数学建模 之 人口模型

合集下载

数学建模人口模型人口预测

数学建模人口模型人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。

2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。

对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。

首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。

在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。

然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。

与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。

对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。

同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。

并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。

数学建模-人口增长模型

数学建模-人口增长模型

数函合拟 据数始原
。万百 8668. 333 � ) 0102 ( x 为数口人的年 0102 测预以可们我而从
84981 � t 753. 12 � t 810600. 0 � ) t( x
2
数口人
� 84981 � c , 753. 12� � b�810600.0 � a 得解 � �2 件附见� 程编 baltaM 用们我
录附
。年 4002 , 社 版出 育教等 高� 京北 ,]M[)版三 第( 模建 学数 .俊叶 ,星金 谢 ,源启姜 ]2[ 。年 2002 ,社 版出育教等高:京北 ,]M[用应与计设序程 BALTAM .颖张 ,平昭陈 ,国卫刘 ]1[
献文考参
。越优为更型模 长增数指比测预的来未对�确准更果结�的合适很是测预数口人的来未对型模次 以所�合吻的常非据数的期后是别特�好果效合拟�上线曲合拟在都上本基�律 规长增的口人映反地观客更型模长增滞阻出看以可 。好很得合拟据数口人的区地 该对型模的们我出看以可们我 4 图从 。图果效合拟的型模长增滞阻是 4 图 图果效合拟的型模长增滞阻 4 图
) 0 0 8 1� t ( r �
� 27 � � �1 e�1 � m � x 01 �
m
x
� ) t( x
2 . 7 � ) 0081( x � � � m � td � � x � � � 1 x� � 0r � xd � � x �
ቤተ መጻሕፍቲ ባይዱ
�得解
�到得以可� 2. 7 � ) 0081( x 件条始初用利并�中程方的型模长增数指进代式上把
值数函的点知未在 p 式项多计估 %
)1x,p(lavylop = 1y ;0102=1x
;no dirg ;no xob ;)2,'数函合拟','据数始原'(dnegel ;)'数口人'(lebaly ;)'份年'(lebalx 例图上加形图给 % 来起连次依点据数的义定)ny,x(把 % )ny,nx(tolp 值数函的 p 式项多计估 % ;)nx,p(lavylop = ny 标坐横的新义定 % ;0102:5:0081 = nx p 数系回返�合拟式项多 % )2,y,x(tifylop = p

数学建模 之 人口模型

数学建模 之 人口模型

数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。

首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。

对两种模型的求解,我们引入了微分方程。

其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。

先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。

一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。

然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。

附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。

故假设等价于:单位时间人口增长量与当时人口成正比。

设人口增长率为常数r 。

时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。

6.2 人口增长模型 数学建模

6.2 人口增长模型 数学建模

一、粮食生产 19501950-1984 世界粮食产量的增幅超过人口增 长速度。但84年以后粮食产量增幅一直落后 长速度。但84年以后粮食产量增幅一直落后 于人口增长速度。 原因:缺少新垦土、灌溉量减少、土地生 产率的提高越来越难。
二、水资源的匮乏 国际水资源管理研究预测,到2050年, 国际水资源管理研究预测,到2050年, 约有10亿人口将面临缺水的状况。 约有10亿人口将面临缺水的状况。 三、海洋捕捞
2005年11月 世界人口状况报告》 2005年11月《世界人口状况报告》显示目 前世界总人口为64.647亿,我国占了约20% 前世界总人口为64.647亿,我国占了约20% 2050年世界人口将达77-112亿,若采取94 2050年世界人口将达77-112亿,若采取94 亿的预测值。会带来什么影响?
例题2齐次微分方程3一阶线性非线性微分方程其他模型malthusmalthus11模型假设模型假设33美国的实际人口数据美国的实际人口数据22模型建立模型建立33模型检验分析模型检验分析1人口预测人口预测22景区游客人数增长景区游客人数增长3城市人口增长城市人口增长
第六章鱼类减少
饲料
渔业养殖
四、森林覆盖率、生物多样性、能源危机等等
2、复习
1、微分方程:含有导数 或微分的方程 2、微分方程的类型:
(1)可分离变量的微分方程,形如 dy = f ( x) ⋅ g ( y ) dx
(2)齐次微分方程 (3)一阶线性、非线性微分方程 其他
例题 模型
2、模型建立
3、模型分析检验
美国的实际人口数据
二、阻滞增长模型
1、 模型假设 设人口增长率r是人口数N的线性递减函数, 记为r ( N ), K 是自然资源和环境条件的最大人 口容量,r 表示人口很少时的增长率(固有增 长率)

