控制系统结构图
合集下载
控制系统结构图与信号流图

第四节
控制系统结构图与信号流图
1
提纲:
❖ 一 、控制系统的结构图 ❖ 二、控制系统的信号流图 ❖ 三、控制系统的传递函数
2
引言:
求系统的传递函数时,需要对微分方程组 或经拉氏变换后的代数方程组进行消元。而 采用结构图或信号流图,更便于求取系统的 传递函数,还能直观地表明输入信号以及各 中间变量在系统中的传递过程。因此,结构 图和信号流图作为一种数学模型,在控制理 论中得到了广泛的应用。
J s2 Bs
(f)
Eb (s) Kesm (s) (g)
c
(s)
1
i
m
(s)
(h)
图2-27 式(2.80)(e)~(h)子方程框图
10
按系统中各元件的相互关系,分清各输入量和输出量, 将各结构图正确地连接起来(图2-28)。
图2-28 位置随动系统结构图
11
略去La,系统结构图如图2-29所示:
8
Ia
(s)
U
a (s) La s
Eb (s) Ra
(2.80)(a)
e(s) r(s)c(s)
(b)
Us(s) Kse(s)
(c)
Ua (s) KaU s (s)
(d)
图2-27 式(2.80)(a)~(d)子方程框图
9
M d (s) KmIa (s) (e)
m(s)
M d(s) M L(s)
3
一 、控制系统的结构图
(一 )结构图的概念 图2-24 RC网络的微分方程式为:
1
ur Ri C idt
uc
1 C
idt
也可写为:
uc
1 C
ห้องสมุดไป่ตู้ idt
控制系统结构图与信号流图
1
提纲:
❖ 一 、控制系统的结构图 ❖ 二、控制系统的信号流图 ❖ 三、控制系统的传递函数
2
引言:
求系统的传递函数时,需要对微分方程组 或经拉氏变换后的代数方程组进行消元。而 采用结构图或信号流图,更便于求取系统的 传递函数,还能直观地表明输入信号以及各 中间变量在系统中的传递过程。因此,结构 图和信号流图作为一种数学模型,在控制理 论中得到了广泛的应用。
J s2 Bs
(f)
Eb (s) Kesm (s) (g)
c
(s)
1
i
m
(s)
(h)
图2-27 式(2.80)(e)~(h)子方程框图
10
按系统中各元件的相互关系,分清各输入量和输出量, 将各结构图正确地连接起来(图2-28)。
图2-28 位置随动系统结构图
11
略去La,系统结构图如图2-29所示:
8
Ia
(s)
U
a (s) La s
Eb (s) Ra
(2.80)(a)
e(s) r(s)c(s)
(b)
Us(s) Kse(s)
(c)
Ua (s) KaU s (s)
(d)
图2-27 式(2.80)(a)~(d)子方程框图
9
M d (s) KmIa (s) (e)
m(s)
M d(s) M L(s)
3
一 、控制系统的结构图
(一 )结构图的概念 图2-24 RC网络的微分方程式为:
1
ur Ri C idt
uc
1 C
idt
也可写为:
uc
1 C
ห้องสมุดไป่ตู้ idt
第3讲控制系统的结构图与信号流图

X 3 (s)
X ( s)
G (s)
X 2 ( s)
X 2 ( s)
所以,一般情况下,相加点向相加点移动,分支点向分 支点移动。教材表2-4给出了结构图等效变换的若干基本法 则.(要求熟练掌握)
例题
[例2]利用结构图等效变换讨论两级RC串联电路的传递函数。 R1 R2 [解]:不能把左图简单地看成两个 i1 i2 C1 C2 i uo RC电路的串联,有负载效应。根据 ui 2 电路定理,有以下式子: i, u
Y ( s)
X 3 (s)
X 2 ( s)
同一信号的分支点位置可以互换:见下例
X 1 ( s)
X 2 ( s)
X ( s)
G (s)
Y ( s)
X ( s)
Y ( s ) G (s)
X 1 ( s)
X 2 ( s)
相加点和分支点在一般情况下,不能互换。
X ( s)
X 3 (s)
G (s)
第③步:用信号线按信号流向依次将各元 件方框连接起来,便得到系统的结构图。
[例1].求如图所示的速度控制系统的结构图。
ug
ue+
-
u1
+
u
功率 2 放大器
Mc
ua
负载
uf
测速发电机
各部分传递函数:
比较环节:
ue ( s ) u g ( s ) u f ( s )
u g (s)
u ( s )
u1 ( s)
K 2 (s 1)
u2 ( s )
u2 ( s )
K3
ua ( s )
Mc
第3讲上 控制系统的结构图概述

