数学建模 之 人口模型
数学建模-人口增长模型

数函合拟 据数始原
。万百 8668. 333 � ) 0102 ( x 为数口人的年 0102 测预以可们我而从
84981 � t 753. 12 � t 810600. 0 � ) t( x
2
数口人
� 84981 � c , 753. 12� � b�810600.0 � a 得解 � �2 件附见� 程编 baltaM 用们我
录附
。年 4002 , 社 版出 育教等 高� 京北 ,]M[)版三 第( 模建 学数 .俊叶 ,星金 谢 ,源启姜 ]2[ 。年 2002 ,社 版出育教等高:京北 ,]M[用应与计设序程 BALTAM .颖张 ,平昭陈 ,国卫刘 ]1[
献文考参
。越优为更型模 长增数指比测预的来未对�确准更果结�的合适很是测预数口人的来未对型模次 以所�合吻的常非据数的期后是别特�好果效合拟�上线曲合拟在都上本基�律 规长增的口人映反地观客更型模长增滞阻出看以可 。好很得合拟据数口人的区地 该对型模的们我出看以可们我 4 图从 。图果效合拟的型模长增滞阻是 4 图 图果效合拟的型模长增滞阻 4 图
) 0 0 8 1� t ( r �
� 27 � � �1 e�1 � m � x 01 �
m
x
� ) t( x
2 . 7 � ) 0081( x � � � m � td � � x � � � 1 x� � 0r � xd � � x �
ቤተ መጻሕፍቲ ባይዱ
�得解
�到得以可� 2. 7 � ) 0081( x 件条始初用利并�中程方的型模长增数指进代式上把
值数函的点知未在 p 式项多计估 %
)1x,p(lavylop = 1y ;0102=1x
;no dirg ;no xob ;)2,'数函合拟','据数始原'(dnegel ;)'数口人'(lebaly ;)'份年'(lebalx 例图上加形图给 % 来起连次依点据数的义定)ny,x(把 % )ny,nx(tolp 值数函的 p 式项多计估 % ;)nx,p(lavylop = ny 标坐横的新义定 % ;0102:5:0081 = nx p 数系回返�合拟式项多 % )2,y,x(tifylop = p
(完整版)数学建模logistic人口增长模型

Logistic 人口发展模型一、题目描述建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。
分析那个时间段数据预测的效果好?并结合中国实情分析原因。
表1 各年份全国总人口数(单位:千万)二、建立模型阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。
阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。
若将r 表示为x 的函数)(x r 。
则它应是减函数。
于是有:0)0(,)(x x x x r dt dx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2) 设自然资源和环境条件所能容纳的最大人口数量mx ,当mx x =时人口不再增长,即增长率)(=m x r ,代入(2)式得m x rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解得:rt mme x x x t x --+=)1(1)(0(5)三、模型求解用Matlab 求解,程序如下: t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];dx=(x2-x1)./x2; a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm 和rx0=61.5;f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5得到1954-2005实际人口与理论值的结果:根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。
数学建模 之 人口模型

数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
数学建模-人口增长模型

人口增长模型摘要本文根据某地区的人口统计数据,建立模型估计该地区2010年的人口数量。
首先,通过直观观察人口的变化规律后,我们假设该地区的人口数量是时间的二次函数,建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数,从而可以预测2010年的人口数为333.8668百万。
然后,我们发现从1980年开始该地区的人口增长明显变慢,于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们建立了阻滞增长模型,利用此模型我们最后求出2010年的人口预报数为296.3865。
关键字:人口预报,二次函数模型,阻滞增长模型问题重述:根据某地区人口从1800年到2000年的人口数据(如下表),建立模型估计出该地区2010年的人口 ,同时画出拟合效果的图形。
符号说明)(t x t 时刻的人口数量 0x 初始时刻的人口数量 r 人口增长率m x 环境所能容纳的最大人口数量,即0)( m x r问题分析首先,我们运用Matlab软件[1]编程(见附件1),绘制出1800年到2000年的人口数据图,如图1。
18001820184018601880190019201940196019802000图1 1800年到2000年的人口数据图从图1我们可以看出1800年到2000年的人口数是呈现增长的趋势的,而且类似二次函数增长。
所以我们可以建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数。
于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们可以建立一个阻滞增长模型。
模型建立模型一:二次函数模型我们假设该地区t时刻的人口数量的人口数量)(tx是时间t的二次函数,即:2()=++x t at bt c我们可以根据最小二乘法,利用已有数据拟合得到具体参数。
即,要求a、b和c,使得以下函数达到最小值:221(,,)()ni i i i E a b c at bt c x ==++-∑其中i x 是i t 时刻该地区的人口数,即有:2222)3.28020002000...)2.718001800(),,(-+⋅+⋅++-+⋅+⋅=c b a c b a c b a E令0,0,0E E E a b c∂∂∂===∂∂∂,可以得到三个关于a 、b 和c 的一次方程,从而可解得a 、b 和c 。
数学建模论文-人口预测模型