数学建模-人口统计模型

数学建模-人口统计模型
j 1 j
j
j
j 1
j
j
j
h(T ) P(0) h(T t1 )r (t1 )t h(T t2 )r (t2 )t
+ h(T tn )r (tn )t h(T ) P(0) h(T ti )r (ti )t.
i 1
n
当 n 无限增大时, P(T ) h(T ) P(0)
0 10
107 e1 / 4 e (10 t ) / 40 (5 104 105 t )dt
0
10 10 10 7 e 1 / 4 e 1 / 4 5 10 4 e t / 40 dt 10 5 tet / 40 dt 0 0
0
说明
4 人口统计模型(I)中两个人口密度 P(r ) 2 r 20 和 P(r ) 1.2e-0.2r 有一个共同特点 P' (r ) 0 ,即随着r
P(r ) 减少,这是符合实际的.另外,需要指 的增大, 出的是,当人口密度 P(r 选取不同的模式时,估算 ) 出的人口数可能会相差很大,因此,选择适当的人 口密度模式对于准确地估算人口数至关重要.

T
0
h(T t )r (t )dt
( 1)
解题过程
第五步: 4 5 t / 40 将 r (t ) 5 10 10 t, h(t ) e 及 T 10 , P(0) 107 代入(1)式得
P(10) h(10) P(0) h(10 t )r (t )dt
P(r ) 2πr r
j 1 j j
n
所以人口数
N P(r )2πrdr
0
2
.

数学建模-人口增长模型

数学建模-人口增长模型

人口增长模型摘要本文根据某地区的人口统计数据,建立模型估计该地区2010年的人口数量。

首先,通过直观观察人口的变化规律后,我们假设该地区的人口数量是时间的二次函数,建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数,从而可以预测2010年的人口数为333.8668百万。

然后,我们发现从1980年开始该地区的人口增长明显变慢,于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们建立了阻滞增长模型,利用此模型我们最后求出2010年的人口预报数为296.3865。

关键字:人口预报,二次函数模型,阻滞增长模型问题重述:根据某地区人口从1800年到2000年的人口数据(如下表),建立模型估计出该地区2010年的人口 ,同时画出拟合效果的图形。

符号说明)(t x t 时刻的人口数量 0x 初始时刻的人口数量 r 人口增长率m x 环境所能容纳的最大人口数量,即0)( m x r问题分析首先,我们运用Matlab软件[1]编程(见附件1),绘制出1800年到2000年的人口数据图,如图1。

18001820184018601880190019201940196019802000图1 1800年到2000年的人口数据图从图1我们可以看出1800年到2000年的人口数是呈现增长的趋势的,而且类似二次函数增长。

所以我们可以建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数。

于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们可以建立一个阻滞增长模型。

模型建立模型一:二次函数模型我们假设该地区t时刻的人口数量的人口数量)(tx是时间t的二次函数,即:2()=++x t at bt c我们可以根据最小二乘法,利用已有数据拟合得到具体参数。

即,要求a、b和c,使得以下函数达到最小值:221(,,)()ni i i i E a b c at bt c x ==++-∑其中i x 是i t 时刻该地区的人口数,即有:2222)3.28020002000...)2.718001800(),,(-+⋅+⋅++-+⋅+⋅=c b a c b a c b a E令0,0,0E E E a b c∂∂∂===∂∂∂,可以得到三个关于a 、b 和c 的一次方程,从而可解得a 、b 和c 。

数学建模人口模型

数学建模人口模型

实验一 人口模型与混沌实验目的1.了解Logistic 模型的基本概念。

2.了解的1(1)n n n x rx x +=-分叉和混沌现象。

3.学习、掌握MATLAB 软件有关命令。

实验步骤及结果1. 根据离散Logistic 模型)t (x )x )t (x (r )t (x x )t (x )t (x m -+=+=+11∆t=0,1,2,…,预测出2005-2011年我国的人口总数,其中r =0.029,=m x1950838861。

实验结果如下图所示:r =0.029,=m x 19508388612. 讨论简化的logistic 迭代方程))t (x )(t (rx )t (x -=+11,对于不同的r 和x0观察数列的收敛情况,分别给出t-x 坐标系下图形。

当x(1)=0.4,r 分别为0.7,1.5,3.2时实验结果如下图所示:3、绘制Feigenbaum 图过程:为了观察r 对迭代格式))t (x )(t (rx )t (x -=+11的影响,将区间(0,4]以步长r ∆离散化。

