人口增长模型的确定

合集下载

数学建模在人口增长中的应用

数学建模在人口增长中的应用

数学建模在人口增长中的应用人口增长一直是全球面临的重要问题之一。

面对人口的迅速增加,我们需要寻找有效的方法来预测和控制人口的增长趋势。

数学建模作为一种重要的工具,可以帮助我们分析和理解人口增长的规律,并提供科学的解决方案。

1. 人口增长模型人口增长可以使用不同的数学模型来描述和预测。

其中,最常用的人口增长模型之一是指数增长模型。

指数增长模型假设人口增长的速度与当前人口数量成正比。

简单来说,人口数量每过一段时间就会翻倍。

这种模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)是时间t时刻的人口数量,N(0)是初始人口数量,r是人口增长率,e是自然对数的底数。

2. 人口增长趋势预测利用指数增长模型,我们可以根据过去的人口数据来预测未来的人口增长趋势。

通过对已有数据进行拟合和分析,可以确定合适的增长率,并利用该增长率来预测未来的人口数量。

除了指数增长模型,还有其他一些常用的人口增长模型,如Logistic模型和Gompertz模型。

这些模型考虑了人口增长的上限和减缓因素,更符合实际情况。

3. 人口政策制定数学建模不仅可以帮助我们预测人口增长趋势,还可以为人口政策的制定提供支持。

通过建立人口增长模型,我们可以模拟不同的政策措施对人口增长的影响。

例如,我们可以模拟采取计划生育政策后的人口增长情况,评估政策的有效性和可行性。

此外,数学建模还可以用于评估不同人口政策的长期影响。

通过引入更多因素,如医疗水平、经济发展和教育水平等,我们可以建立更为复杂的人口增长模型,从而更全面地评估政策的效果和潜在风险。

4. 人口分布和迁移模型除了人口增长模型,数学建模还可以用于研究人口分布和迁移的模型。

通过建立人口分布模型,我们可以分析不同地区人口的分布规律和变化趋势。

这些模型可以为城市规划、资源配置和社会发展提供重要参考。

在人口迁移方面,数学建模可以帮助我们研究人口的流动和迁移规律。

例如,我们可以建立迁移网络模型来描述不同地区之间的人口流动情况,从而预测人口迁移的趋势和影响因素。

数学建模 之 人口模型

数学建模 之 人口模型

数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。

首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。

对两种模型的求解,我们引入了微分方程。

其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。

先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。

一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。

然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。

附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。

故假设等价于:单位时间人口增长量与当时人口成正比。

设人口增长率为常数r 。

时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。

美国人口增长预测模型

美国人口增长预测模型

2016年数学建模论文第一套论文题目:人口增长模型的确定组别:第35组姓名:耿晨闫思娜王强提交日期:2016年7月4日题目:美国人口增长预测模型摘要本文根据近两个世纪美国每十年一次的人口统计数据,建立了指数增长模型,即Malthus模型,并通过1790-1890年的数据验证了它的准确性。

但是,随着时间的推移,拟合函数与统计数据误差逐渐增大,所以,又建立了阻滞增长模型,即Logistic模型,这个模型的拟合函数与统计数据误差较小,并用该模型对美国未来几年的人口做出了预测。

总体来说,阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。

关键词:指数增长模型,阻滞增长模型,人口预测一、问题重述1790-1980年间美国每隔10年的人口记录如下表所示。

表1:人口记录表1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。

2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。

3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。

二、问题分析影响人口增长的因素很多,其中最主要的两个因素是出生率和死亡率。

出生率受到婴儿死亡率、对避孕的态度及措施效果、对堕胎的态度、怀孕期间的健康护理等因素的影响;死亡率则受到卫生设施与公共卫生状况、战争、污染、医疗水平、饮食习惯、心理压力和焦虑等因素的影响。

