数学建模logistic人口增长模型

合集下载

数学建模在人口增长中的应用

数学建模在人口增长中的应用

数学建模在人口增长中的应用人口增长一直是全球面临的重要问题之一。

面对人口的迅速增加,我们需要寻找有效的方法来预测和控制人口的增长趋势。

数学建模作为一种重要的工具,可以帮助我们分析和理解人口增长的规律,并提供科学的解决方案。

1. 人口增长模型人口增长可以使用不同的数学模型来描述和预测。

其中,最常用的人口增长模型之一是指数增长模型。

指数增长模型假设人口增长的速度与当前人口数量成正比。

简单来说,人口数量每过一段时间就会翻倍。

这种模型可以用以下公式表示:N(t) = N(0) * e^(rt)其中,N(t)是时间t时刻的人口数量,N(0)是初始人口数量,r是人口增长率,e是自然对数的底数。

2. 人口增长趋势预测利用指数增长模型,我们可以根据过去的人口数据来预测未来的人口增长趋势。

通过对已有数据进行拟合和分析,可以确定合适的增长率,并利用该增长率来预测未来的人口数量。

除了指数增长模型,还有其他一些常用的人口增长模型,如Logistic模型和Gompertz模型。

这些模型考虑了人口增长的上限和减缓因素,更符合实际情况。

3. 人口政策制定数学建模不仅可以帮助我们预测人口增长趋势,还可以为人口政策的制定提供支持。

通过建立人口增长模型,我们可以模拟不同的政策措施对人口增长的影响。

例如,我们可以模拟采取计划生育政策后的人口增长情况,评估政策的有效性和可行性。

此外,数学建模还可以用于评估不同人口政策的长期影响。

通过引入更多因素,如医疗水平、经济发展和教育水平等,我们可以建立更为复杂的人口增长模型,从而更全面地评估政策的效果和潜在风险。

4. 人口分布和迁移模型除了人口增长模型,数学建模还可以用于研究人口分布和迁移的模型。

通过建立人口分布模型,我们可以分析不同地区人口的分布规律和变化趋势。

这些模型可以为城市规划、资源配置和社会发展提供重要参考。

在人口迁移方面,数学建模可以帮助我们研究人口的流动和迁移规律。

例如,我们可以建立迁移网络模型来描述不同地区之间的人口流动情况,从而预测人口迁移的趋势和影响因素。

人口预测的数学模型与预测方法分析

人口预测的数学模型与预测方法分析

人口预测的数学模型与预测方法分析人口预测是对未来一定时期内人口数量和结构的变动进行估计和预测的过程。

人口预测在社会经济发展规划、城市规划、教育医疗资源配置等方面具有重要的参考价值。

为了准确预测人口的变动趋势,需要建立合理的数学模型和选择适当的预测方法。

人口预测的数学模型主要包括线性回归模型、指数模型、Logistic模型等。

线性回归模型是一种用来描述两个变量之间线性关系的统计模型,可以用来预测人口随时间的变化。

指数模型假设人口数量按照指数规律增长或减少,适用于人口增长较快的情况。

Logistic模型则适用于人口增长速度放缓后的情况,它是一种描述增长速度逐渐趋近于饱和的模型。

在选择数学模型时,需要综合考虑以下几个因素:人口历史变动趋势、人口自然增长率、人口迁移和流动情况、政策调控等因素。

同时,还需根据实际情况对模型的参数进行合理的设定和修正,以提高预测的准确性。

在预测方法上,常用的有趋势线法、复合增长率法、比较推理法、时间序列分析法和系统动力学方法等。

趋势线法是基于历史数据的发展趋势来进行预测,适用于人口变动趋势比较稳定的情况。

复合增长率法是将历史数据中的增长率按一定规则进行加权平均,再用来推算未来人口的增长率。

比较推理法通过对不同因素的比较和推理,来估计未来人口的变化。

时间序列分析法是根据时间序列数据的历史模式来预测未来的变化趋势。

系统动力学方法则是通过对不同因素的动态关系建立模型,用来探索人口变动的内在机制和规律。

在具体应用时,可以结合不同的数学模型和预测方法,进行多角度的分析和预测。

同时,还需要不断对模型进行修正和优化,以适应不断变化的人口变动趋势和社会经济背景。

此外,还应该注意对预测结果的不确定性进行评估和把握,提供多种可能性的预测结果,为决策者提供科学的参考依据。

中国人口增长预测数学建模 (2)

中国人口增长预测数学建模 (2)

