动态规划2

合集下载

动态规划的应用举例大全

动态规划的应用举例大全
多背包问题
在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。

动态规划

动态规划

(3)决策(Decision)
(4)策略(Policy)各阶段的决策组成的一个决策序列称为
一个策略,记为: p x1, x2 ,, xn
从阶段i开始的过程,称为i子过程,它包含阶段i,阶 段i+1,…,阶段n。i子过程的决策序列称为i子策略,记
为 pi xi , xi1,, xn i 1, 2 ,, n 1
,
3 资源分配问题
设有数量为a的资源,计划分配给n 个项目。设xi (i=1, 2, …, n)为分配给第i 个项目的资源量,gi(xi)为第i个项目得到 数量为xi的资源后可提供的收益,问如 何分配资源a,可使总收益为最高?
►静态规划模型
n
max f gi (xi )
i 1
n xi a
1.3 动态规划的基本方程
(1) 动态规划的基本方程(逆序递推公式)
si1
g(si , xi )
,f
* n 1
(
x
n 1
)
0
fi* (si )
opt
v(si , xi )
f
i
* 1
(si
1
)
xi
i n, n 1,,1
(2) 动态规划的基本方程(正序递推公式)
si1 g(si , xi ) ,f1*(s1) opt{v(s1, x1)}
1
6
7
X
2
(
B2
,
C3
)
f
3
(C3
)
1 6
最短路线B2C3D。
C1
5
5
4
B1 5
3
A
C2
3
D
4
6

第6章-动态规划

第6章-动态规划
f*n(Sn)为从第n个阶段到终点的最短距离, f*n+1(Sn+1)为从第n+1个阶段到终点的最短距离, dn(Sn,Xn)为第n个阶段的距离,f*5(S5)为递推 的起点,通常为已知的。
求解过程
由最后一个阶段的优化开始,按逆向顺序逐步 向前一阶段扩展,并将后一阶段的优化结果带 到扩展后的阶段中去,以此逐步向前推进,直 至得到全过程的优化结果。
f1
(
A)
min
dd11
( (
A, A,
B1) B2 )
ff22((BB12))
min
4 9
9 11
13
d1( A, B3) f2 (B3)
5 13
其最短路线是A→ B1→C2 →D2 →E ,相应的决 策变量是u1(A)=B1
因此,最优策略序列是:
u1(A) =B1, u2(B1)=C2, u3(C2)=D2, u4(D2)=E
5 8 C2 4 6 4
4 C3 2
C3
D1 4 2 6
D2 9 7
D3 5
D4
E1 1 F
E2 2
E5
F
动态规划的逆序解法与顺序解法
逆序(递推)解法:即由最后一段到第一段逐步 求出各点到终点的最短路线,最后求出A点到E点 的最短路线。运用逆序递推方法的好处是可以始 终盯住目标,不致脱离最终目标。 顺序解法:其寻优方向与过程的行进方向相同, 求解时是从第一段开始计算逐段向后推进,计算 后一阶段时要用到前一段求优的结果,最后一段 的计算结果就是全过程的最优结果。
B1
A
4+9=13
d(u1)+f2
B2
B3
f1(s1) u1*

动态规划法

动态规划法

动态规划法动态规划法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题性质和最优子结构性质的问题。

动态规划法通过把问题分解为更小的子问题,并将子问题的解存储起来,以避免重复计算,从而提高了算法的效率。

动态规划法有两个核心概念:状态和状态转移方程。

在动态规划过程中,我们需要定义状态,即问题的子问题解,以及状态之间的关系,即状态转移方程。

动态规划法的一般步骤如下:1. 定义问题的子问题:将问题划分为更小的子问题,并明确子问题的解是什么。

2. 定义状态:将问题的子问题解抽象为状态,即用一个变量或者数组表示子问题的解。

3. 定义状态转移方程:根据子问题的关系,定义状态之间的转移方程,即如何根据已知的子问题解计算出更大的问题的解。

4. 缓存子问题解:为了避免重复计算,我们需要将已经计算过的子问题解存储起来,以便后续使用。

5. 递推计算:通过状态转移方程和缓存的子问题解,逐步计算出更大的问题的解,直到计算出最终的问题解。

动态规划法的关键在于找到正确的状态转移方程和合理的存储子问题解的方式。

有些问题的状态转移方程比较容易找到,比如斐波那契数列,每个数都是前两个数的和;而有些问题的状态转移方程可能比较复杂,需要通过观察问题的特点和具体分析来确定。

动态规划法的时间复杂度通常为O(n),其中n 表示问题规模。

由于利用了子问题的解,避免了重复计算,因此动态规划法相对于暴力求解法能够大大提高算法的效率。

但是,动态规划法的空间复杂度通常较高,需要存储大量的子问题解,因此在实际应用中需要权衡时间和空间的消耗。

总的来说,动态规划法是一种非常灵活且强大的算法思想,能够解决许多复杂的问题,特别适用于具有重叠子问题性质和最优子结构性质的问题。

通过正确定义状态和状态转移方程,并结合缓存子问题解和递推计算,我们可以高效地求解这类问题,提高算法的效率。

动态规划及其应用(二)

