数学建模作业求解常微分方程和人口模型问题

合集下载

2022-2022数学建模题

2022-2022数学建模题

2022-2022数学建模题数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。

社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。

一般把传染病流行范围内的人群分成三类:S类,易感者(Suceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。

要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、一阶常微分方程模型—人口模型与预测下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(t0),N0101654万人,Nm200000万人。

198219831984198519861987198819891990年人口101654103008104357105851107507109300111026112704114333(万)19911992199319941995199619971998年人口115823117171118517119850121121122389123626124810(万)要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logitic模型,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

(4)利用MATLAB图形,画出两种预测模型的误差比较图,并分别标出其误差。

【注】常微分方程一阶初值问题的MATLAB库函数为:ode45。

应用微分方程求解世界各国人口发展问题

应用微分方程求解世界各国人口发展问题

应用微分方程求解世界各国人口发展问题近年来,人口问题成为世界关注的热点之一。

不同国家的人口增长率不同,人口老龄化、人口减少等问题也开始受到世界各国的重视。

但是,应用微分方程求解人口问题的方法似乎比较少见。

本文将探讨如何应用微分方程解决世界各国人口发展问题。

一、人口增长率的微分方程模型首先,我们需要知道人口增长率的微分方程模型是什么。

假设一个国家的人口数量为P,其增长率为r(单位为人/人年),则有:dP/dt = rP其中,dP/dt表示P对t的导数,即人口数量随时间变化的速率。

由于r是为常数,我们可以将其写成:dP/P = rdt对上述式子两边同时求积分,得到:ln(P) = rt + C其中,C为积分常数。

解出P,得到:P = e^(rt+C)由于e^C是一个常数,我们可以将其表示为K,即:P = Ke^(rt)这个式子被称为人口数量的微分方程模型。

通过这个模型,我们可以预测一个国家在未来的某个时间点的人口数量。

二、应用微分方程预测人口数量根据上面的式子,我们可以计算未来某个时间点的人口数量。

例如,我们可以应用这个式子预测中国未来10年的人口数量。

首先,我们需要知道中国目前的人口数量和增长率。

根据联合国的统计数据,中国在2019年的人口数量为13.91亿人,增长率为0.44%。

因此,我们可以将r和P代入上面的式子,得到:P = Ke^(0.0044t)假设我们要预测中国10年后的人口数量,即t=10,则有:P = Ke^(0.044)我们可以通过以下方式计算K值:K = P/e^(rt)将t=0、P=13.91亿代入上面的式子,得到:K = 13.91亿/e^0 = 13.91亿因此,代入上面的式子,我们可以计算出中国未来10年的人口数量为:P = 13.91亿*e^(0.044*10) = 15.92亿通过微分方程模型,我们得出了中国未来10年的人口增长情况。

类似地,我们也可以预测其他国家的人口增长情况。

人口增长问题数学模型

人口增长问题数学模型

人口增长问题数学模型人口增长问题是一个复杂的社会现象,它涉及到众多因素,如生育率、死亡率、移民、出生性别比等。

为了更好地理解和预测人口增长趋势,人们常常建立数学模型来描述人口变化的规律。

下面是一个简单的人口增长问题数学模型的示例。

假设人口数量为P(t),时间t为以年为单位。

则人口增长可以用以下微分方程表示:dP(t)/dt = rP(t)其中,r是人口自然增长率,是一个常数。

这个微分方程描述了人口数量随着时间的变化情况,即人口数量呈指数增长。

然而,实际情况要复杂得多。

以下是一个更复杂的人口增长模型,考虑到生育率、死亡率和移民等因素:dP(t)/dt = (b - d)P(t) + I其中,b是每单位时间的出生率,d是每单位时间的死亡率,I是每单位时间的移民人数。