中国人口增长预测数学建模引言中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。

人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。

因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。

本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。

方法数据收集为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。

这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。

通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。

建立数学模型基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。

常用的数学模型包括指数增长模型、Logistic增长模型等。

在本文中,我们以Logistic增长模型为例。

Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。

Logistic增长模型的公式可以表示为:dP/dt = r*P*(1-P/K)其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。

参数估计为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。

参数估计可以通过拟合历史数据来完成。

常用的参数估计方法包括最小二乘法、最大似然估计等。

模型验证一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。

为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。

如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。

预测未来人口增长利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。

通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。

例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。

结论本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。

(完整版)数学建模logistic人口增长模型

(完整版)数学建模logistic人口增长模型

Logistic 人口发展模型一、题目描述建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。

分析那个时间段数据预测的效果好?并结合中国实情分析原因。

表1 各年份全国总人口数(单位:千万)二、建立模型阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。

若将r 表示为x 的函数)(x r 。

则它应是减函数。

于是有:0)0(,)(x x x x r dt dx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2) 设自然资源和环境条件所能容纳的最大人口数量mx ,当mx x =时人口不再增长,即增长率)(=m x r ,代入(2)式得m x rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解得:rt mme x x x t x --+=)1(1)(0(5)三、模型求解用Matlab 求解,程序如下: t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];dx=(x2-x1)./x2; a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm 和rx0=61.5;f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5得到1954-2005实际人口与理论值的结果:根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。

基于logistic模型对中国未来人口的预测分析

基于logistic模型对中国未来人口的预测分析

基于logistic模型对中国未来人口的预测分析中国人口是世界上最多的国家之一,人口数量的变化对中国社会经济的发展具有重大影响。

本文将基于logistic模型对中国未来人口的预测分析进行探讨。

我们需要了解logistic模型的基本原理。

logistic模型是一种常用的人口增长模型,它基于人口增长的两个关键因素:增长速率和容量。

增长速率表示人口每年的增长率,容量表示人口可以达到的最大数量。

logistic模型的基本形式如下:N(t) = K / [1 + (K/N0 - 1) * exp(-r * t)]N(t)表示时间t时刻的人口数量,K表示最大人口容量,N0表示初始人口数量,r表示人口增长速率。

在对中国未来人口进行预测分析时,我们需要确定模型的参数。

初始人口数量可以根据历史数据进行估计。

人口增长速率可以根据过去几十年的人口增长率进行计算。

最大人口容量需要根据中国国情和可持续发展的要求进行估算。

中国的人口增长速率在过去几十年一直处于较高水平,但随着经济社会发展和计划生育政策的实施,人口增长速率逐渐趋缓。

在未来,可以预计中国的人口增长速率将继续下降。

根据logistic模型对中国未来人口的预测分析,可以得出以下结论:随着时间的推移,中国人口数量将继续增长,但增长速率将逐渐减缓。

最终,人口数量将趋于一个稳定的最大容量,同时与资源和环境保持平衡。

需要注意的是,logistic模型是基于过去数据进行的预测分析,未来人口发展受到许多因素的影响,例如经济、政策、社会文化等,这些因素可能会引起人口变动的不确定性。

基于logistic模型的预测分析可以为中国未来人口发展提供一定的指导和参考,但在制定政策和决策时,还需要综合考虑多种因素,并及时更新模型参数,以保证预测结果的准确性和可靠性。

人口增长模型

人口增长模型

三一文库()〔人口增长模型〕*篇一:数学建模logistic人口增长模型Logistic人口发展模型一、题目描述建立Logistic人口阻滞增长模型,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。

分析那个时间段数据预测的效果好?并结合中国实情分析原因。

表1各年份全国总人口数(单位:千万)二、建立模型阻滞增长模型(Logistic模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r的影响上,使得r随着人口数量x的增加而下降。

