* 顶点的数据类型 */typedef float ADJTYPE; /* 权值类型 */typedef struct{VEXTYPE vexs[n] ; /* 顶点信息数组 */ADJTYPE arcs[n][n] ; /* 边权数组 */int num ; /* 顶点的实际个数 */} GRAPH;/* 1.置空图 */void GraphInit(GRAPH *L){L->num=0;}/* 2.求结点数 */int GraphVexs(GRAPH *L){return(L->num);}/* 3.创建图 */void GraphCreate(GRAPH *L){int i,j;GraphInit(L);printf("请输入顶点数目:");scanf("%d",&L->num);printf("请输入各顶点的信息(单个符号):");for(i=0;i<L->num;i++){fflush(stdin);scanf("%c",&L->vexs[i]);}printf("请输入边权矩阵的信息:");for(i=0;i<L->num;i++){for(j=0;j<L->num;j++){scanf("%f",&L->arcs[i][j]);}}printf("图已经创建完毕!");}/* 4.图的输出 */void GraphOut(GRAPH L){int i,j;printf("\n图的顶点数目为:%d",L.num);printf("\n图的各顶点的信息为:\n");for(i=0;i<L.num;i++)printf("%c ",L.vexs[i]);printf("\n图的边权矩阵的信息为:\n");for(i=0;i<L.num;i++){for(j=0;j<L.num;j++){printf("%6.2f ",L.arcs[i][j]);}printf("\n");}printf("图已经输出完毕!");}/* 5.图的深度周游 */void DFS(GRAPH g,int qidian,int mark[])/* 从第qidian个点出发深度优先周游图g中能访问的各个顶点 */ {int v1;mark[qidian]=1;printf("%c ",g.vexs[qidian]);for(v1=0;v1<g.num;v1++){if(g.arcs[qidian][v1]!=0&&mark[v1]==0)DFS(g,v1,mark);}}/* 6.图的深度周游 */void GraphDFS(GRAPH g)/* 深度优先周游图g中能访问的各个顶点 */{int qidian,v,v1,mark[maxsize];printf("\n深度周游:");printf("\n请输入起点的下标:");scanf("%d",&qidian);for(v=0;v<g.num;v++){mark[v]=0;}for(v=qidian;v<g.num+qidian;v++){v1=v%g.num;if(mark[v1]==0)DFS(g,v1,mark);}}/* 队列元素的数据类型 */typedef int DATATYPE;typedef struct{DATATYPE data[maxsize]; /* 队中元素 */int front,rear; /* 队头元素下标、队尾元素后面位置的下标 */} SEQQUEUE;void QueueInit(SEQQUEUE *sq)/* 将顺序循环队列sq置空(初始化) */{sq->front=0;sq->rear=0;}int QueueIsEmpty(SEQQUEUE sq)/* 如果顺序循环队列sq为空,成功返回1,否则返回0 */{if (sq.rear==sq.front)return(1);elsereturn(0);}int QueueFront(SEQQUEUE sq,DATATYPE *e)/* 将顺序循环队列sq的队头元素保存到e所指地址,成功返回1,失败返回0 */ {if(QueueIsEmpty(sq)){ printf("queue is empty!\n");return 0;}else{ *e=sq.data[(sq.front)]; return 1;}}int QueueIn (SEQQUEUE *sq,DATATYPE x)/* 将元素x入队列sq的队尾,成功返回1,失败返回0 */ {if (sq->front==(sq->rear+1)%maxsize){printf("queue is full!\n");return 0;}else{sq->data[sq->rear]=x;sq->rear=(sq->rear+1)%maxsize;return(1);}}int QueueOut(SEQQUEUE *sq)/* 将队列sq队首元素出队列,成功返回1,失败返回0 */ {if(QueueIsEmpty(*sq)){printf("queue is empty!\n");return 0;}else{sq->front=(sq->front+1)%maxsize;return 1;}}/* 7.图的广度周游 */void BFS(GRAPH g,int v,int mark[])/* 从v出发广度优先周游图g中能访问的各个顶点 */ {int v1,v2;SEQQUEUE q;QueueInit(&q);QueueIn(&q,v);mark[v]=1;printf("%c ",g.vexs[v]);while(QueueIsEmpty(q)==0){QueueFront(q,&v1);QueueOut(&q);for(v2=0;v2<g.num;v2++){if(g.arcs[v1][v2]!=0&&mark[v2]==0){QueueIn(&q,v2);mark[v2]=1;printf("%c ",g.vexs[v2]); }}}}/* 8.图的广度周游 */void GraphBFS(GRAPH g)/* 深度优先周游图g中能访问的各个顶点 */ {int qidian,v,v1,mark[maxsize];printf("\n广度周游:");printf("\n请输入起点的下标:");scanf("%d",&qidian);for(v=0;v<g.num;v++){mark[v]=0;}for(v=qidian;v<g.num+qidian;v++){v1=v%g.num;if(mark[v1]==0)BFS(g,v1,mark);}}void main(){GRAPH tu;GraphCreate(&tu);GraphOut(tu);GraphDFS(tu);GraphBFS(tu);}友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

