无刷直流电机的工作原理精选文档

合集下载

直流无刷电机 工作原理

直流无刷电机 工作原理

直流无刷电机工作原理
直流无刷电机的工作原理如下:
1. 转子和定子:直流无刷电机由一个旋转的转子和一个固定的定子组成。

转子上通常有永磁体,而定子上包含若干个绕组。

2. 转子位置检测:直流无刷电机需要知道转子的准确位置,以便控制电流的供给。

通常使用霍尔传感器或者内部反电动势(back EMF)来检测转子位置。

3. 电子换向器:电子换向器是直流无刷电机的核心部件,它负责根据转子位置信号来确定绕组的通电顺序,以驱动电机转动。

电子换向器通常由三个半桥电路构成,每个半桥电路控制一个绕组。

4. 绕组供电:电子换向器控制绕组供电的方式类似于三相交流电机,但直流无刷电机使用电子开关(通常是MOSFET)来
实现高效能的绕组电流控制。

5. 反电动势利用:当转子旋转时,绕组周围会产生一个反电动势(back EMF),这个反电动势与转子的速度成正比。

可以
利用反电动势来确定电机的速度以及实现电机的速度控制。

6. 控制算法:直流无刷电机的控制算法通常基于转子位置和反电动势信号。

控制器通过适当调整绕组的电流和开关状态,来实现电机的转速和扭矩控制。

总的来说,直流无刷电机通过转子位置检测、电子换向器、绕组供电和反电动势利用的方式,实现了高效、准确的电机转速和扭矩控制。

这种结构相比传统的直流有刷电机,具有更高的效率、更小的尺寸和更长的使用寿命。

无刷直流电机原理

无刷直流电机原理

无刷直流电机原理1. 引言无刷直流电机(Brushless DC Motor,简称BLDC)是一种通过电子器件控制转子上的永磁体与定子上的线圈之间的磁场相互作用来实现电能转变为机械能的装置。

相比传统的有刷直流电机(Brushed DC Motor),无刷直流电机具有结构简单、寿命长、转速范围广、效率高等优点,广泛应用于工业、家用电器、交通工具等领域。