Y ( s)
n Y ( s) G( s) Gi ( s) X ( s) i 1
环节的并联:
X ( s)
G1 ( s )
Y ( s)
Gn (s)
反馈联接:
n Y ( s) G( s) Gi ( s ) X ( s) i 1
X ( s) E ( s ) G ( s)
Y ( s)
M c ( s)
反馈环节:
u f ( s) ( s)
Kf
K m (Ta s 1) TaTm s 2 Tm s 1 Ku TaTm s 2 Tm s 1
Ω(s )
- ( s )
Kf
u f ( s)
U a ( s)
ug
ue -
+
u1
+
u
功率 2 放大 器
Mc
ua
负载
uf
测速发电机
1 [ui ( s) u ( s )] I1 ( s ) R1
I1 (s) I (s) I 2 (s)
ui ( s )
u (s)
-
1
R1
I1 ( s )
I (s)
I1 ( s )
I (s)
1
I 2 ( s)
1 I (s) u ( s) C1s
-
( s )
Kf
在结构图中,不仅能反映系统的组成和信号流向,还能表示 信号传递过程中的数学关系。系统结构图是系统的一种数学 模型,是复域的数学模型。
绘制系统结构图的步骤:
第①步:应用相应的物理、化学原理写出 各元件方程; 第②步:按照所列出的方程分别绘制相应 元件的方框图;
第③步:用信号线按信号流向依次将各元 件方框连接起来,便得到系统的结构图。
控制系统结构图与信号流图

如图2-39所示。n个传递函数依次串联的等效传递函数, 等于n个传递函数的乘积。
(2)并联连接的等效变换 G1(s)与G2(s)两个环节并联连接,其等效传递函数等于
该两个传递函数的代数和,即:
G(s)= G1(s)±G2(s)
(2.82)
等效变换结果见图2-40(b)。
18
图2-40
n个传递函数并联其等效传递函数为该n个传递函数的代 数和,如图2-41所示:
5
图2-25 RC网络的结构图
结构图:根据由微分方程组得到的拉氏变换方程组,对 每个子方程都用上述符号表示,并将各图形正确地连接 起来,即为结构图,又称为方框图。
结构图也是系统的一种数学模型,它实际上是数学模型 的图解化 。
6
(二)系统结构图的建立 建立系统的结构图,其步骤如下: (1)建立控制系统各元部件的微分方程。
图2-29 La=0的位置随动系统结构图
12
例2.2 试绘制图2-30所示无源网络的结构图。
图2-30 例2.3网络图
图2-31 例2.3网络的结构图
解:ur为网络输入,uc为网络输出。
一个系统的结构图不是唯一的,但经过变换求得的总 传递函数都应该是相同的。上例所示网络的结构图还可 用图2-32表示。
第四节
控制系统结构图与信号流图
1
提纲:
❖ 一 、控制系统的结构图 ❖ 二、控制系统的信号流图 ❖ 三、控制系统的传递函数
2
引言:
求系统的传递函数时,需要对微分方程组 或经拉氏变换后的代数方程组进行消元。而 采用结构图或信号流图,更便于求取系统的 传递函数,还能直观地表明输入信号以及各 中间变量在系统中的传递过程。因此,结构 图和信号流图作为一种数学模型,在控制理 论中得到了广泛的应用。
控制系统的结构图与信号流图