中国人口预测模型摘要本文对人口预测的数学模型进行了研究。
首先,建立一次线性回归模型, 灰色序列预测模型和逻辑斯蒂模型。
考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下:单位:(万人)其中加权系数为:,其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为分组长度方式预测短期和长期人口增长,然后对人口模型进行了改进,构建了反映生育率和死亡率变化率负指数函数,并给出了反映城乡人口迁移的人口转移向量最后我们BP神经网络模型检验以上模型的正确性关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络一、问题重述1. 背景人口增长预测是随着社会经济发展而提出来的。
在过去的几千年里,由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。
而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。
而人口增长预测是对未来进行预测的各环节中的一个重要方面。
准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。
2. 问题人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。
例如,中国人口预期寿命约为70 岁左右,因此,长期人口预测最好预测到70年以后,中期40—50 年,短期可以是5 年、10年或20 年。
根据2007 年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。
数学建模人口模型

实验一 人口模型与混沌实验目的1.了解Logistic 模型的基本概念。
2.了解的1(1)n n n x rx x +=-分叉和混沌现象。
3.学习、掌握MATLAB 软件有关命令。
实验步骤及结果1. 根据离散Logistic 模型)t (x )x )t (x (r )t (x x )t (x )t (x m -+=+=+11∆t=0,1,2,…,预测出2005-2011年我国的人口总数,其中r =0.029,=m x1950838861。
实验结果如下图所示:r =0.029,=m x 19508388612. 讨论简化的logistic 迭代方程))t (x )(t (rx )t (x -=+11,对于不同的r 和x0观察数列的收敛情况,分别给出t-x 坐标系下图形。
当x(1)=0.4,r 分别为0.7,1.5,3.2时实验结果如下图所示:3、绘制Feigenbaum 图过程:为了观察r 对迭代格式))t (x )(t (rx )t (x -=+11的影响,将区间(0,4]以步长r ∆离散化。
对每个离散的r 值进行迭代,忽略前50个迭代值,把点5152100(,),(,),,(,)r x r x r x 显示在坐标平面上。
实验结果如下:实验代码:1.x=[2005:1:2011];y(1)=126743;r=0.029;k=1950838861;for i=1:11y(i+1)=y(i)+r*(1-y(i)/k)*y(i); endplot(x,y(6:12),'+');hold on2.x=[1:19];y(1)=0.4;r=3.2;for i=1:18y(i+1)=r*(1-y(i))*y(i);plot(x(i),y(i),'+');hold onendxlabel('t');ylabel('x');title('r=3.2,x(1)=0.4')3.for r=[0.005:0.005:4]x(1)=0.6;t=linspace(r,r,100);for j=1:99x(j+1)=r*x(j)*(1-x(j));endhold onplot(t,x,'r+','markersize',0.5); endxlabel('t');ylabel('x');title('r(0,4),x(0.6)')。
数学建模-人口增长模型