数据结构实验报告模板

数据结构实验报告模板

实验名称:_________________________实验日期:_________________________实验地点:_________________________一、实验目的1. 理解并掌握_________________________数据结构的基本概念和操作方法。

2. 培养使用_________________________数据结构解决实际问题的能力。

3. 熟悉_________________________编程语言的编程技巧和调试方法。

二、实验原理简要介绍_________________________数据结构的基本原理,包括其定义、特点、优缺点等。

三、实验内容1. 实验环境(1)编程语言:_________________________(2)开发工具:_________________________(3)实验数据:_________________________2. 实验步骤(1)创建_________________________数据结构具体步骤如下:1)初始化_________________________数据结构;2)根据需要添加元素或修改元素;3)进行_________________________操作。

(2)实现_________________________操作具体步骤如下:1)编写_________________________操作的函数;2)对_________________________操作进行测试;3)分析_________________________操作的效率和稳定性。

(3)应用_________________________数据结构解决实际问题具体步骤如下:1)根据实际问题设计_________________________数据结构;2)实现_________________________数据结构的相关操作;3)分析_________________________数据结构在实际问题中的应用效果。

数据结构上机实验报告

数据结构上机实验报告

数据结构实验报告课程数据结构 _ 院系专业班级实验地点姓名学号实验时间指导老师数据结构上机实验报告1一﹑实验名称:实验一——链表二﹑实验目的:1.了解线性表的逻辑结构特性;2.熟悉链表的基本运算在顺序存储结构上的实现,熟练掌握链式存储结构的描述方法;3.掌握链表的基本操作(建表、插入、删除等)4. 掌握循环链表的概念,加深对链表的本质的理解。

5.掌握运用上机调试链表的基本方法三﹑实验内容:(1)创建一个链表(2)在链表中插入元素(3)在链表中删除一个元素(4)销毁链表四﹑实验步骤与程序#include <iostream.h>#include <malloc.h>typedef struct LNode{int data;struct LNode *next;}Lnode, *LinkList;//假设下面的链表均为带头结点。

void CreatLinkList(LinkList &L,int j){//建立一个链表L,数据为整数,数据由键盘随机输入。

LinkList p,q;L=(LinkList )malloc(sizeof(Lnode));L->next=NULL;q=L;cout<<"请输入一个链表:"<<endl;for(int i=0;i<j;i++){ p=(LinkList)malloc(sizeof(Lnode));cin>>p->data;p->next=q->next;q->next=p;q=p;}}int PrintLinkList(LinkList &L){//输出链表L的数据元素LinkList p;p=L->next;if(L->next==NULL){cout<<"链表没有元素!"<<endl;return 0;}cout<<"链表的数据元素为:";while(p){cout<<p->data<<" ";p=p->next;}cout<<endl;return 1;}void LinkListLengh(LinkList &L){//计算链表L的数据元素个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009级数据结构实验报告实验名称:约瑟夫问题学生姓名:李凯班级:21班班内序号:06学号:09210609日期:2010年11月5日1.实验要求1)功能描述:有n个人围城一个圆圈,给任意一个正整数m,从第一个人开始依次报数,数到m时则第m个人出列,重复进行,直到所有人均出列为止。