2-3 控制系统的结构图与信号流图
控制系统的结构图和信号流图:描述系统各元部件之间的信号传 递关系的一种图形化表示,特别对于复杂控制系统的信号传递过 程给出了一种直观的描述。
KA
Km s (T m s 1)
r
K1
系统结构图的组成与绘制
系统结构图一般有四个基本单元组成:(1)信号线; (2)引 出点(或测量点);(3)比较点(或信号综合点)表示对信号
Automatic Control Theory 2
M s C M U a (s )
2013-7-24
绳轮传动机构: L( s ) r m ( s )
测量电位器:
E (s)
E 2 ( s ) K 1 L( s )
M s (s)
CM
U a (s )
E1 ( s )
m (s) L (s )
2013-7-24 Automatic Control Theory 14
•回路 起点和终点同在一个节点上,而且信号通过每个节点不多 于一次的闭合通路(单独回路)。 •不接触回路 回路之间没有公共节点时,该回路称为不接触回路。
信号流图的绘制
(1)由微分方程绘制信号流图: RC串联电路的信号流图
u r (t ) i1 (t ) R1 u c (t ) u c (t ) i (t ) R2 1 i2 (t ) dt i1 (t ) R1 u1 (t ) C i1 (t ) i2 (t ) i (t )
之间的所有传递函数之乘积,记为 H(s)
开环传递函数:反馈引入点断开时,输入端对应比较器输出 E(s)
到输入端对应的比较器的反馈信号 B(s) 之间所有传递函数的乘 积,记为GK(s), GK(s)=G(s)H(s) E (s) C (s)
控制系统的结构图和信号流图:描述系统各元部件之间的信号传 递关系的一种图形化表示,特别对于复杂控制系统的信号传递过 程给出了一种直观的描述。
KA
Km s (T m s 1)
r
K1
系统结构图的组成与绘制
系统结构图一般有四个基本单元组成:(1)信号线; (2)引 出点(或测量点);(3)比较点(或信号综合点)表示对信号
Automatic Control Theory 2
M s C M U a (s )
2013-7-24
绳轮传动机构: L( s ) r m ( s )
测量电位器:
E (s)
E 2 ( s ) K 1 L( s )
M s (s)
CM
U a (s )
E1 ( s )
m (s) L (s )
2013-7-24 Automatic Control Theory 14
•回路 起点和终点同在一个节点上,而且信号通过每个节点不多 于一次的闭合通路(单独回路)。 •不接触回路 回路之间没有公共节点时,该回路称为不接触回路。
信号流图的绘制
(1)由微分方程绘制信号流图: RC串联电路的信号流图
u r (t ) i1 (t ) R1 u c (t ) u c (t ) i (t ) R2 1 i2 (t ) dt i1 (t ) R1 u1 (t ) C i1 (t ) i2 (t ) i (t )
之间的所有传递函数之乘积,记为 H(s)
开环传递函数:反馈引入点断开时,输入端对应比较器输出 E(s)
到输入端对应的比较器的反馈信号 B(s) 之间所有传递函数的乘 积,记为GK(s), GK(s)=G(s)H(s) E (s) C (s)
自动控制原理 控制系统的结构图

其他变化(比较点的移动、引出点的移动)以此三种 基本形式的等效法则为基础。
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
2.3 控制系统的结构图方框图3

第二章 线性系统的数学模型
2.3 控制系的结构图/方框图
相加点之间的移动
X(s)
R(s)
C(s)
Y(s)
X(s)
R(s)
C(s)
Y(s)
多个相邻的相加点可以随意交换位置
分支点移动
等效变换,要求变换前后的输出信号保持不变
R(s)
G(s)
分支点(引出点)前移
R(s) G(s)
C(s) C(s)
C(s)
G?(s)
C(s)
R(s)
G(s)
R(s)
分支点(引出点)后移
G(s) R(s)
C(s)
?
R(s)
C(s) R(s)G(s)
R(s) R(s)G(s) 1 R(s)
G(s)
分支点之间的移动
B R(s) A
B
R(s)
A
相邻引出点交换位置,不改变信号的性质
负号的移动 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
负号可以在信号线上越过方框移动,但不能越过 比较点和引出点
R(s)
C(s)
G(s) H (s)
R(s)
C(s)
G(s) H (s) 1
等效单位反馈 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
R(s)
C(s)
G(s)
H (s)
? R(s) 1 H (s)
H (s)
C(s)
G(s)
自动控制原理控制系统的结构图

G1 ( s )
G2 (s)
+ -
G3 (s) C(s) ①
H (s)G2 (s)
+
-
G3 (s)
C(ห้องสมุดไป่ตู้)
②
H (s)G2 (s)
R(s)
G1(s)G2 (s) G4 (s)
G3 (s)
C(s)
1 G2 (s)G3(s)H (s)
G(s) G3(s)(G1(s)G2 (s) G4 (s))
1 G2 (s)G3(s)H (s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)
C1 (s)
R(s)
C(s)
R( s )
C2 (s) G2 (s)
C( s )
G(s)
(a)
(b)
特点:输入信号是相同的,输出C(s)为各环节的输出之和.
- Uo (s)
(d)
将图(b)和(c)组合起来即得到图(d),图(d)为该 一阶RC网络的方框图。
11
2.3.3 系统结构图的等效变换和简化
为了由系统的方框图方便地写出它的闭环传递函 数,通常需要对方框图进行等效变换。
方框图的等效变换必须遵守一个原则,即: 变换前后各变量之间的传递函数保持不变
在控制系统中,任何复杂系统的方框图都主要由 串联、并联和反馈三种基本形式连接而成。
u
o
idt c
对其进行拉氏变换得:
I (s)
U
o