数学建模-人口增长模型人口增长模型是一种基于数理统计学方法的计算机模型,用于描绘全球各地的人口增长情况。
人口增长模型能够预测人口数量、年龄分布、死亡率、出生率、移民等方面的变化趋势,为社会规划带来指导性的建议,具有很高的实用价值。
本文将从多个方面来探究人口增长模型。
一、人口增长的三个阶段第一阶段:原始社会阶段,这个时期的人口增长缓慢。
由于食物水平低下和医疗条件落后,死亡率非常高,而出生率仍然很高。
第二阶段:传统社会阶段,人口增长迅速。
由于改进了农业技术、医疗技术以及水、电、煤等基础设施建设的改善,死亡率降低,但出生率仍然很高。
第三阶段:现代社会阶段,人口增长开始放缓。
由于生育规律的改变,人们生育晚、生育次数减少,导致出生率下降。
另一方面,医疗技术和生活水平的提高,使得人们的寿命增加,死亡率下降。
人口增长模型是一种以数学为基础、能够预测人口增长变化趋势的计算机模型。
它解决了传统的统计分析方法难以预测未来人口增长趋势的问题,方便了研究人口增长对于社会经济发展的影响。
目前,常用的人口模型有四种:1.经验模型:该模型主要是针对已有数据进行平衡分析,所以只能反映人口变动的历史趋势,难以预测未来人口变化。
2. 非参数回归模型:它又称为核回归模型,它是一种无参数模型,可以从数据本身中学习出应该如何比较好地去拟合数据,因此预测效果相较于经验模型提高了不少。
3. 参数回归模型:这种模型较为复杂,它基于特定的模型,通过拟合已有的数据,建立一个完整的模型,目的是预测新的数据变化趋势。
4. 知识驱动模型:该模型结合了经验模型和参数回归模型的基本特点,它将专家的知识与历史数据相结合,通过精细化的调整,建立能够反映人口增长趋势的模型。
该模型可广泛应用于国家人口预测、社会福利计划等领域。
人口增长有其基本的规律,这些规律可以帮助我们更好地了解和解决人口问题。
1.现代社会阶段的人口增长趋势是死亡率下降,而出生率下降,且死亡率的下降速度比出生率的下降速度快。
Leslie模型(数学建模)