对每个离散的r 值进行迭代,忽略前50个迭代值,把点5152100(,),(,),,(,)r x r x r x 显示在坐标平面上。

实验结果如下:实验代码:1.x=[2005:1:2011];y(1)=126743;r=0.029;k=1950838861;for i=1:11y(i+1)=y(i)+r*(1-y(i)/k)*y(i); endplot(x,y(6:12),'+');hold on2.x=[1:19];y(1)=0.4;r=3.2;for i=1:18y(i+1)=r*(1-y(i))*y(i);plot(x(i),y(i),'+');hold onendxlabel('t');ylabel('x');title('r=3.2,x(1)=0.4')3.for r=[0.005:0.005:4]x(1)=0.6;t=linspace(r,r,100);for j=1:99x(j+1)=r*x(j)*(1-x(j));endhold onplot(t,x,'r+','markersize',0.5); endxlabel('t');ylabel('x');title('r(0,4),x(0.6)')。

数学建模模版之人口增长问题

数学建模模版之人口增长问题

“公平”分配方法
人数 席位 A方 B方 p1 p2 n1 n2
衡量公平分配的数量指标 当p1/n1= p2/n2 时,分配公平
若 p1/n1> p2/n2 ,对 A 不公平
p1/n1– p2/n2 ~ 对A的绝对不公平度
p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10 p1/n1– p2/n2=5 虽二者的绝对 不公平度相同
存贮模型
配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费。该厂 生产能力非常大,即所需数量可在很短时间内产出。 已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元。试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小。
一种确定参数的办法是测量或调查,请设计测量方法。
参数估计ቤተ መጻሕፍቲ ባይዱ
另一种确定参数的方法——测试分析
2
将模型改记作 t an bn ,
只需估计 a,b
理论上,已知t=184, n=6061, 再有一组(t, n)数据即可
实际上,由于测试有误差,最好用足够多的数据作拟合
现有一批测试数据: 用最小二乘法可得
存贮模型
生猪的出售时机 森林救火
3.4
最优价格
3.5 血管分支
3.6 消费者均衡
3.7 冰山运输
静 态 优 化 模 型
• 现实世界中普遍存在着优化问题
• 静态优化问题指最优解是数(不是函数) • 建立静态优化模型的关键之一是 根据建模目的确定恰当的目标函数 • 求解静态优化模型一般用微分法
问题
3.1
x(t ) x0 e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模
———关于人口增长的模型
摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。


先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。

对两种模型的求解,我们引入了微分方程。

其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。

先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。

一、 问题的提出:
人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百
模型一(指数增长模型)
1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。

然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。

附图A
2、基本假设:人口的增长率是常数
增长率——单位时间内人口增长率与当时人口之比。

故假设等价于:单位时间人口增长量与当时人口成正比。

设人口增长率为常数r 。

时刻t 的人口为X(t),并设X(t)可微,X(0)=X O
由假设,对任意△t>0 ,有
)()
()(t rx t
t x t t x =∆-∆+
即:单位时间人口增长量=r ×当时人口数
当△t 趋向于0时,上式两边取极限,即:
o t →∆lim
)()
()(t rx t
t x t t x =∆-∆+ 引入微分方程:
)1( )0()(0
⎪⎩⎪
⎨⎧==x x t rx dt
dx
3、模型求解: 从(1)得
rdt x
dx
= 两边求不定积分:
c rt x +=ln
∵t=0时0x x =,∴C x =0ln
rt e x rt x x 00ln ln ln =+=
∴rt
e x t x 0
)(= (2) 当r>0时.表明人口按指数变化规律增长.
备注; r 的确定方法:
要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33
.5==r
,359.1307.0=e
,则(2)式现为: t t x )359.1(9.3)(⨯=
4、结论:由上函数可预测得:2010的人口为x(22):
x(22)=3325.77
2020的人口为x(23):
x(23)=4519.73
5、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此
6、模型讨论:
由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。