这个模型可以更好地描述人口增长的趋势,特别是当存在外部干扰(如战争、自然灾害等)时。

除了以上两个模型,还有其他更复杂的模型,如Logistic增长模型、Malthusian模型等。

这些模型考虑的因素更加全面,可以更准确地描述人口增长的趋势。

例如,Logistic增长模型考虑了环境承载能力对人口增长的限制,而Malthusian 模型则考虑了人口增长与资源供给之间的关系。

建立数学模型有助于我们更好地理解和预测人口增长趋势。

这些模型可以帮助我们评估不同政策对人口增长的影响,如计划生育政策、移民政策等。

此外,这些模型还可以帮助我们预测未来人口数量和结构的变化情况,从而为社会发展规划提供科学依据。

然而,需要注意的是,数学模型只是对现实世界的近似描述,它可能无法完全准确地预测未来情况。

因此,在使用数学模型进行人口增长预测时,需要结合实际情况和专家意见进行综合分析。

总之,数学模型是研究人口增长问题的重要工具之一。

通过建立数学模型,我们可以更好地理解和预测人口增长的规律和趋势。

这些模型可以帮助我们评估不同政策对人口增长的影响,为社会发展规划提供科学依据。

常微分方程和人口模型实验

常微分方程和人口模型实验

常微分方程和人口模型实验实验8 常微分方程和人口模型实验目的:(1)了解常微分方程的基本概念。

(2)了解常微分方程的解析解。

(3)了解常微分方程的数值解。

(4)学习、掌握MATLAB软件有关的命令。

实验内容:常微分方程模型的建立及求解。

一、常微分方程的解析解调用格式:dsolve('S','s1','s2',...,'x')其中,S为方程或方程组,方程S中用D表示求导数,D2,D3,…表示二阶、三阶等高阶导数,方程间用逗号分隔;s1,s2,…为初始条件,x为自变量,初始条件和自变量都可以省略;初始条件缺省时给出带任意常数C1,C2,…的通解;自变量缺省时设定为t(表8.1给出了这个命令的基本用法,请读者运行表中的命令,并观察所得结果。

表8.1 dsolve命令用法常微分方程问题求解命令2yy'1,,y=dsolve(…Dy=1+y^2?)2,yy'1,,y=dsolve(…Dy=1+y^2?,?y(0)=1?,?x?) ,y(0)1,,txxxe''2'2,,, x=dsolve(…D2x+2*D1x+2*x=exp(t)?,?x(0)=1?,?Dx(0)=0?) 2,xyyx''3',, y=dsolve(…x*D2y-3*Dy=x^2?,?y(1)=0,y(0)=0?,?x?) ,yy(1)(0)0,,,xxy'34,,, [x,y]=dsolve(…Dx=3*x+4*y?,?Dy=-4*x+3*y?) ,yxy'43,,,,xxy',,,, yxy',,[x,y]=dsolve(…Dx=x+y,Dy=y-x?,?Dx(0)=1,Dy(0)=1?) ,,xy'(0)'(0)1,,,二、常微分方程的数值解在自然科学的众多领域都会遇到常微分方程的求解问题,然而,我们知道,只是有少数十分简单的常微分方程可用简单的方法给出解析解,大部分微分方程只能用数值解法求近似解。

微分方程模型习题解答(人口的预测和控制模型)

微分方程模型习题解答(人口的预测和控制模型)

微分方程模型习题解答(人口的预测和控制模型)在人口的预测和控制模型中,总和生育率β(t)和生育模式h(r,t)两种控制人口增长的手段。

试说明我国目前的人口政策,如提倡一对夫妻只生一个孩子、晚婚晚育,及生育第2 胎的一些规定,可以怎样通过这两种手段加以实施。

一、问题分析目前,我国人口总数占世界人口总数的1/5,居世界第一。

虽然在二十世纪八十年代开始就已经开始控制人口,但现在人口的增长仍然很快,人口老年化问题也越来越严重,所以现在开始提倡晚婚晚育,一对夫妻只能生一个孩子以及定下了一些关于生第二胎的政策。

所以在此我们可以考虑用微分方程中生育率和生育模式来求解问题。

二、模型的假设⑴时刻 t 年龄小于 r 的人口即人口分布函数记作F(r,t);⑵婴儿的出生率记为 p( 0, t)= f( t);⑶时刻 t 年龄 r 的人的死亡率记为μ(r,t)⑷ μ(r,t) p(r,t)dr表示时刻 t 年龄在 [r, r +dr] 内单位时间死亡人数;⑸ p(r)是人口调查得到的已知函数;⑹婴儿的出生率记为 f(t );三模型的建立与求解由问题假设我们可以得到各个年龄的人口数,即人口分布函数为:F(r,t)=∫p(s,t)ds由于在社会安定的局面下和不太长的时间里,死亡率大致与时间无关,于是可近似的假设μ(r,t)= μ(r)因为p0(r)与μ(r)可由人口统计数据得到,所以) , μ(r,t)可由μ(r,0)粗略估计,为了预测和控制人口的发展状况,我们需要关注和可以用作控制的就是婴儿的出生率f(t)了,下面我们就来讨论f(t) 。