请输出n个人的出列顺序。

2)输入描述:从源文件中读取。

输出描述:依次从显示屏上输出出列顺序。

2. 程序分析1)存储结构的选择单循环链表2)链表的ADT定义ADT List{数据对象:D={a i|a i∈ElemSet,i=1,2,3,…n,n≧0}数据关系:R={< a i-1, a i>| a i-1 ,a i∈D,i=1,2,3,4….,n}基本操作:ListInit(&L);//构造一个空的单链表表LListEmpty(L); //判断单链表L是否是空表,若是,则返回1,否则返回0.ListLength(L); //求单链表L的长度GetElem(L,i);//返回链表L中第i个数据元素的值;ListSort(LinkList<Type>&List) //单链表排序ListClear(&L); //将单链表L中的所有元素删除,使单链表变为空表ListDestroy(&L);//将单链表销毁}ADT List其他函数:主函数;结点类;约瑟夫函数2.1 存储结构[内容要求]1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59页图2-92.2 关键算法分析结点类:template<class Type> class CirList;//声明单链表类template<class Type> class ListNode{//结点类定义;friend class CirList<Type>;//声明链表类LinkList为友元类;Type data;//结点的数据域;ListNode<Type>*next;//结点的指针域;public:ListNode():next(NULL){}//默认构造函数;ListNode(const Type &e):data(e),next(NULL){}//构造函数Type & GetNodeData(){return data;}//返回结点的数据值;ListNode<Type>*GetNodePtr(){return next;}//返回结点的指针域的值;void SetNodeData(Type&e){data=e;}//设置结点的数据值;void SetNodePtr(ListNode<Type>*ptr){next=ptr;} //设置结点的指针值;};单循环链表类:template<class Type>class CirList{ListNode<Type>*head;//循环链表头指针public:CirList(){head=newListNode<Type>();head->next=head;}//构造函数,建立带头节点的空循环链表~CirList(){CirListClear();delete head;}//析构函数,删除循环链表void Clear();//将线性链表置为空表void AddElem(Type &e);//添加元素ListNode<Type> *GetElem(int i)const;//返回单链表第i个结点的地址void CirListClear();//将循环链表置为空表int Length()const;//求线性链表的长度ListNode<Type>*ListNextElem(ListNode<Type>*p=NULL);//返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针ListNode<Type>*CirListRemove(ListNode<Type>*p);//在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回CirList<Type>&operator=(CirList<Type>&List);//重载赋值运算符};3. 程序运行结果源代码:#ifndef LISTNODE_H#define LISTNODE_Htemplate<class Type> class CirList;//声明单链表类template<class Type> class ListNode{//结点类定义;friend class CirList<Type>;//声明链表类LinkList为友元类;Type data;//结点的数据域;ListNode<Type>*next;//结点的指针域;public:ListNode():next(NULL){}//默认构造函数;ListNode(const Type &e):data(e),next(NULL){}//构造函数Type & GetNodeData(){return data;}//返回结点的数据值;ListNode<Type>*GetNodePtr(){return next;}//返回结点的指针域的值;void SetNodeData(Type&e){data=e;}//设置结点的数据值;void SetNodePtr(ListNode<Type>*ptr){next=ptr;} //设置结点的指针值;};#endif===================================================================== #ifndef CIRLIST_H#define CIRLIST_H#include<iostream>#include"ListNode.h"template<class Type>class CirList{ListNode<Type>*head;//循环链表头指针public:CirList(){head=new ListNode<Type>();head->next=head;}//构造函数,建立带头节点的空循环链表~CirList(){CirListClear();delete head;}//析构函数,删除循环链表void Clear();//将线性链表置为空表void AddElem(Type &e);//添加元素ListNode<Type> *GetElem(int i)const;//返回单链表第i个结点的地址void CirListClear();//将循环链表置为空表int Length()const;//求线性链表的长度ListNode<Type>*ListNextElem(ListNode<Type>*p=NULL);//返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针ListNode<Type>*CirListRemove(ListNode<Type>*p);//在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回CirList<Type>&operator=(CirList<Type>&List);//重载赋值运算符};//=================================================================== //将循环链表置为空表template<class Type> void CirList<Type>::CirListClear(){ListNode<Type>*p;while(head->next!