但人口较多时用模型预测的结果比实际人口偏大较多,实际人口越多时相对误差越大。

即人口的增长不应是一个常数。

进行如下讨论:
()t x,忽略了个体间的差异(如年龄、1.我们把人口数仅仅看成是时间t的函数
性别、大小等)对人口增长的影响。

2.假定()t x是连续可微的。

这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的。

3.人口增长率是常数r,意味着人处于一种不随时间改变的定常的环境当中。

4.模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生。

不难看出,这些假设是苛刻的、不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口。

模型二(阻滞增长模型)
1、模型的提出
随着人口的增长,自然资源、环境条件等因素对人口开始起阻滞作用,因而人口增长率会逐渐下降。

又因一定环境所容纳的人口数量是一定的,人口不会无限地增加,而是最终趋近于某个常数。

2、基本假设
人口增长率不是常数,而是关于人口数量x的线性递减函数r(x).
()x r :人口增长率
m x :按自然资源和环境条件的最大人口容量
r
: 固有增长率,即人口很少时的增长率
3、模型的建立及求解:
由定义和假设,显然有: kx r x r -=)(
0)(=m x r
r r =)0(
∵m
x x →lim 0=m r
lim →x ()0=x r
即r-rk m x =0
、 ∴k=m
x r
∴()=x r r-
m x r x=r(1-m
x
x
)
将()x r 的表达式代入指数增长模型中的微分方程中:
)3( )0()1(0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⎪⎩

⎨⎧=-=x
x x x x r dt
dx
m 求解:
由(3)式得:
移项得:
rdt x
x x dx
m
=-)1(
dx x x x dx x x x x x x x x x dx x x
x x dx m m m m m m
)11()()()()1(-+=-+-=-=- rdt dx x
x x :m =-+)11(即
两边求不定积分 ⎰⎰=-+rdt dx x x x m )11( ,)ln(ln 1c rt x x x m +=--∴
1ln
c rt x
x x
m +=-∴
∴1C rt m e x
x x
+=-
1
1
1C rt C rt m e e x x +++=∴ 0,0x x t ==时当
,111
0c m
rt rt m e
x e e x x -+=+=∴ )4..(...........)1(1)(0
⋯⋯⋯⋯⋯⋯⋯⋯-+=
∴-rt
m m
e x x
x t x
备注:r 及m x 的确定方法:
由(4)式可得:rt
rt m
xe x e xx x ----=00)1(⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (5)
代入表格中两组数据得: r =0.2072
m x =464
4、结论:
由上函数可预测得:2010的人口为x(22):
x(22)= 464.0 2020的人口为x(23):
x(23)= 464.0
6、模型的讨论:
从上面的图中可以看出:由该模型计算的结果实际符合地非常好。

但是,由于该模型建立在环境所能容纳的最大人口数量m
x为定值的情况下,而对于实际情况而说,m
x的值很难确定,即使确定,也会因情况的变化而发生改变。

这也是在上图中,曲线的末端分叉的原因。

三、利用层次分析法对模型进行评价:
1、层次分析模型的构造
目标层: 准则层
最优方案A
绝对误差B
1
均方差B
2
相关系数B
3
方案层:
由图可知:
,评价,对现有的两种方案做具体的分析选取。

2.构造判断矩阵 建立层次模型后,,我们将各方面的因素两两比较,看它们对上一层某个准则的相对重要程度。

比较结果采用不1—9做标准。

将全部比较结果对某一上层因素的标准值列于表内,则得到判断矩阵,分别列表如下:
列表1:C 1—C 2相比对B 1重要程度及其判断矩阵
得:B 1= 1
7
1
7 1
列表2:C 1—C 2相比对B 2重要程度及其判断矩阵 得:B 2= 1
5
1 5 1
列表3:C 1—C 2相比对B 3重要程度及其判断矩阵
得:B 3=
1
3
1 3 1
1
31 5
1
A= 3 1 5
1
5 5 1
三、层次单排序及一致性检验:
根据判断矩阵计算对于上一层次某要素而言,及本层次与之有联系的要素重要程度次序的数值。

现用方根法计算判断矩阵的特征向量
B 1= 1 71 得: 1×7
1
7 1 M= 7×1
0.378 0.125
所以W= 因此W= 2.646 0.875
列表5
λ=2 CR=0
m ax
同理:
λ=2 CR=0
m ax
λ=2 CR=0
m ax
m ax =3.038 CR=0.0332
四、层次总排序
确定方案层所有因素对于总目标相对重要性的排序权值: 根据总排序结果可以得出结论:C 2方案优于C 1方案
五、参考文献: 1、《系统工程实教程》 哈尔滨工业大学出版社 姚德民 李汉铃 编著 2、《概论论与数理统计》合肥工业大学出版社 费业泰 主编 3、《数学模型》 华南理工大学出版社 《数学模型》编写组 编。

相关文档
最新文档