若将r表示为x的函数r(x)。

则它应是减函数。

于是有:dx?r(x)x,x(0)?x0dt对r(x)的一个最简单的假定是,设r(x)为x的线性函数,即r(x)?r?sx(1)(r?0,s?0)(2)设自然资源和环境条件所能容纳的最大人口数量长率xm,当x?xm时人口不再增长,即增r(xm)?0,代入(2)式得s?rxm,于是(2)式为x)xm(3)r(x)?r(1?将(3)代入方程(1)得:x?dx??rx(1?)xm?dt?x(0)?x0?解得:(4)x(t)?1?(xmxm?1)e?rtx0(5)三、模型求解用Matlab求解,程序如下:t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1, 70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90. 9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103 .008,104.357,105.851,107.5,109.3,111.026,112.704,11 4.333,115.823,117.171,118.517,119.85,121.121,122.38 9,123.626,124.761,125.786,126.743,127.627,128.453,1 29.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1 ,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90 .9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,1 14.333,115.823,117.171,118.517,119.85,121.121,122.3 89,123.626,124.761,125.786,126.743,127.627,128.453, 129.227,129.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4 ,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92 .4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008 ,104.357,105.851,107.5,109.3,111.026,112.704,114.33 3,115.823,117.171,118.517,119.85,121.121,122.389,12 3.626,124.761,125.786,126.743,127.627,128.453,129.2 27,129.988,130.756];dx=(x2-x1)./x2;a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm和rx0=61.5;f=inline(xm./(1+(xm/x0-1)*exp(-r*(t-1954))),t,xm,r, x0);%定义函数plot(t,f(t,xm,r,x0),-r,t,x,+b);title(1954-2005年实际人口与理论值的比较)x2010=f(2010,xm,r,x0)x2020=f(2020,xm,r,x0)x2033= f(2033,xm,r,x0)解得:x(m)=180.9516(千万),r=0.0327/(年),x(0)=61.5得到1954-2005实际人口与理论值的结果:根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。

人口增长问题数学模型

人口增长问题数学模型

人口增长问题数学模型人口增长问题是一个复杂的社会现象,它涉及到众多因素,如生育率、死亡率、移民、出生性别比等。

为了更好地理解和预测人口增长趋势,人们常常建立数学模型来描述人口变化的规律。

下面是一个简单的人口增长问题数学模型的示例。

假设人口数量为P(t),时间t为以年为单位。

则人口增长可以用以下微分方程表示:dP(t)/dt = rP(t)其中,r是人口自然增长率,是一个常数。

这个微分方程描述了人口数量随着时间的变化情况,即人口数量呈指数增长。

然而,实际情况要复杂得多。

以下是一个更复杂的人口增长模型,考虑到生育率、死亡率和移民等因素:dP(t)/dt = (b - d)P(t) + I其中,b是每单位时间的出生率,d是每单位时间的死亡率,I是每单位时间的移民人数。

这个模型可以更好地描述人口增长的趋势,特别是当存在外部干扰(如战争、自然灾害等)时。

除了以上两个模型,还有其他更复杂的模型,如Logistic增长模型、Malthusian模型等。

这些模型考虑的因素更加全面,可以更准确地描述人口增长的趋势。

例如,Logistic增长模型考虑了环境承载能力对人口增长的限制,而Malthusian 模型则考虑了人口增长与资源供给之间的关系。

建立数学模型有助于我们更好地理解和预测人口增长趋势。

这些模型可以帮助我们评估不同政策对人口增长的影响,如计划生育政策、移民政策等。

此外,这些模型还可以帮助我们预测未来人口数量和结构的变化情况,从而为社会发展规划提供科学依据。

然而,需要注意的是,数学模型只是对现实世界的近似描述,它可能无法完全准确地预测未来情况。

因此,在使用数学模型进行人口增长预测时,需要结合实际情况和专家意见进行综合分析。

总之,数学模型是研究人口增长问题的重要工具之一。

通过建立数学模型,我们可以更好地理解和预测人口增长的规律和趋势。

这些模型可以帮助我们评估不同政策对人口增长的影响,为社会发展规划提供科学依据。

我国人口数的逻辑斯蒂增长模型

我国人口数的逻辑斯蒂增长模型

我国人口数的逻辑斯蒂增长模型
逻辑斯蒂增长模型是一种常用的人口增长模型,它可以描述人口数量随时间变化的曲线。

在我国,人口数量的增长受到多种因素的影响,包括出生率、死亡率、迁移率等。


面是一份描述我国人口数的逻辑斯蒂增长模型:
假设当前时间为t,人口数量为P(t)。

根据逻辑斯蒂增长模型的表达式,人口增长速率可以表示为:
dP(t)/dt = r * P(t) * (1 - P(t)/K)
r表示人口的增长率,K为人口数量的饱和值。

根据我国的具体情况,人口增长率r可能随时间发生变化。

在我国近几十年的数据中,人口增长率呈现出微弱下降的趋势。

这可能是由于人口政策的调整以及社会经济发展的影响。

而人口数量的饱和值K取决于我国的资源状况、经济水平、人口政策等因素。

在实际
应用中,我们可以结合历史数据进行估计并进行调整。

通过利用逻辑斯蒂增长模型,我们可以对未来的人口变化进行预测。

通过设定不同的
参数值、观察历史数据的趋势,我们可以对我国人口未来的增长进行合理的预测和估计。

需要注意的是,以上仅为一份模型描述,实际的人口增长模型需要根据大量的数据和
严格的实证分析进行构建和验证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Logistic 人口发展模型
一、题目描述
建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进
二、建立模型
阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。