记女性的性别函数为k(r,t)即时刻t 年龄在 [r, r +dr] 的女性人数为k(r,t)μ(r,t)dr将这些女性在单位时间内平均每人的生育数记作b(r,t)则育龄区间为[r1,r2]则:f(t)= ∫b(r,t)k(r,t)p(r,t)dr再将 b( r,t) 定义为b(r,t)=β(t)h(r,t)其中h(r,t)满足∫ h(r,t)dr=1于是就有β(t)= ∫B(r,t)drf(t)=β(t) ∫b(r,t)k(r,t)dr可以看出β(t)就是时刻t 单位时间内平均每个育龄女性的生育率。

常微分方程数值解--案例(中国人口增长预测)

常微分方程数值解--案例(中国人口增长预测)
2 2

y i ( 1 2 ) h y ( x i ) 2 ph
y ( x i ) O ( h )
3
§2 Runge-Kutta Method
Step 3: 将 yi+1 与 y( xi+1 ) 在 xi 点的泰勒展开作比较
y i 1 y i ( 1 2 ) h y ( x i ) 2 ph
3
即隐式欧拉公式具有 1 阶精度。
梯形公式 /* trapezoid formula */
y i1 y i h 2
§1 Euler’s Method
— 显、隐式两种算法的平均
( i 0 , ... , n 1 )
[ f ( x i , y i ) f ( x i 1 , y i 1 )]
3 i i 1 i 1
中点欧拉公式 /* midpoint formula */
中心差商近似导数
y ( x 1 )
y( x2 ) y( x0 ) 2h
y ( x 2 ) y ( x 0 ) 2 h f ( x 1 , y ( x 1 ))
y i 1 y i 1 2 h f ( x i , y i )
其中i ( i = 1, …, m ),i ( i = 2, …, m ) 和 ij ( i = 2, …, m; j = 1, …, i1 ) 均为待定 系数,确定这些系数的 步骤与前面相似。
... ... Km f ( xi m h, y m1 hK1 m2 hK2 ... m m1 hKm1 )
§2 龙格 - 库塔法 /* Runge-Kutta Method */
建立高精度的单步递推格式。

常微分方程数学建模案例分析

常微分方程数学建模案例分析

常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。

它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。

本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。

假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。

现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。

为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。

根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。

感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。

总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。

进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。

例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。

反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。

另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。

相反,如果γ较小,传染病传播的速度会加快。

通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。

例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。

在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。

此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。

总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。

数学建模 人口增长详解

数学建模  人口增长详解

摘要:人口的增长是当前世界上引起普遍关注的问题作为世界上人口最多的国家,我国的人口问题是十分突出的由于人口基数大尽管我国已经实行了20多年的计划生育政策人口的增长依然很快,巨大人口压力会给我国的社会 政治经济医疗就业等带来了一系列的问题。

因此研究和解决人口问题在我国显得尤为重要。

我们经常在报刊上看见关于人口增长预报,说到本世纪,或下世纪中叶,全世界的人口将达到多少亿。

你可能注意到不同报刊对同一时间人口的预报在数字商场有较大的区别,这显然是由于用了不同的人口整张模型计算出来的结果。

人类社会进入20世纪以来,在科学和技术和生产力飞速发展的同时世界人口也以空前的规模增长。

人口每增加十亿的时间,有一百年缩短为十几年。

我们赖以生存的地球已经携带着他的60亿子民踏入下一个世纪。

长期以来,人类的繁殖一直在自然地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律以及如何惊醒人口控制等问题。

本文件里两个模型: (1):中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2):中国人口的Logistic 图形,标出中国人口的实际统计数据进行比较。