此外,影响人口在一个地区增长的因素还有迁入和迁出、生存空间的限制、水和食物、疾病等。

在这些因素中,有些是常态的或者有规律的,这些因素对人口的增长是恒定的;而有些因素是随机的,对人口的增长是没有规律的。

因此,当大范围、长时期研究人口增长问题时,对人口增长产生影响的随机因素就不在考虑了。

建立该模型的目的是要能通过模型预测美国后来每十年的人口数具体变化,并与实际的数据进行对比,看误差的大小。

人口指数增长模型

人口指数增长模型

《数学模型》实验报告实验名称:如何预报人口的增长成绩:___________实验日期:2009 年 4 月22 日实验报告日期:2009 年 4 月 26 日人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感受到"地球在变小",人口与资源之间的矛盾日渐突出,人口问题已成为当前世界上被最普遍关注的问题之一,当然人口增长规律的发现以及人口增长的预测对一个国家制定比较长远的发展规划有着非常重要的意义.本节介绍几个经典的人口模型.模型I:人口指数增长模型(马尔萨斯Malthus,1766--1834)1) 模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r.以P(t)表示时刻t某地区(或国家)的人口数,设人口数P(t)足够大,可以视做连续函数处理,且P(t)关于t连续可微.2) 模型建立及求解据模型假设,在t到时间内人口数的增长量为,两端除以,得到,即,单位时间人口的增长量与当时的人口数成正比.令,就可以写出下面的微分方程:,如果设时刻的人口数为,则满足初值问题:(1)下面进行求解,重新整理模型方程(1)的第一个表达式,可得,两端积分,并结合初值条件得.显然,当时,此时人口数随时间指数地增长,故模型称为指数增长模型(或Malthus模型).如下图3-2所示.3) 模型检验19世纪以前欧洲一些地区的人口统计数据可以很好的吻合.19世纪以后的许多国家,模型遇到了很大的挑战.注意到,而我们的地球是有限的,故指数增长模型(Malthus模型)对未来人口总数预测非常荒谬,不合常理,应该予以修正.图3-24) 模型讨论为了做进一步的讨论,阐明此模型组建过程中所做的假设和限制是非常必要的.我们把人口数仅仅看成是时间的函数,忽略了个体间的差异(如年龄,性别,大小等)对人口增长的影响.假定是连续可微的.这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的.人口增长率是常数,意味着人处于一种不随时间改变的定常的环境当中.模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生.不难看出,这些假设是苛刻的,不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口.模型II:阻滞增长模型(Logistic)一个模型的缺陷,通常可以在模型假设当中找到其症结所在——或者说,模型假设在数学建模过程中起着至关重要的作用,它决定了一个模型究竟可以走多远.在指数增长模型中,我们只考虑了人口数本身一个因素影响人口的增长速率,事实上影响人口增长的另外一个因素就是资源(包括自然资源,环境条件等因素).随着人口的增长,资源量对人口开始起阻滞作用,因而人口增长率会逐渐下降.许多国家的实际情况都是如此.定性的分析,人口数与资源量对人口增长的贡献均应当是正向的.1) 模型假设地球上的资源有限,不妨设为1;而一个人的正常生存需要占用资源(这里事实上也内在的假定了地球的极限承载人口数为);在时刻t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源成正比;比例系数表示人口的固有增长率;设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微.2) 模型建立及求解由模型假设,可将人口数的净增长率视为人口数P(t)的函数,由于资源对人口增长的限制,应是P(t) 的减函数,特别是当P(t) 达到极限承载人口数时,应有净增长率,当人口数P(t)超过时,应当发生负增长.基于如上想法,可令.用代替指数增长模型中的导出如下微分方程模型:(2)这是一个Bernoulli方程的初值问题,其解为.在这个模型中,我们考虑了资源量对人口增长率的阻滞作用,因而称为阻滞增长模型(或Logistic模型).其图形如图3-3所示.图3-33) 模型检验从图3-3可以看出,人口总数具有如下规律:当人口数的初始值时,人口曲线(虚线)单调递减,而当人口数的初始值时,人口曲线(实线)单调递增;无论人口初值如何,当,它们皆趋于极限值.4) 模型讨论阻滞增长模型从一定程度上克服了指数增长模型的不足,可以被用来做相对较长时期的人口预测,而指数增长模型在做人口的短期预测时因为其形式的相对简单性也常被采用.不论是指数增长模型曲线,还是阻滞增长模型曲线,它们有一个共同的特点,即均为单调曲线.但我们可以从一些有关我国人口预测的资料发现这样的预测结果:在直到2030年这一段时期内,我国的人口一直将保持增加的势头,到2030年前后我国人口将达到最大峰值16亿,之后,将进入缓慢减少的过程——这是一条非单调的曲线,即说明其预测方法不是本节提到的两种方法的任何一种.还有比指数增长模型,阻滞增长模型更好的人口预测方法吗[FS:PAGE]事实上,人口的预测是一个相当复杂的问题,影响人口增长的因素除了人口基数与可利用资源量外,还和医药卫生条件的改善,人们生育观念的变化等因素有关,特别在做中短期预测时,我们希望得到满足一定预测精度的结果,比如在刚刚经历过战争或是由于在特定的历史条件下采纳了特殊的人口政策等,这些因素本身以及由此而引起的人口年龄结构的变动就会变的相当重要,进而需要必须予以考虑.一、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。

