微分方程模型(数学建模)

合集下载

微分方程模型

微分方程模型

6.1 微分方程模型的建模步骤 6.2 作战模型
6.3 传染病模型 习题
6.1 微分方程模型的建模步骤
例1 某人的食量是10467焦/天,其中5038焦/天用于基本的新
陈代谢(即自动消耗)。在健身训练中,他每天大约每千克
体重消耗69焦的热量。 假设以脂肪形式贮藏的热量100%地有效,而1千克脂肪含 热量41868焦,试研究此人的体重随时间变化的规律。
模型分析
甲乙两支部队互相交战,在整个战争期间,双方的兵力 在不断发生变化,而影响兵力变化的诸多因素转化为数量非 常困难。为此,我们作如下假定把问题简化。
模型假设
1. x(t) , y(t) 表示甲乙双方在时刻 t 的人数, x(0)=x0 ,y(0)=y0 表示甲乙双方开战时的人数,x0 > 0, y0 >0; 2.设x(t) , y(t)是连续变化的,并且充分光滑; 3.每一方的战斗减员率取决于双方的兵力,不妨以f(x,y) ,
投入多大的初始兵力。不妨设 100 x0
S 活动区域 x 0.1
p, 0.1 rx, x
ry 2
, 平
平方千米,乙方射击的有效面积 1 sy
y0 2 0.1 0.1 106 100 x 2 1 100 0
2
方米,则可得乙方获胜的条件为:
a
时甲方兵力
降为“零”,从而乙方获胜。同理可知,K 0
甲方获胜。而当 K 0 时,双方战平。 2 2 甲方获胜的充要条件为 bx0 ay0 0
时,
代入a 、b 的值,有甲方获胜的充要条件为
2 2 rx p x x 0 r y p y y 0
故可找到一个用于正规作战部队的综合战斗力的评价函数:

数学建模实验二:微分方程模型Matlab求解与分析

数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。

二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。

其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。

(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。

【经典】建模-数学建模中的数值方法

【经典】建模-数学建模中的数值方法
(3)假设物质是由高浓度区向低浓度区扩散
考虑三维区域 G ,假设其为均匀的且各向同性。
设点 (x, y, z) 处在时刻 t 的浓度为 u(x, y, z,t) 。
区域 G 内浓度升高增加的污染物质量为
Q1 u(x, y, z,t t) u(x, y, z,t)dV
G
G
t t t
u (x, t
重金属在土壤中的传播:
(1)由于是在土壤中扩散,由土壤传播的特性 (慢,相对于空气或液体中),因此,这个题更 多的要求我们分析物质的空间分布,而不侧重各 区域内重金属物质随机时间的变化规律。同时, 主要是数据中也没有给出我们关于时间的数据;
(2)物质污染扩散是源点浓度最大,然后向四 周空间区域扩散,梯次减小。
于是 Q1 Q2 Q3 Q4 ,则有
u t
a2
2u x2
b2
2u y 2
c2
2u z 2
ku
F (x,
y,
z,t)
由于数据没有关于时间,因为我们可以认为释放过程已经达到一个平
衡状态,即不随时间发生变化,则有
a2
2u x2
b2
2u y 2
c2
2u z 2
ku
F (x,
y,
z)
0
如果污染源是点源的话:
t t t
G
a
2
2u x2
b2
2u y2
c2
2u z 2
dxdydzdt
由 Q1 Q2 ,
tt
t
G
u t
(x,
y,
z, t )dxdydz
dt
t t t
G
a2
2u x2
b2

数学建模微分方程模型练习题

数学建模微分方程模型练习题

微分方程模型练习题
1.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ,用量纲分析方法确定风车获得的功率P 与,
,v s ρ的关系
2.根据经验当一种新商品投入市场后,随着人们对它的拥有量的增加,其销售量()s t 成正比。

广告宣传可给销量添加一个增长速度,它与广告费()a t 成正比,但广告只能影响这种商品在市场上尚未饱和的部分(设饱和量为M )。

建立一个销量()s t 的模型。

若广告宣传只进行有限时间τ,且广告费为常数a ,问()s t 如何变化?
3.如果两个种群都能独立生存,共处时又能相互提供食物,试建立种群依存模型并讨论平衡点的稳定性,解释稳定的意义。

4.某种群最高年龄为30岁,按间隔10岁将此种群分为三组并
以10年为一时段。

若020b b ==,13b =,016p =,112p =,
0(1000,1000,1000)T N =
求:(1)10年、20年、30年后该种群按年龄分布的种群量;
(2)此种群的固有增长率1λ及相应的稳定年龄分布;
(3)指出该种群的发展趋势。