而且利用MATLAB 图形 ,标出中国人口的实际统计数据,并画出两种模型的预测曲线和两种预测模型的误差比较图,并分别标出其误差。

关键词:指数增长模型 Logistic 模型 MATLAB 软件 人口增长预测1.问题的提出下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MA TLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告课程名称:数学建模课题名称:求解常微分方程与人口模型专业:信息与计算科学*名:***班级: 123132完成日期: 2016 年 6 月 10 日一.求解微分方程的通解(1). dsolve('2*x^2*y*Dy=y^2+1','x')ans =(exp(C3 - 1/x) - 1)^(1/2)-(exp(C3 - 1/x) - 1)^(1/2)i-i(2). dsolve('Dy=(y+x)/(y-x)','x')ans =x + 2^(1/2)*(x^2 + C12)^(1/2)x - 2^(1/2)*(x^2 + C12)^(1/2)(3). dsolve('Dy=cos(y/x)+y/x','x')ans =(pi*x)/2-x*log(-(exp(C25 + log(x)) - i) /(exp(C25 + log(x))*i - 1))*i (4). dsolve('(x*cos(y)+sin(2*y))*Dy=1','x')ans =-asin(x/2 + lambertw(0, -(C30*exp(- x/2 - 1))/2) + 1)(5). dsolve('D2y+3*Dy-y=exp(x)*cos(2*x)','x')ans =C32*exp(x*(13^(1/2)/2 - 3/2)) + C33*exp(-x*(13^(1/2)/2 + 3/2)) + (13^(1/2)*exp(x*(13^(1/2)/2-3/2))*exp((5*x)/2(13^(1/2)*x)/2)*(2*sin(2*x) - cos(2*x)*(13^(1/2)/2 - 5/2)))/(13*((13^(1/2)/2 - 5/2)^2 +4))-(13^(1/2)*exp(x*(13^(1/2)/2+3/2))*exp((5*x)/2+(13^(1/2)*x)/2)*(2*sin(2*x)+cos(2*x)*(13^(1/2)/2+5/2)))/(13*((13^(1/2)/2 + 5/2)^2 + 4))(6)dsolve('D2y+4*y=x+1+sin(x)','x')ans =cos(2*x)*(cos(2*x)/4 - sin(2*x)/8 + sin(3*x)/12 - sin(x)/4 + (x*cos(2*x))/4 - 1/4) + sin(2*x)*(cos(2*x)/8 - cos(3*x)/12 + sin(2*x)/4 + cos(x)/4 + (x*sin(2*x))/4 + 1/8) + C35*cos(2*x) + C36*sin(2*x)二.求初值问题的解(1). dsolve('x^2+2*x*y-y^2+(y^2+2*x*y-x^2)*Dy=0','y(1)=1','x') ans =(x*((- 4*x^2 + 4*x + 1)/x^2)^(1/2))/2 + 1/2(2). dsolve('D2x+2*n*Dx+a^2*x=0','x(0)=x0','Dx(0)=V0')ans =(exp(-t*(n - (-(a + n)*(a - n))^(1/2)))*(V0 + n*x0 + x0*(-(a + n)*(a - n))^(1/2)))/(2*(-(a + n)*(a - n))^(1/2)) - (exp(-t*(n + (-(a + n)*(a - n))^(1/2)))*(V0 + n*x0 - x0*(-(a + n)*(a - n))^(1/2)))/(2*(-(a + n)*(a - n))^(1/2))三.给出函数f(x)=sinx+cosx在x=0点的7阶taylor展开式以及在x=1处的5阶taylor展开式。