人口增长目标

人口增长目标

人口增长目标
人口增长目标是指一个国家或地区在一定时期内预期达到的人口数量增长的目标。

这个目标通常是由政府、规划机构或其他相关部门制定的,旨在指导人口政策和社会发展规划。

人口增长目标的设定通常考虑以下因素:
1. 经济发展:人口增长与经济发展之间存在相互关系。

适当的人口增长可以为经济提供劳动力和市场需求,促进经济增长。

2. 资源环境承载能力:人口增长需要与资源环境的承载能力相适应。

确保资源的可持续利用和环境的保护是制定人口增长目标的重要考虑因素。

3. 社会福利和公共服务:人口增长会对教育、医疗、住房、就业等社会福利和公共服务产生影响。

目标的设定需要考虑到提供足够的基础设施和服务以满足人口的需求。

4. 人口结构和老龄化:人口增长目标可能还涉及到调整人口结构,如应对老龄化问题,通过生育率的调整来维持适当的人口年龄比例。

人口增长问题数学模型

人口增长问题数学模型

人口增长问题数学模型人口增长问题是一个复杂的社会现象,它涉及到众多因素,如生育率、死亡率、移民、出生性别比等。

为了更好地理解和预测人口增长趋势,人们常常建立数学模型来描述人口变化的规律。

下面是一个简单的人口增长问题数学模型的示例。

假设人口数量为P(t),时间t为以年为单位。

则人口增长可以用以下微分方程表示:dP(t)/dt = rP(t)其中,r是人口自然增长率,是一个常数。

这个微分方程描述了人口数量随着时间的变化情况,即人口数量呈指数增长。

然而,实际情况要复杂得多。

以下是一个更复杂的人口增长模型,考虑到生育率、死亡率和移民等因素:dP(t)/dt = (b - d)P(t) + I其中,b是每单位时间的出生率,d是每单位时间的死亡率,I是每单位时间的移民人数。