若将r 表示为x 的函数)(x r 。

则它应是减函数。

于是有:
0)0(,)(x x x x r dt dx
==
(1)
对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即
)
0,0()(>>-=s r sx
r x r
(2)
设自然资源和环境条件所能容纳的最大人口数量m x ,当m
x x =时人口不再增
长,即增长率0)(=m x r ,代入(2)式得
m x r s =
,于是(2)式为 )1()(m
x x
r x r -
= (3)
将(3)代入方程(1)得:
⎪⎩
⎪⎨⎧=-=0
)0()
1(x x x x rx dt
dx
m (4)
解得:
rt m
m
e x x x t x --+=
)1(
1)(0
(5)
三、模型求解
用Matlab 求解,程序如下: t=1954:1:2005;
x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];
x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];
x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; dx=(x2-x1)./x2;
a=polyfit(x2,dx,1);
r=a(2),xm=-r/a(1)%求出xm 和r x0=61.5;
f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数
plot(t,f(t,xm,r,x0),'-r',t,x,'+b');
title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)
解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5 得到1954-2005实际人口与理论值的结果:
根据《国家人口发展战略研究报告》 我国人口在未来30年还将净增2亿人左右。

过去曾有专家预测(按照总和生育率2.0),我国的人口峰值在2045年
将达到16亿人。

根据本课题专家研究,随着我国经济社会发展和计划生育工作加强,20世纪90年代中后期,总和生育率已降到1.8左右,并稳定至今。

实现全面建设小康社会人均GDP达到3000美元的目标,要求把总和生育率继续稳定在1.8左右。

按此预测,总人口将于2010年、2020年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右(见图1)。

劳动年龄人口规模庞大。

我国15-64岁的劳动年龄人口2000年为8.6亿人,2016年将达到高峰10.1亿人,比发达国家劳动年龄人口的总和还要多。

在相当长的时期内,中国不会缺少劳动力,但考虑到素质、技能等因素,劳动力结构性短缺还将长期存在。

同时,人口与资源、环境的矛盾越来越突出。

而据模型求解:
2010年人口:x(2010)= 137.0200(千万)专家预测13.6亿误差为0.7%
2020年人口:x(2020)= 146.9839(千万)专家预测14.5亿误差为1.3%
2033年人口:x(2033)= 157.2143(千万)专家预测15亿误差为4.8%
2045年人口:x(2045)= 164.6959(千万)专家预测16亿误差为4.1%
五、预测
1. 1954-2005总人口数据建立模型:
r=0.0327 xm=180.9516
2010年人口:x(2010)= 137.0200(千万)专家预测13.6亿误差为0.7%
2020年人口:x(2020)= 146.9839(千万)专家预测14.5亿误差为1.3%
2033年人口:x(2033)= 157.2143(千万)专家预测15亿误差为4.8%
2045年人口:x(2045)= 164.6959(千万)专家预测16亿误差为4.1%
2. 1963-2005总人口数据建立模型:
r=0.0493 xm=150.5261
2010年人口:x(2010)= 134.1612(千万)专家预测13.6亿误差为1.4%
2020年人口:x(2020)= 140.0873(千万)专家预测14.5亿误差为3.4%
2033年人口:x(2033)= 144.8390(千万)专家预测15亿误差为3.4%
2045年人口:x(2045)= 147.3240(千万)专家预测16亿误差为7.6%
3.1980-2005总人口数据建立模型:
r=0.0441 xm=156.3297
2010年人口:x(2010)= 135.2885(千万)专家预测13.6亿误差为0.5% 2020年人口:x(2020)= 142.1083(千万)专家预测14.5亿误差为2.0% 2033年人口:x(2033)= 147.9815(千万)专家预测15亿误差为1.3% 2045年人口:x(2045)= 151.3011(千万)专家预测16亿误差为5.4%总体来看,1980-2005这一组数据拟合出的人口模型比较好,即与已有数据吻合,又与专家预测误差较小。

从历史原因来分析:1954年之后的1959-1961年间,有三年自然灾害故而使得实际人口数据与估计有所偏颇。

1960年之后为过渡时期。

1983年之后开始实施“计划生育政策”,一直至今,所以1980-2005年间的数据与预测分析最好。

相关文档
最新文档