=head){p=head->next;head->next=p->next;delete p;}}//=================================================================== //返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针template<classType>ListNode<Type>*CirList<Type>::ListNextElem(ListNode<Type>*p){if(p==NULL)return head;ListNode<Type>*q=p->next;if(q==head)q=q->next;return q;}//=================================================================== //将线性表置为空template<class Type>void CirList<Type>::Clear(){ListNode<Type>*p;while(head->next!=NULL){ p=head->next;head->next=p->next;delete p;}}//=================================================================== //在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回template<classType>ListNode<Type>*CirList<Type>::CirListRemove(ListNode<Type>*p){ListNode<Type>*q=p->next;if(q==head){q=q->next;head->next=q->next;}elsep->next=q->next;return q;}//=================================================================== //返回第i个结点的地址template<class Type>ListNode<Type>*CirList<Type>::GetElem(int i)const{ int j=0;ListNode<Type>*p=head;while(j<i&&p){j++;p=p->next;}if(!p||j>i) return NULL;return p;}//=================================================================== //添加元素template<class Type>void CirList<Type>::AddElem(Type&e){ListNode<Type>*p,*s=new ListNode<Type>(e);int i=Length();p=GetElem(i);p->next=s;s->next=head;}//=================================================================== //重载赋值运算符template<classType>CirList<Type>&CirList<Type>::operator=(CirList<Type>&List){if(this==&List)return *this;//赋值操作符重载,必须检查是否为自我赋值Clear();ListNode<Type>*p=List.head->next,*q=head,*s;while(p){s=new ListNode<Type>;s->data=p->data;q->next=s;q=s;p=p->next;}q->next=NULL;return *this;}//=================================================================== //求线性链表的长度template<class Type>int CirList<Type>::Length()const{int len=0;ListNode<Type>*p;for(p=head->next;p!=head;len++)p=p->next;return len;}#endif===================================================================== #include <iostream>#include "CirList.h"using namespace std;template<class Type>void Josephus(CirList<Type>&clist,int n,int m){ListNode<Type>*p,*current;for(int i=1;i<=n;i++)clist.AddElem(i);current=clist.ListNextElem();//得到循环链表的头指针for(int i=1;i<=n-1;i++)//删除过程循环n-1次{for(int j=1;j<=m-1;j++)//使current指针后移m-1次current=clist.ListNextElem(current);p=clist.CirListRemove(current);//删除满足要求的节点,且用 p 记录其地点cout<<"删除顺序:"<<p->GetNodeData()<<endl;delete p;//释放已删除结点占用的内存}current=clist.ListNextElem();//得到循环链表的头指针p=clist.ListNextElem(current);//获得最后剩下结点的地址cout<<"最后剩下:"<<p->GetNodeData()<<endl;}int main(int argc, char *argv[]){CirList<int> Jose;Josephus(Jose,14,17);system("PAUSE");return EXIT_SUCCESS;}4. 总结在课程设计中我更体会到:一个好的程序应该是一个所占空间小、运行时间短、其他性能也好的算法。

相关文档
最新文档