这个模型可以更好地描述人口增长的趋势,特别是当存在外部干扰(如战争、自然灾害等)时。

除了以上两个模型,还有其他更复杂的模型,如Logistic增长模型、Malthusian模型等。

这些模型考虑的因素更加全面,可以更准确地描述人口增长的趋势。

例如,Logistic增长模型考虑了环境承载能力对人口增长的限制,而Malthusian 模型则考虑了人口增长与资源供给之间的关系。

建立数学模型有助于我们更好地理解和预测人口增长趋势。

这些模型可以帮助我们评估不同政策对人口增长的影响,如计划生育政策、移民政策等。

此外,这些模型还可以帮助我们预测未来人口数量和结构的变化情况,从而为社会发展规划提供科学依据。

然而,需要注意的是,数学模型只是对现实世界的近似描述,它可能无法完全准确地预测未来情况。

因此,在使用数学模型进行人口增长预测时,需要结合实际情况和专家意见进行综合分析。

总之,数学模型是研究人口增长问题的重要工具之一。

通过建立数学模型,我们可以更好地理解和预测人口增长的规律和趋势。

这些模型可以帮助我们评估不同政策对人口增长的影响,为社会发展规划提供科学依据。

人口增长的Logistic模型分析及其应用

人口增长的Logistic模型分析及其应用

人口增长的Logistic模型分析及其应用本文运用迭代的方法计算出人口极限值xm和人口增长率r,用Logistic模型预测了我国人口未来的发展趋势,并根据预测的结果提出了相应的对策与建议。