微分方程建模(溶液浓度)

微分方程建模(溶液浓度)

Vanmeegren在狱中作的画实在是质量太差,所 找理由都不能使怀疑者满意。直到20年后,1967
年,卡内基梅隆大学的科学家们用微分方程模型
解决了这一问题。
原理
著名物理学家卢瑟夫(Rutherford)指出:
物质的放射性正比于现存物质的原子数。
设 t 时刻的原子数为N (t ) ,则有
dN dt N
测定结果与分析
画名 Emmaus的信徒们 洗足 钋210衰变原子数 镭226衰变原子数
8.5 12.6
0.82 0.26
读乐谱的妇人
弹曼陀林的妇人 做花边的人 欢笑的女孩
10.3
8.2 1.5 5.2
0.3
0.17 1.4 6.0
若第一幅画是真品, t t 0 300
y 0 y (t )e
衰减(放射性/污染物的净化) “边际的”(经济学)
应注意题目的 这些词: 改变/变化/增 加/减少
如何建立微分方程?
根据规律列方程
利用数学、力学、物理、化学等学科中的定理或经过实验检验
的规律等来建立微分方程模型。

微元分析法
利用已知的定理与规律寻找微元之间的关系式,与第一种方法
不同的是对微元而不是直接对函数及其导数应用规律。
d x C 1V 1 d t C 2V 2 d t
dx C 1V 1 C 2V 2 dt x (0) x0
该模型还适用于 讨论气体的混合
以上两个简单例子的启示:
关键是建立一个 yˊ 、y、t 的方程.
可以表示为导数的最常见的量:
速率
增长(生物学/ 人口问题)
从处于放射性平衡状态的矿中提取出来时, Pb210 的绝大多数来源被切断,因而要迅速蜕变,直到 Pb210与少量的镭再度处于放射平衡,这时Pb210 的蜕变正好等于镭蜕变所补足的为止。

常微分方程数学建模案例分析

常微分方程数学建模案例分析

常微分方程数学建模案例分析常微分方程是运用微积分中的概念与理论研究变化率的方程。

它是数学建模中常用的方法之一,可用于描述各种实际问题,如经济增长、生物扩散、化学反应等。

本文将通过一个关于人群传染病的数学建模案例,分析常微分方程在实际问题中的应用。

假设地有一种传染病,病毒的传播速度与感染者的接触频率有关。

现在我们要研究传染病的传播速度以及控制措施对传染病传播的影响。

为此,我们可以建立如下的数学模型:设N(t)表示时间t时刻的总人口数,而I(t)表示感染者的人口数,S(t)表示易感者的人口数。

根据该模型,易感者的人数随时间的变化率可表示为:dS/dt = -βSI其中,β表示感染率,即感染者每接触到一个易感者,会使其发病的概率。

感染者的人数随时间的变化率可表示为:dI/dt = βSI - γI其中,γ表示恢复率,即感染者每天被治愈的人数。

总人口数随时间的变化率可以通过易感者和感染者的变化率求和得到:dN/dt = dS/dt + dI/dt通过对该方程进行求解,我们可以得到感染者和易感者的人数随时间变化的解析解。

进一步,我们可以通过调节β和γ来研究不同的传播速度和控制措施对传染病传播的影响。

例如,如果β较大,表示感染率较高,此时传染速度会加快,可能导致传染病扩散的速度加快。

反之,如果β较小,表示感染率较低,传染病传播的速度会减慢。

另外,如果γ较大,表示恢复率较高,此时感染者的人数会快速减少,传染病传播的速度会减慢。

相反,如果γ较小,传染病传播的速度会加快。

通过对这些参数的调节,我们可以研究不同的控制措施对传染病传播的影响。

例如,我们可以通过降低感染率β或增加恢复率γ来减缓传染病传播的速度,从而控制疫情的爆发。

在实际应用中,常微分方程数学建模方法可以用于预测传染病的传播趋势,评估各种干预措施的效果。

此外,还可以通过引入更多的变量和参数,建立更复杂的模型,以更好地解释实际问题。

总之,常微分方程是数学建模中常用的方法之一,可以用于描述各种实际问题,如传染病的传播、经济增长等。

数学建模之微分方程建模与平衡点理论

微分方程列微分方程常用的方法: (1)根据规律列方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。

(2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。

(3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。

一、模型的建立与求解 1.1传染病模型 (1)基础模型假设:t 时刻病人人数()x t 连续可微。

每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。

建模:t 到t t +∆病人人数增加()()()x t t x t x t t λ+∆-=∆ (1)0,(0)dxx x x dtλ== (2) 解得:0()t x t x e λ= (3)所以,病人人数会随着t 的增加而无限增长,结论不符合实际。