本文将详细解释无刷直流电机的基本原理,包括其结构组成、工作原理和控制方式。

2. 结构组成无刷直流电机主要由转子和定子两部分组成。

•转子:转子是由永磁体组成的,并且通常采用多极结构。

每个极对应一个磁极,可以是南极或北极。

转子通常采用铁芯材料制造,以提高磁导率和减小磁阻。

在转子上还安装了传感器,用于检测转子位置和速度。

•定子:定子是由线圈组成的,并且通常采用三相对称结构。

每个线圈都由若干匝导线绕制而成,形成一个线圈组。

定子通常采用硅钢片或铁氟龙等绝缘材料进行绝缘和支撑。

3. 工作原理无刷直流电机的工作原理基于磁场相互作用和电磁感应。

•磁场相互作用:当定子上的线圈通电时,会产生一个磁场。

根据安培定律,这个磁场会与转子上的永磁体产生相互作用,使转子受到力的作用而旋转。

因为转子上的永磁体是多极结构,所以在不同位置上受到的力也不同,从而形成了旋转运动。

•电磁感应:在无刷直流电机中,通常使用霍尔传感器来检测转子位置和速度。

霍尔传感器可以检测到转子上的永磁体所在位置,并通过控制器将这些信息反馈给电机驱动器。

根据这些信息,电机驱动器可以准确地控制定子线圈的通断时间和顺序,从而实现对电机的精确控制。

4. 控制方式无刷直流电机的控制方式主要有两种:传感器驱动和传感器无刷。

•传感器驱动:这种控制方式需要使用霍尔传感器等装置来检测转子位置和速度。

通过采集到的转子信息,控制器可以准确地控制定子线圈的通断时间和顺序,从而实现对电机的精确控制。

这种控制方式具有高精度和高效率的特点,但需要额外的传感器装置。

直流无刷电机的原理

直流无刷电机的原理

直流无刷电机的原理
直流无刷电机的原理是基于电磁感应和电子控制技术。

它由定子、转子和电子控制器组成。

1. 定子:定子是电机的固定部分,通常由一组绕制在铁芯上的线圈构成。

定子线圈通过交流或直流电源提供电流,产生磁场。

2. 转子:转子是电机的旋转部分,通常由一组永磁体组成。

通过外加的磁场与定子磁场产生相互作用,驱动转子旋转。

3. 电子控制器:电子控制器是控制电机工作的关键部分。

它监测定子磁场和转子位置的信息,然后根据需求调整电流的方向和大小,使电机保持稳定转速或实现特定的运动控制。

在工作过程中,电子控制器会根据转子位置和速度来切换定子线圈的通电顺序,确保电流在各相线圈之间正确地流动,从而产生一个旋转的磁场。

这个旋转的磁场与转子磁场相互作用,使得转子始终被吸引到下一相线圈的磁力最强的位置,从而保持转子的旋转。

与传统的直流有刷电机相比,直流无刷电机减少了刷子和集电环的摩擦和磨损,提高了电机的效率和寿命。

另外,无刷电机的转子通过永磁体实现磁场,因此转子具有良好的动态响应,能够快速切换磁极,实现高速运动和精确控制。

总结来说,直流无刷电机利用电磁感应和电子控制技术,通过定子线圈和转子永磁体的相互作用,实现电能到机械能的转换。

它具有高效率、长寿命和精确控制等特点,广泛应用于各种领域,如家电、汽车、航空航天等。

直流无刷电机工作原理

直流无刷电机工作原理

直流无刷电机工作原理
直流无刷电机是一种采用电子换向的电机,它不同于传统的直流有刷电机,无需使用碳刷来实现换向。

直流无刷电机由转子和定子两部分组成,其中转子上的永磁体产生磁场,而定子上的绕组则通过电流产生磁场,从而实现电机的运转。

直流无刷电机的工作原理主要包括磁场产生、电流控制和换向三个方面。

首先是磁场产生。

直流无刷电机的转子上通常安装有永磁体,它可以产生一个恒定的磁场。

而定子上的绕组通过外部电源供电,产生一个可控的磁场。

这两个磁场之间的相互作用产生了电机运转所需的力。

其次是电流控制。

直流无刷电机的定子绕组通过电子器件进行控制,以实现对电流的调节。

一般来说,电机控制器会根据电机转子的位置和速度来控制定子绕组的电流,从而实现对电机转矩和速度的精确控制。

最后是换向。

直流无刷电机的换向是通过电子器件来实现的,
通常采用霍尔传感器或者编码器来检测转子的位置,然后根据检测
结果来控制定子绕组的电流。

这样就可以实现电机的正常运转,并
且避免了传统有刷电机中碳刷的磨损和电火花的产生。

总的来说,直流无刷电机的工作原理是通过控制定子绕组的电
流来产生磁场,从而与转子上的永磁体相互作用,实现电机的运转。

同时,通过精确的电流控制和换向技术,可以实现对电机转矩和速
度的精确控制,从而满足不同应用场景对电机性能的要求。

直流无刷电机由于其结构简单、寿命长、效率高等优点,已经
在各种领域得到了广泛的应用,包括工业生产、家用电器、电动汽
车等。

随着电子技术的不断发展,相信直流无刷电机在未来会有更
广阔的应用前景。

无刷直流电机原理详解

无刷直流电机原理详解

无刷直流电机原理详解无刷直流电机(Brushless DC Motor,BLDC)是一种采用无刷换向技术的直流电机。

相比于传统的直流电机,BLDC电机具有体积小、重量轻、效率高、寿命长、噪音低等优点,在现代电子设备和自动化控制系统中得到了广泛应用。

下面将详细介绍BLDC电机的工作原理。

BLDC电机由定子和转子组成。

定子上安装有若干个电磁线圈,称为相,而转子上安装有若干个永磁体,称为极对。

定子和转子之间的空间称为气隙,气隙内充满了磁场。

BLDC电机的工作过程可以分为三个阶段:换相与通电阶段、驱动阶段和反力电动势阶段。

第一阶段是换相与通电阶段。

在这个阶段,控制系统会根据转子的位置和速度来确定哪一对相需要通电。

控制系统通过检测相电流或转子位置传感器来确定当前位置,并选择合适的相通电。

当主电源加到一个相上时,该相产生的磁场相互作用于转子的永磁体,会使转子产生一个力矩,使其转动。

第二阶段是驱动阶段。

在这个阶段,控制系统会根据需要持续进行换相和通电操作,以保持转子的转动。

当转子转到一个新的位置时,控制系统会更换通电的相,继续提供力矩使转子转动。