关键词:人口Logistic模型迭代人口增长问题相关研究最早注意人口问题的是英国经济学家马尔萨斯,他在1798 年提出了人口指数增长模型。

这个模型的基本假设是:人口的增长率是一个常数。

记t时刻的人口总数为x(t)。

初始时刻t=0时的人口为x0。

人口增长率为r,r表示单位时间内x(t)的增量与x(t)的比例系数。

那么,时刻t到时刻t+Δt内人口的增量为x(t+Δt)-x(t)=rx(t)Δt。

于是x(t)满足下列微分方程的初值问题,他的解为x(t)=x0ert。

在r>0时,人口将按指数规律增长。

但是不管生物是按算术级数、几何级数还是按指数曲线变化,随着时间增长生物数量将趋于无穷大。

然而,实际情况却不然,实验指出在有限的空间内,一开始生物以较快速度增长,到一定时期生物增长量就会减缓,生物数量趋于稳定。

历史上的人口统计数据也表明,当一个国家的社会稳定时,一定时期内马尔萨斯模型是符合实际的,但是如果时间比较长或社会发生动荡时,马尔萨斯模型就不能令人满意了。

原因是随着人口的增加,自然资源、环境条件等因素对人口增长开始起阻滞作用,因而人口增长率不断下降。

基于以上考虑荷兰生物学家Verhaust对原人口发展模型进行了改造,于1838 年提出了以昆虫数量为基础的Logistic 人口增长模型。

这个模型假设增长率r是人口的函数,它随着x的增加而减少。

最简单的假定是r是x的线性函数,其中r称为固有增长率,表示x→0时的增长率。

由r(x)的表达式可知,x=xm时r=0。

xm表示自然资源条件能容纳的最大人口数。

因此就有,这个模型就是Logistic 模型。

为表达方便,Logistic方程常被改写成:由于Logistic模型综合考虑了环境等因素对人口增长产生的影响,因此是一种被广泛应用的比较好的模型。

人口增长模型

人口增长模型

一、 人口增长模型: 1. 问题下表列出了中国1982—1998年的人口统计数据,取1982年为起始年(t=0),…人口自然增长率14%,以36亿作为我国的人口容纳量,是建立一个较好的数学模型并给出相从图中我们可以看到人口数在1982—1998年是呈增长趋势的,而且我们很容易发现上述图像和我们学过指数函数的图像有很大的相似性,所以我们很自然想到建立指数模型,但是指数模型有个不妥之处就是没有考虑社会因素的,即资源的有限性,也就是人口不可能无限制的增长,所以有必要改进模型,这里我们假设人口增长率随人口增加而呈线性递减,从而建立起比较优越阻滞增长模型 模型一:指数增长模型(马尔萨斯模型)1.假设:人口增长率r 是常数.2.建立模型:记时刻t=0时人口数为0X ,时刻t 的人口为X (t ),由于量大,X (t )可以视为连续、可微函数,t 到t+t ∆时间段人口的增量为:)()()(t rX tt X t t X =∆-∆+于是X (t )满足微分方程:)1()0(0⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==X X rX dt dx3.模型求解:解得微分方程(1)得: X (t )=0X )(0t t r e- (2)表明:t ∞−→−时,t X )0.(>∞−→−r . 4.模型的参数估计要用模型2对人口进行预报,必须对其中的参数r 进行估计,这可以用表1通过Matlab 拟合: 程序:x=[1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 19971998]';X=[ones(17,1),x]Y=[101654 103008 104357 105851 107507 109300 111026 112704 114333 115823 117171 118517 119850 121121 122389 123626 124810]';[b,bint,r,rint,stats]=regress(Y,X); %回归分析b,bint,stats%输出这些值rcoplot(r,rint);%画出残差及其置信区间z=b(1)+b(2)*x;plot(x,Y,'k+',x,z,'r'),%预测及作图运行结果:b =1.0e+006 *-2.84470.0015bint =1.0e+006 *-2.9381 -2.75130.0014 0.0015stats =1.0e+005 *0.0000 0.0455 0 1.9800图1各数据点及回归方程的图形 即回归模型为:y=-2844700+1500x从上图可用看出拟和得效果比较好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人口增长模型的确定
摘要
人口增长模型对于人口的预测、环境评估、经济评价等方面有着很重要的作用,本文通过matlab对已有的数据进行拟合,分析,统计学计算,在前人的基础上做出马尔萨斯指数增长模型、logistic阻滞增长模型,再对这些模型进行对比分析,从而确定了我们所使用的logistic阻滞增长模型。

关键词:人口增长模型matlab 马尔萨斯指数增长模型logistic阻滞增长模型cftool 工具箱
一、问题重述
1790-1980年间美国每隔10年的人口记录如下表所示。

试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。

如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。

二、问题假设
1.假设随着时间的增长,人口数量是增加的。

2.假设在此期间,无重大自然灾害,传染病及战争因素影响。

3.假设每年影响人口数量的因素相同。

4.假设每年影响人口数量的作用强度和相同。

5.假设无迁入迁出影响。

三、符号说明
四、问题分析
根据所给的数据和题目要求建立马尔萨斯(Malthus)人口指数增长模型,那么我们直接建立马尔萨斯增长模型进行求解的结果与实际值相近,则说明所建立的模型是可行的。

否则进一步改进所给模型,寻找更优秀的模型。

(一)五、模型建立
马尔萨斯增长数学模型:马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N(t)的变化率与生物总数成正比。

[1]其数学模型为
(1)
方程的解为
(2)
其中
用matlab 中cftool 工具箱进行指数拟合得到下图
图一
00()()d N rN dt
N t N ==⎧⎨⎩
0()
0()r t t N t N e -=001790, 3.9
t N ==
结果为: General model:
f(x) = 3.9*exp(b*(x-1790))
Coefficients (with 95% confidence bounds): b = 0.02222 (0.02163, 0.02281)
Goodness of fit: SSE: 8966 R-square: 0.9062
Adjusted R-square: 0.9062 RMSE: 21.72
可以看出,在95%的置信区间内我们得到的拟合方程参数b ,其R 相关系数为0.9062,拟合曲线基本吻合,整理之后可得马尔萨斯指数增长方程为
(2)
六、模型求解
将时间1990 2000 2010 2020 2030 分别带入方程中可得到预测值 经我们预测可得1990 2000 2010 2020 2030年的人口数量分别是 331.9474 414.5429 517.6900 646.5022 807.3656
1780
1800182018401860
188019001920194019601980
050
100
150
200
250
300
时间
人口数量
马尔萨斯指数增长拟合曲线
0.02222(1790)() 3.9t N t e -=
七、结果分析
我们将已经知道的1990 2000 2010 年的数据和预测数据进行对比在图上可以直观的看出两者偏差过大,经过进一步分析我们对模型进行进一步改进,原来的模型为指数增长模型,没有考虑到自然资源、环境条件等因素对人口的增长的阻力,人口增长率r 不应该是一个常数,而是一个随时间增长而减小的一个变量。

r 随着人口数量N 的增加而下降,这也就是logistics 模型由此我们建立第二个模型
(二)五、模型建立
对r(N)的一个最简单的假定是,设r(N)为N 的线性函数,即
(3)
设自然资源和环境条件所能容纳的最大人口数量
,当增长率,代入(3)式得