2021/10/10
21
定理:若Leslie矩阵A的第一行中至少有两个相
邻的bi>0则
|i|< |1|且N j/ 1j CN其中C为某一常数,由值bi, Pi及N0决定
N(0,j+1)=bi(j)K i(j)N(i,j)
N(i,j+1)=Pi-1N(i-1,j) i=1,…,m
目前我国人口中中年青人的比例很大,加上计
划生育降低出生率,必然造成若干年后社会人
口的严重老龄化,待这一代人越出m组后,又
会使人口迅速青年化而走向另一个极端。
2021/10/10
24
为减少这种年龄结构上的振荡,人们又引入了一 个控制变量h(i,j),使bi(j)=h(i,j)
设µ(r,t)为t时刻年龄为r的人的死亡率,t时刻年龄在[r,r+dr) 单位时间死亡的人数为µ(r,t)p(r,t)dr
2021/10/10
7
分析:
下面考虑从t到t+dt这一过程的人口变化: 年龄处在[r,r+dr)到t+dt时刻活着的人的年龄变为 [r+dt,r+dr+dt)而这一时刻死亡的人数为µ(r,t)p(r,t)drdt 则p(r,t)dr-p(r+dt,t+dt)dr= µ(r,t)p(r,t)drdt
•••
那么I (1)=MK
S(n-1)
I (t)=MtK
2021/10/10
14
考虑到在一段稳定的时间段内:总的女性人口数比上总 的男性人口数为一个近似为1的定值.为了更为确切地分 析女性个体数量的分布对总人口数的影响,我们单独把 女性人口数作为研究对象.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模
———关于人口增长的模型
摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首
先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:
人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百
模型一(指数增长模型)
1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A
2、基本假设:人口的增长率是常数
增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O
由假设,对任意△t>0 ,有
)()
()(t rx t
t x t t x =∆-∆+
即:单位时间人口增长量=r ×当时人口数
当△t 趋向于0时,上式两边取极限,即:
o t →∆lim
)()
()(t rx t
t x t t x =∆-∆+ 引入微分方程:
)1( )0()(0
⎪⎩⎪
⎨⎧==x x t rx dt
dx
3、模型求解: 从(1)得
rdt x
dx
= 两边求不定积分:
c rt x +=ln
∵t=0时0x x =,∴C x =0ln
rt e x rt x x 00ln ln ln =+=
∴rt
e x t x 0
)(= (2) 当r>0时.表明人口按指数变化规律增长.
备注; r 的确定方法:
要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33
.5==r
,359.1307.0=e
,则(2)式现为: t t x )359.1(9.3)(⨯=
4、结论:由上函数可预测得:2010的人口为x(22):
x(22)=3325.77
2020的人口为x(23):
x(23)=4519.73
5、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此
6、模型讨论:
由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
但人口较多时用模型预测的结果比实际人口偏大较多,实际人口越多时相对误差越大。
即人口的增长不应是一个常数。
进行如下讨论:
()t x,忽略了个体间的差异(如年龄、1.我们把人口数仅仅看成是时间t的函数
性别、大小等)对人口增长的影响。
2.假定()t x是连续可微的。
这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的。
3.人口增长率是常数r,意味着人处于一种不随时间改变的定常的环境当中。
4.模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生。
不难看出,这些假设是苛刻的、不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口。
模型二(阻滞增长模型)
1、模型的提出
随着人口的增长,自然资源、环境条件等因素对人口开始起阻滞作用,因而人口增长率会逐渐下降。
又因一定环境所容纳的人口数量是一定的,人口不会无限地增加,而是最终趋近于某个常数。
2、基本假设
人口增长率不是常数,而是关于人口数量x的线性递减函数r(x).
()x r :人口增长率
m x :按自然资源和环境条件的最大人口容量
r
: 固有增长率,即人口很少时的增长率
3、模型的建立及求解:
由定义和假设,显然有: kx r x r -=)(
0)(=m x r
r r =)0(
∵m
x x →lim 0=m r
lim →x ()0=x r
即r-rk m x =0
、 ∴k=m
x r
∴()=x r r-
m x r x=r(1-m
x
x
)
将()x r 的表达式代入指数增长模型中的微分方程中:
)3( )0()1(0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⎪⎩
⎪
⎨⎧=-=x
x x x x r dt
dx
m 求解:
由(3)式得:
移项得:
rdt x
x x dx
m
=-)1(
dx x x x dx x x x x x x x x x dx x x
x x dx m m m m m m
)11()()()()1(-+=-+-=-=- rdt dx x
x x :m =-+)11(即
两边求不定积分 ⎰⎰=-+rdt dx x x x m )11( ,)ln(ln 1c rt x x x m +=--∴
1ln
c rt x
x x
m +=-∴
∴1C rt m e x
x x
+=-
1
1
1C rt C rt m e e x x +++=∴ 0,0x x t ==时当
,111
0c m
rt rt m e
x e e x x -+=+=∴ )4..(...........)1(1)(0
⋯⋯⋯⋯⋯⋯⋯⋯-+=
∴-rt
m m
e x x
x t x
备注:r 及m x 的确定方法:
由(4)式可得:rt
rt m
xe x e xx x ----=00)1(⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (5)
代入表格中两组数据得: r =0.2072
m x =464
4、结论:
由上函数可预测得:2010的人口为x(22):
x(22)= 464.0 2020的人口为x(23):
x(23)= 464.0
6、模型的讨论:
从上面的图中可以看出:由该模型计算的结果实际符合地非常好。
但是,由于该模型建立在环境所能容纳的最大人口数量m
x为定值的情况下,而对于实际情况而说,m
x的值很难确定,即使确定,也会因情况的变化而发生改变。
这也是在上图中,曲线的末端分叉的原因。
三、利用层次分析法对模型进行评价:
1、层次分析模型的构造
目标层: 准则层
最优方案A
绝对误差B
1
均方差B
2
相关系数B
3
方案层:
由图可知:
,评价,对现有的两种方案做具体的分析选取。
2.构造判断矩阵 建立层次模型后,,我们将各方面的因素两两比较,看它们对上一层某个准则的相对重要程度。
比较结果采用不1—9做标准。
将全部比较结果对某一上层因素的标准值列于表内,则得到判断矩阵,分别列表如下:
列表1:C 1—C 2相比对B 1重要程度及其判断矩阵
得:B 1= 1
7
1
7 1
列表2:C 1—C 2相比对B 2重要程度及其判断矩阵 得:B 2= 1
5
1 5 1
列表3:C 1—C 2相比对B 3重要程度及其判断矩阵
得:B 3=
1
3
1 3 1
1
31 5
1
A= 3 1 5
1
5 5 1
三、层次单排序及一致性检验:
根据判断矩阵计算对于上一层次某要素而言,及本层次与之有联系的要素重要程度次序的数值。
现用方根法计算判断矩阵的特征向量
B 1= 1 71 得: 1×7
1
7 1 M= 7×1
0.378 0.125
所以W= 因此W= 2.646 0.875
列表5
λ=2 CR=0
m ax
同理:
λ=2 CR=0
m ax
λ=2 CR=0
m ax
m ax =3.038 CR=0.0332
四、层次总排序
确定方案层所有因素对于总目标相对重要性的排序权值: 根据总排序结果可以得出结论:C 2方案优于C 1方案
五、参考文献: 1、《系统工程实教程》 哈尔滨工业大学出版社 姚德民 李汉铃 编著 2、《概论论与数理统计》合肥工业大学出版社 费业泰 主编 3、《数学模型》 华南理工大学出版社 《数学模型》编写组 编。