通过不断重复这个过程,电机会保持稳定的转速。

第三阶段是反力电动势阶段。

当转子在定子的磁场作用下旋转时,转子上的永磁体会产生电动势。

这个电动势会抵消掉输入电源的电压,使电机的电流减小。

控制系统需要根据电动势的大小来调整输入电压的大小,以保持恒定的电流和转矩输出。

BLDC电机的运行需要一个专门的控制器来进行换相和通电操作。

控制器通常使用先进的电路和算法来实现精确的控制。

控制器根据转子位置传感器或相电流传感器的反馈信号,确定转子的位置,并根据需要选择哪一对相通电。

控制器还可以进行速度和转矩的闭环控制,以实现精确的控制和调节。

总结起来,无刷直流电机的工作原理可以归纳为换相与通电阶段、驱动阶段和反力电动势阶段。

通过准确的换相和通电操作,可以实现准确的控制和调节。

BLDC电机由于其优秀的性能和可靠性,已经成为很多领域中的首选电机。

无刷直流电机的工作原理

无刷直流电机的工作原理

无刷直流电机原理无刷直流电动机的工作原理普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。

为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。

无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。

为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。

无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。

无刷直流电动机的原理简图如图一所示:主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。

永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。

无刷直流电机的原理

无刷直流电机的原理

无刷直流电机的原理
无刷直流电机的工作原理可以简单描述为以下几个步骤:
1. 磁场产生:无刷直流电机中通常有两种磁场,一种是永久磁体产生的静态磁场,称为永磁体磁场;另一种是由电流通过转子上的线圈产生的旋转磁场,称为励磁磁场。

这两个磁场的叠加效应会产生一个旋转磁场。

2. 电流控制:通过驱动电路给定一系列的电流脉冲来控制电机的转速和方向。

驱动电路中的霍尔传感器会检测转子磁极的位置,并将这些信息反馈给控制器。

3. 交换相位:根据霍尔传感器的反馈信号,控制器将电流按照正确的时间和方向注入到电机的不同线圈中。

通过适时地改变线圈的通电状态,可以使得电机转子始终受到一个施加在其上的磁场力矩,从而保持其旋转。

4. 转子运动:由于电机中的励磁磁场是旋转的,这个旋转磁场会与转子中的磁体相互作用,产生一个力矩,使得转子开始旋转。

同时,控制器会根据需要的转速和扭矩要求,实时调整相位和电流,确保电机的稳定运转。

通过这样的工作原理,无刷直流电机能够实现高效率、高扭矩、无刷损耗和无摩擦的运行模式,具有较长的使用寿命和较低的噪音水平,广泛应用于各种需要精确控制转速和扭矩的场合,如工业自动化、家用电器等。

无刷直流电机的工作原理

无刷直流电机的工作原理

无刷电机相信大家没听说过,生活或工作中都用过或接触过,今天分享一篇从基础开始描述无刷电机的文章。

0.电动机转动的原理先说电动机的基本原理吧。

有基础的可以直接跳过。

大家小时候都玩过磁铁吧,异极相吸,两磁铁一靠近“啪”就撞上了。

现在假设你的手速足够快,拿着一块磁铁在前面疯狂勾引,那么另外一块磁铁就一直跟着你。

你的手拿着磁铁画圈圈,另外一块磁铁也跟着你转圈圈。

以上,就是电动机转动的基本原理了。

只不过是在前面用来勾引的“磁铁”不是真的磁铁,而是由线圈通电后生成的磁场。

1. 无刷直流电机简介无刷直流电机,英语缩写为BLDC(Brushless Direct Current Motor)。

电机的定子(不动的部分)是线圈,或者叫绕组。

转子(转动的部分)是永磁体,就是磁铁。

根据转子的位置,利用单片机来控制每个线圈的通电,使线圈产生的磁场变化,从而不断在前面勾引转子让转子转动,这就是无刷直流电机的转动原理。

下面深入一下。

2. 无刷直流电机的基本工作原理2.1. 无刷直流电机的结构首先先从最基本的线圈说起。

如下图。

可以将线圈理解成长得像弹簧一样的东西。

根据初中学过的右手螺旋法则可知,当电流从该线圈的上到下流过的时候,线圈上面的极性为N,下面的极性为S。

现在再弄一根这样的线圈。

然后摆弄一下位置。

这样如果电流通过的话,就能像有两个电磁铁一样。

再弄一根,就可以构成电机的三相绕组。

再加上永磁体做成的转子,就是一个无刷直流电动机了。

2.2. 无刷直流电机的电流换向电路无刷直流电机之所以既只用直流电,又不用电刷,是因为外部有个电路来专门控制它各线圈的通电。

这个电流换向电路最主要的部件是FET(场效应晶体管,Field-Effect Transitor)。

可以把FET看作是开关。

下图将FET标为AT(A相Top),AB(A相Bottom),BT,BB,CT,CB。

FET 的“开合”是由单片机控制的。

2.3. 无刷直流电机的电流换向过程FET的“开合”时机是由单片机控制的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无刷直流电机的工作原理精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-无刷直流电机原理无刷直流电动机的工作原理普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。