(2)SI 模型假设:1.疾病传播时期,总人数N 保持不变。

人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。

2.每位病人每天平均有效接触λ人,λ为日接触率。

有效接触后健康者变为病人。

依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模:di N Nsi dtλ= (4)由于()()1s t i t += (5)设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型0(1),(0)dii i i i dtλ=-= (6) 解得:01()111kti t e i -=⎛⎫+- ⎪⎝⎭(7)用Matlab 绘制图1()~i t t ,图2 ~di i dt图形如下,结论:在不考虑治愈情况下①当12i =时didt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时101ln 1m t i λ-⎛⎫=- ⎪⎝⎭②t →∞时人类全被感染。

数学建模 微分方程模型讲解


量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )

数学建模,第三章-微分方程模型


8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt

数学建模微分方程模型

数学建模微分方程模型在数学建模的旅程中,微分方程模型扮演了至关重要的角色。

它们在描述和解决各种实际问题中,从物理学到社会科学,都起到了关键的作用。

在本章中,我们将探讨微分方程模型的基本概念、类型和应用。

微分方程是一种方程,它包含未知函数的导数。

这种方程在描述变化率时非常有用,例如,描述物体的速度或加速度。

在形式上,微分方程可以表示为 y'(x) = f(x, y),其中 y'表示 y的导数,f是一个给定的函数。

根据方程的特点,微分方程可以划分为多种类型,如线性微分方程、非线性微分方程、常微分方程、偏微分方程等。

每种类型的方程都有其特定的求解方法和应用领域。

微分方程在众多领域中都有应用,如物理学、工程学、经济学等。

例如,牛顿第二定律就是一个微分方程,它描述了物体的加速度如何由作用力决定。

人口增长模型、传染病模型等也都依赖于微分方程。

建立微分方程模型通常需要以下步骤:确定模型的目标和变量;然后,根据问题背景和物理规律建立数学模型;通过数值计算或解析解法得出结果。

求解微分方程的方法主要有两种:数值方法和解析方法。

数值方法是通过计算机程序或软件进行数值计算得到近似解,而解析方法是通过求解方程得到精确解。

对于某些类型的微分方程,可能需要结合使用这两种方法。

建立微分方程模型后,我们需要对模型进行评估和检验,以确保其有效性和准确性。

这通常包括对模型的假设进行检验、对模型的预测结果进行验证以及对模型的参数进行估计和调整等。

随着科学技术的发展,微分方程模型的应用前景越来越广阔。

例如,在生物学中,微分方程被用来描述疾病的传播动态;在经济学中,微分方程被用来分析市场供需关系的变化;在工程学中,微分方程被用来模拟复杂系统的行为等。

未来,随着大数据和人工智能等技术的发展,微分方程模型将在更多领域得到应用和发展。

微分方程模型是数学建模中一个极其重要的部分。

通过学习和掌握微分方程的基本概念、类型、应用以及求解方法等,我们可以更好地理解和解决现实生活中的各种问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
2020年2月23日
开普勒三大定律:
《数学的实践与认识》 2005.12
• 太阳系每一颗行星的轨道皆以太阳为一 焦点的椭圆;
• 行星的向径在单位时间扫过的面积是一 个常数;
• 行星运动周期之平方与平
动态 模型
• 描述对象特征随时间(空间)的演变过程 • 分析对象特征的变化规律 • 预报对象特征的未来性态 • 研究控制对象特征的手段
而湖水始终保持 2000 m3 的容积不变,所以列方程:
湖水中含污染物的变化率=污染物流入量-污染物排出量
2000
dC dt