于是(3)式为
(4)
根据马尔萨斯建立的模型,我们可以得到(5)式:
(5)
将(4)带入(5)得:
(6) 即为logistic 阻滞增长模型[2] 解方程(6)可得:
(7)
()(0,0)r N r sN r s =->>m N m N N =()0
m r N =m
r
s N =
()(1)m
N r N r N =-
0(),(0)dN
r N N N N dt ==00(1)()m
dN
N rN dt N N t N ⎧=-⎪⎪⎨
=⎪⎪⎩
0()0
()1(
1)m
r t t m
N N t N e N --=
+-
此时我们知道
,只需求出,和r,
我们知道我们所做出的模型为‘S ’型分布,因此图像的最大斜率点即为中心对称点,我们确定了这个点之后,设这点的人口数量为就可以计算出:
(8)
我们用matlab 做出斜率变化图
图二
见附录
程序1:
001790, 3.9t N ==m N t N m N 0()
m t t N N N N =+-1800
1820184018601880
19001920194019601980
00.5
1
1.5
2
2.5
3

斜率
人口斜率变化曲线
从图中我们可以看出斜率最大为1960年,则有 由(8)式可得;
然后我们用matlab 中的lsqcurvefit 进行特定方程拟合求参数r ,见附录程序2: 可得到,r=0.0270,
此时可得到logistic 人口时间函数:
(9)
六、求解
将时间1990 2000 2010 2020 2030 分别带入方程中可得到预测值 经我们预测可得1990 2000 2010 2020 2030年的人口数量分别是 218.90705.0939 249.2931 261.4570 271.6675
七、结果分析
我们将两个模型和原始数据以及我们得到的1990 2000 2010年的数据绘在用一个坐标系上来观察模型效果见下图,matlab 程序见附录程序3:
179.3t N =354.7
m N =0.027(1790)
354.7
()189.9487t N t e --=
+
由上图我们可以明显看出logistic 阻滞增长模型要优于马尔萨斯指数增长模型,我们再计算出对两个模型与实际人口数量的和方差如下表:
表二:人口增长模型数据列表
0100
200
300
400500
600

人口数量
人口增长模型比较
(表中1990 2000 2010年人口数据来自美国普查局)
可以看出logistic模型和方差远远小于马尔萨斯模型,再次说明logistic模型要优于马尔萨斯模型。

八、参考文献
[1]. 刘焕彬,库在强,廖小勇,陈文略,张忠诚.数学建模与实验[M].科学出版社,2008:39
[2]. 王延臣,段俊生,王彦. 人口预报与LOGISTIC模型的改进[J]. 统计与决策.2006(22):136.
九、附录
程序1:
t=1790:10:1980;
N=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92 106.5 123.2 131.7 150.7 179.3 204 226.5];
for i=1:length(t)-1
k(i) = (N(i+1)-N(i))/(t(i+1)-t(i));
end
x=1800:10:1980;
plot(x,k)
xlabel('年')
ylabel('斜率')
title('人口斜率变化曲线')
grid on
程序2:
t=1790:10:1980;
N=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92 106.5 123.2 131.7 150.7 179.3 204 226.5];
f=@(r,t)354.7./(1+(354.7/3.9-1)*exp(-r.*(t-1790)));
lsqcurvefit(f,r,t,N)
程序3:
t=1790:10:2010;
N=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92 106.5 123.2 131.7 150.7 179.3 204 226.5 249.5 282.2 308.7];
N1=3.9*exp(0.02222*(t-1790));
N2=354.7./(1+(354.7/3.9-1)*exp(-0.027.*(t-1790)));
plot(t,N,'r*',t,N1,'--',t,N2);
xlabel('年')
ylabel('人口数量')
title('人口增长模型比较')
legend('已知数据','马尔萨斯增长模型','logistic阻滞增长模型') grid on。

相关文档
最新文档