为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。

无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。

为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。

无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。

无刷直流电动机的原理简图如图一所示:主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。

永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。

每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电度角,转子跟随定子磁场转动相当于60°电度角空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电度角,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。

正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。

●无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。

由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。

电动机的转矩正比于绕组平均电流;TM=Ktlav(NM)电动机两相组反电势的差比于电动机的角速度;ELL=Keω(V)所以电动机绕组中的平均电流为:Iav=(Vm-ELL)/2Ra(A)其中,Vm=δVDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。

由此可以得到直流电动机的电磁转矩:Tm=δ(VDCKt/2Ra)-Kt(Keω/2Ra)Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励支流电动机电枢电压控制相同的控制特性和机械特性。

无刷直流电动机的转速设定,取决于速度指令Vc的高低,如果速度指令最大值为+5V对应的最高转速:Vc(max)ón max,那么,+5V以下任何电平即对应相当的转速n,这就实现了变速设定。

当Vc设定以后,无论是负载变化、电源电压变化,还是环境温度变化,当转速低于指令转速时,反馈电压Vfb变小,调制波的占空比δ就会变大,电枢电流变大,使电动机产生的电磁转矩增大而产生加速度,直到电动机的实际转速与指令转速相等为止;反之,如果电动机实际转速比指令转速高时,δ减小,Tm减小。

发生减速度,直至实际转速与指令转速相等为止。

可以说,无刷直流电动机在允许的电网波动范围内,在允许的过载能力以下,其稳定转速与指令转速相差在1%左右,并可以实现在调速范围内恒转矩运行。

由于无刷直流电动机的励磁来源于永磁体,所以不象异步机那样需要从电网吸取励磁电流;由于转子中无交变磁通,其转子上既无铜耗又无铁耗,所以效率比同容量异步电动机高10%左右,一般来说,无刷直流电动机的能力指针(ηcosθ)比同容量三相异步电动机高12%-20%。

●由于无刷直流电动机是以自控式运行的,所以不会像变频调速下重载启动的同步电动机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。

中小容量的无刷直流电动机的永磁体,现在多采用高磁能积的稀土钕铁硼(Nd-fe-B)材料。

因此,稀土永磁无刷电动机的体积比同容量三相异步电动机缩小了一个机座号。

近三十年针对异步电动机变频调速的研究,归根到底是在寻找控制异步电动机转矩的方法,而无刷直流电动机的电流或电枢的端电压,就是直接控制电动机转矩的物理量。

过去,由于稀土永磁体价格比较高等因素,限制了稀土永磁无刷直流电动机的应用领域,但是随着技术的不断创新,其价格已迅速下降,例如,我公司推出推出BS系列无刷直流电动机的售价已与异步电动机和普通变频器价格之和相差无几。