Z 30
6C
C(0) 0
10
2020年2月23日
二、微分方程建模的简单实例
2. 湖水的污染问题
求解得一特解为:
C(t) Z (1 e6t / ) 2000 /180
这时求得的t是死者从死 亡时间到尸体被发现所经 历的时间。因此可得,死 者的死亡时间大致在前一 天晚上的10:35.
T(t)=29时,t=2.4094
8
2020年2月23日
二、微分方程建模的简单实例
2. 湖水的污染问题
X A
B
小湖示意图
如图所示是一个容量为2000m3的一个小湖的示意 图,通过小河A,水以0.1m3/s的速度流入,以相 同的流量湖水经过B流出。在上午11:05时,因交 通事故一个盛有毒性化学物质的容器倾翻,在图 中X点处注入湖中。在采取紧急措施后,于11:35 事故得到控制,但数量不详的化学物质Z已泻入 湖中,初步估计Z的量在5~20m3之间。请建立一 个模型,通过它来估计湖水污染程度随时间的变 化并估计: (1)湖水何时到达污染高峰? (2)何时污染程度可降至安全水平(不大于 0.05%)。
1014
三、微分方程的平衡点及稳定性
微分方程所描述的是物质系统的运动规律,实际中,人 们只能考虑影响该过程的主要因素,而忽略次要的因素,这 种次要的因素称为干扰因素。
干扰因素在实际中可以瞬时地起作用,也可持续地起作 用。
问题:在干扰因素客观存在的情况下,即干扰因素引起 初值条件或微分方程的微小变化,是否也只引起对应解的微 小变化?
在凌晨1时警察发现一具尸体,测得尸体的温度是29℃,当 时环境的温度是21℃.1h后尸体温度下降到27℃,若人体正常 的体温是37℃,估计死亡时间。
解:设 T(t)为 t 时刻被杀害者的体温,k 为比例系数. 由
Newton 冷却定理(将温度为 T 的物体放入处于常温 T0 的 介质中,T 的变化速率正比于 T 与周围介质的温度差:
数学建摸课程
第三章 微分方程方法
微分方程建模的思想和方法 微分方程建模的简单实例 微分方程的平衡点与稳定性 案例
2
2020年2月23日
第三章 微分方程方法
❖微分方程是研究函数变化规律的有力工 具,有着广泛和实际的应用。
❖微分方程建模主要有以下三种方法:
✓根据已知规律建模 ✓利用高等数学中的微元分析法建模 ✓利用模拟近似法建模
当它达到安全水平时,即 C(t)=0.05%,可求出 t=T
T 30 (2000/ 6) ln(0.9564Z)
11
2020年2月23日
Z取不同值时的浓度C(30)和时间T
Z/m3
C(30)/m3
T/min
5
0.00239
552
10
0.00478
738
15
0.00717
918
20
0.00956
2000
dC dt

Z 30

6C
C(0) 0
在 0<t<30 之间求 t 为多少时,C(t)最大。
显然是 t=30,污染达到高峰。此时的污染浓度为:
C(30) Z (1 e ) 630/2000 /180 (4.728 10 4 )Z
然后污染物被截断,故方程改为
2000 dC 6C , C(t) C(30)e6(t30)/ 2000 dt
dT (t) dt

k (T
(t)
T0 ),

T (0) 37, T (t) 29, T (t 1) 27
7
2020年2月23日
二、微分方程建模的简单实例
1. 估计死亡时间
解方程得: T (t) Cekt 21
根据初始条件可得
T (t) 16( 4)t 21 3
有限区间的稳定性、无限区间的稳定性、渐进稳定性、扰 动下的稳定性。
实际中,对于很多问题的微分方程模型并不需要求 其一般解,而是需要求其某种理想状态下的解,这种解 称为平衡点。
13
2020年2月23日
三 .微分方程的平衡点及其稳定性
1.平衡点的概念
设方程组(2):
dx

f (t, x)
dt
(2)利用微元法
(3)利用模拟近似法:在社会科学、生物学、医学、经济 学的学科中一些现象的规律性我们不太清楚,需要在不同 的假设下去模拟实际现象。如此建立的模型从数学上求解 或分析后再与实际对比,观察看这个模型是否能够模拟、 近似这些现象。
6
2020年2月23日
二、微分方程建模的简单实例
1. 估计死亡时间
x(t0 ) x0
如果存在某个常数(向量) x0 使得 f (t; x0 ) 0 , 则称点 x0 为方程组的平衡点(或奇点)。且称 x x0
为方程组的平凡解(或奇解)。
9
2020年2月23日
二、微分方程建模的简单实例
2. 湖水的污染问题
分析:湖水在时间 t 时的污染程度,可用污染度 C(t)表示,即
每立方米受污染的水中含有 C m3 的化学污染物质和(1-C) m3 的清
洁水。用分钟作为时间 t 的单位。在 0<t<30 的时间内,污染物流入
湖中的速率是 Z/30( m3 min1 ),而排出湖外的污染物的速率是 60 0.1C(m3 min 1) ,因为每立方流走的水中含有 C m3 的污染物,
微分 方程 建模
• 根据函数及其变化率之间的关系确定函数 • 根据建模目的和问题分析作出简化假设 • 按照内在规律或用类比法建立微分方程
5
2020年2月23日
一、微分方程建模的思想和方法
当我们用微观的眼光观察实际问题时一般遵循如下的模式
净变化率=输入率-输出率
(1)根据已知规律:利用数学、物理、力学、化学等经过 实践检验的规律和定理;
相关文档
最新文档