(1). sym x;taylor(exp(x)*sin(x)+2^x*cos(x),7,0)ans =(log(2)^2/48 - log(2)^4/48 + log(2)^6/720 - 1/80)*x^6 + (log(2)/24 - log(2)^3/12 + log(2)^5/120 - 1/30)*x^5 + (log(2)^4/24 - log(2)^2/4 + 1/24)*x^4 + (log(2)^3/6 - log(2)/2 + 1/3)*x^3 + (log(2)^2/2 + 1/2)*x^2 + (log(2) + 1)*x + 1(2). sym x;taylor(exp(x)*sin(x)+2^x*cos(x),5,1)ans =2*cos(1) + exp(1)*sin(1) - (x - 1)^2*(cos(1) - cos(1)*exp(1) + 2*log(2)*sin(1)-cos(1)*log(2)^2)+(x-1)^3*(sin(1)/3+(cos(1)* exp(1)) /3-cos(1)*log(2)-(exp(1)*sin(1))/3+(cos(1)*log(2)^3)/3 - log(2)^2* sin(1)) + (x - 1)^4*(cos(1)/12 - (exp(1)*sin(1))/6 + (log(2)*sin(1))/3 - (cos(1)*log(2)^2)/2 + (cos(1)*log(2)^4)/12 - (log(2)^3*sin(1))/3) + (x - 1)*(cos(1)*exp(1) - 2*sin(1) + 2*cos(1)*log(2) + exp(1)*sin(1))四.判别下列级数的敛散性,若收敛求其和. (1). sym n;symsum(1/(2*n-1),n,1,inf)ans =Inf因此不收敛(2). sym n;symsum(tan(pi/(2*n*sqrt(n+1))),n,1,inf)ans =sum(tan(pi/(2*n*(n + 1)^(1/2))), n == 1..Inf)limit(tan(pi/(2*n*(n + 1)^(1/2)))/(1/n^2),n,inf)ans =Inf因此不收敛(3). sym n;symsum((-1)*(n/2)*(1/(n*sqrt(n+1))),n,1,inf) ans =-sum(1/(n + 1)^(1/2), n == 1..Inf)/2limit(1/(n + 1)^(1/2)/(1/n^2),n,inf)ans =Inf因此不收敛(4). sym n;symsum((-1)^n*(1/(n*log(n))),n,1,inf)ans =sum((-1)^n/(n*log(n)), n == 1..Inf)limit((-1)^n*(1/(n*log(n)))/(1/n^2),n,inf)ans =NaN因此不收敛五.求幂级数的和函数syms x n;symsum((-1)^n*x^n/sqrt(n^2-n),n,2,inf)ans =sum(((-1)^n*x^n)/(n^2 - n)^(1/2), n == 2..Inf)六.求函数项级数的和函数syms x n;symsum((-1)^n*sin(pi/(2^n))*x^n,n,1,inf)ans =sum((-1)^n*x^n*sin(1/2^n*pi), n == 1..Inf)七.人口模型一、实验名称建立适合的拟合模型,预测人口增长二、实验目的认识人口数量的变化规律,建立人口模型,运用专用的拟合函数polyfit求解,并作出较准确的预报三、实验原理对于情况较复杂的实际问题(因素不易化简,作用机理不详)可直接使用数据组建模 ,寻找简单的因果变量之间的数量关系,从而对未知的情形作预报。

拟合模型的组建是通过对有关变量的观测数据的观察、分析和选择恰当的数学表达方式得到的拟合模型组建的实质是数据拟合的精度和数学表达式简化程度间的一个折中。

四、实验题目建立Logistic人口阻滞增长模型,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。

分析那个时间段数据预测的效果好?并结合中国实情分析原因。

建立模型阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。

若将r 表示为x 的函数)(x r 。

则它应是减函数。

于是有: 0)0(,)(x x x x r dt dx == (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即)0,0()(>>-=s r sx r x r (2)设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即增长率0)(=m x r ,代入(2)式得m x r s =,于是(2)式为 )1()(m x x r x r -= (3)将(3)代入方程(1)得: ⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dt dx m (4)解得:rt m m e x x x t x --+=)1(1)(0 (5)模型求解用Matlab 求解,程序如下:t=1954:1:2005;x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80 .7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008 ,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,11 9.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,12 9.988];x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83 ,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104. 357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85, 121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988 ,130.756];dx=(x2-x1)/x2;a=polyfit(x2,dx,1);r=a(2),xm=-r/a(1)%求出xm和rx0=61.5;f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数plot(t,f(t,xm,r,x0),'-r',t,x,'+b');title('1954-2005年实际人口与理论值的比较')x2010=f(2010,xm,r,x0)x2020=f(2020,xm,r,x0)x2033=f(2033,xm,r,x0)解得:x(m)=180.9516(千万),r=0.0327/(年),x(0)=61.5。

相关文档
最新文档