稀土永磁无刷直流电动机必将以其宽调速、小体积、高效率和稳态转速误差小等特点在调速领域显现优势。

无刷电机是指无电刷和换向器(或集电环)的电机,有称无换向器电机。

早在上世纪诞生电机的时候,产生的实用性电机就是无刷形式,即交流鼠笼式异步电动机,这种电动机得到了广泛的应用。

但是,异步电动机有许多无法克服的缺陷,以致电机技术发展缓慢。

本世纪中叶诞生了晶体管,因而采用晶体管换向电路代替电刷与换向器的直流无刷电机就应运而生了。

这种新型无刷电机称为电子换向式直流电机,它克服了第一代无刷电机的缺陷。

实用性新型无刷电机是与电子技术、微电子技术、数字技术、自控技术以及材料科学等发展紧密联系的。

它不仅限于交直流领域,还涉及电动、发电的能量转换和信号传感等领域。

在电机领域中新型无刷电机的品种是较多的,但性能优良的无刷电机因受到价格的限制,其应用还不十分广泛。

下面分别就主要的新型无刷电机进行探索与研究。

1 直流无刷电动机直流无刷电动机与一般直流电动机具有相同的工作原理和应用特性,而其组成是不一样的。

除了电机本身外,前者还多一个换向电路,电机本身和换向电路紧密结合在一起。

许多小功率电动机的电机本身是与换向电路合成一体,从外观上看直流无刷电动机与直流电动机完全一样。

直流无刷电动机的电机本身是机电能量转换部分,它除了电机电枢、永磁励磁两部分外,还带有传感器。

电机本身是直流无刷电机的核心,它不仅关系到性能指标、噪声振动、可靠性和使用寿命等,还涉及制造费用及产品成本。

由于采用永磁磁场,使直流无刷电机摆脱一般直流电机的传统设计和结构,满足各种应用市场的要求,并向着省铜节材、制造简便的方向发展。

永磁磁场的发展与永磁材料的应用密切相关,第三代永磁材料的应用,促使直流无刷电机向高效率、小型化、节能方向迈进。

为了实现电子换向必须有位置信号来控制电路。

早期用机电位置传感器获得位置信号,现已逐步用电子式位置传感器或其它方法得到位置信号,最简便的方法是利用电枢绕组的电势信号作为位置信号。

要实现电机转速的控制必须有速度信号。

用获得位置信号相近方法取得速度信号,最简单的速度传感器是测频式测速发电机与电子线路相结合。

直流无刷电机的换向电路由驱动及控制两部分组成,这两部分是不容易分开的,尤其小功率用电路往往将两者集成化成为单一专用集成电路。

在功率较大的电机中,驱动电路和控制电路可各自成为一体。

驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。

目前,驱动电路已从线性放大状态转成脉宽调制的开关状态,相应电路组成也从晶体管分立电路转成模块化集成电路。

模块化集成电路有功率双极晶体管、功率场效应管和隔离栅场效应双极晶体管等组成形式。

虽然,隔离栅场效应双极晶体管价格较贵,但从可靠安全和性能角度看,选用它还是较合适的。

控制电路用作控制电机的转速、转向、电流(或转矩)以及保护电机的过流、过压、过热等。

上述参数容易转成模拟信号,用此来控制较简单,但从发展来看,电机的参数应转换成数字量,通过数字式控制电路来控制电机。

当前,控制电路有专用集成电路、微处理器和数字信号处理器等三种组成方式。

在对电机控制要求不高的场合,专用集成电路组成控制电路是简单实用的方式。

采用数字信号处理器组成控制电路是今后发展方向,有关数字信号处理器将在下面交流同步伺服电动机中介绍。

目前,在微小功率范畴直流无刷电动机是发展较快的新型电机。

由于各个应用领域需要各自独特的直流无刷电动机,所以直流无刷电动机的类型较多。

大体上有计算机外存储器以及VCD、DVD、CD主轴驱动用扁平式无铁心电机结构,小型通风机用外转子电机结构,家电用多极磁场结构及内装式结构,电动自行车用多极、外转子结构等等。

上述直流无刷电动机的电机本身和电路均成一体,使用十分方便,它的产量也非常大。

为了满足大批量、低成本的市场需要,直流无刷电动机的生产必须要形成规模经济。

因此,直流无刷电动机是一种高投入、高产出的行业。

同时,我们应该考虑到市场也在不断地发展,如家用空调用电机正由3A转向3D,需要大量的中小功率的直流无刷直流电动机,研究和开发中小功率的直流无刷电动机也成当务之急。

无刷直流电机(BLDCM)是在有刷直流电动机的基础上发展来的,但它的驱动电流是不折不扣的交流;无刷直流电机又可以分为无刷速率电机和无刷力矩电机。

一般地,无刷电机的驱动电流有两种,一种是梯形波(一般是“方波”),另一种是正弦波。

有时候把前一种叫直流无刷电机,后一种叫交流伺服电机,确切地讲是交流伺服电动机的一种。

无刷直流电机为了减少转动惯量,通常采用“细长”的结构。

无刷直流电机在重量和体积上要比有刷直流电机小的多,相应的转动惯量可以减少40%—50%左右。

由于永磁材料的加工问题,致使无刷直流电机一般的容量都在100kW以下。

这种电动机的机械特性和调节特性的线性度好,调速范围广,寿命长,维护方便噪声小,不存在因电刷而引起的一系列问题,所以这种电动机在控制系统中有很大的应用潜力。

相关文档
最新文档