动态规划及其应用(二)

前一颗珠子头标记为m,尾标记为r 后一颗珠子头标记为r,尾标记为n 聚合后的珠子头标记为m,尾标记为n

给定一个项链,求最大能释放多少能量 n <= 100 NOIP 2006 senior p1
能量项链

区间DP

先考虑链上的问题 区间[i,j]无论如何操作,最后聚合出的珠子的标记是固定的 枚举决策分界点k,区间[i,k]和区间[k+1,j]分别聚合成一颗 珠子后,两者再聚合 破环成链 等长复制一遍 DP一遍后取最值

除最后一位外,r的每一位严格小于它右边相邻的那一 位。

f[i][j]表示长度为i且最低位不超过j的数的个数 递推方程 f[i][j] = f[i][j-1] + f[i-1][j-1]

答案统计


Σ f[i][2^k - 1],i∈[1, w/k ] (下取整) 枚举最高位x,Σ f[w/k][2^k – 1 - x]

条件 A:对于所有的i,g2������ > g2������ −1,且g2������ > g2������ +1; 条件 B:对于所有的i,g2������ < g2������ −1,且g2������ < g2������ +1。

请问,栋栋最多能将多少株花留在原地 1 <= n <= 100,000, 0 <= hi <= 1,000,000 NOIP 2013 senior day2 p2



游戏中,乌龟棋子自动获得起点格子的分数,并且在后续 的爬行中每到达一个格子,就得到该格子相应的分数。 求小明最多能得到多少分 N <= 350, M <= 120 NOIP2010 senior p2

Pascal动态规划-复习2

Pascal动态规划-复习2

● (5)第三次计算结点为B1,B2,B3,而决 策输出结点可能为C1,C2,C3。仿前计算可 得Bl,B2,B3的决策路径为如下情况。 ● Bl:B1C1费用 12+8=20, 路径:B1+C1+D1+E B2:B2C1费用 6+8=14, 路径:B2+C1+D1+E B3:B2C2费用 12+7=19,路径:B3+C2+D2+E ● 此时也无法定下第一,二,三阶段的城市哪 三个将在整体的最优决策路径上。 ● (6)第四次计算结点为A,决策输出结点可 能为B1,B2,B3。同理可得决策路径为 ● A:AB2,费用5+14=19,路径 A+B2+C1+D1+E。 ● 此时才正式确定每个子问题的结点中,哪一 个结点将在最优费用的路径上。19将是最短 路径的结果 ● 显然这种计算方法,符合最优原理。 ● 子问题的决策中,只对同一城市(结点)比 较优劣。而同一阶段的城市(结点)的优劣 要由下一个阶段去决定。
数塔
● 如下图所示的数塔,从顶部出发,在每一结点可以选择向左下走或是 向右下走,一直走到底层,要求找出一条路径,使路径上的数的和最 大。数塔层数用n表示,1<=n<=100。 ● 【分析】对于这一问题,很容易想到用枚举的方法(深度搜索法)去 解决,即列举出所有路径并记录每一条路径所经过的数字总和。然后 寻找最大的数字总和,这一想法很直观,很容易编程实现。 ● 但是当行数很大时,当三角形的行数等于100时,其枚举量之大是可 想而知的,用枚举法肯定超时,甚至根本不能得到计算结果,必须用 动态规划法来解。
动态规划适合解决什么样的问题
● 准确地说,动态规划不是万能的,它只适于解决一定条件的最优策略 问题。 ● (1)状态必须满足最优化原理; (2)状态必须满足无后效性 ● 1、动态规划的最优化原理是指无论过去的状态和决策如何,对前面 的决策所形成的当前状态而言,余下的诸决策必须构成最优策略。 ● 可以通俗地理解为子问题的局部最优将导致整个问题的全局最优在上 例最短路径问题中,A到E的最优路径上的任一点到终点E的路径也必 然是该点到终点E的一条最优路径,满足最优化原理。 ● 动态规划的无后效性原则指某阶段的状态一旦确定,则此后过程的演 变不再受此前各状态及决策的影响。也就是说,“未来与过去无关”, 当前的状态是此前历史的一个完整总结,此前的历史只能通过当前的 状态去影响过程未来的演变。具体地说,如果一个问题被划分各个阶 段之后,阶段 I 中的状态只能由阶段 I+1 中的状态通过状态转移方程 得来,与其他状态没有关系,特别是与未发生的状态没有关系,这就 是无后效性。

动态规划问题常见解法

动态规划问题常见解法

动态规划问题常见解法
动态规划是一种高效解决优化问题的方法。

它通常用于涉及最
优化问题和最短路径的计算中。

下面是一些常见的动态规划问题解法:
1. 背包问题
背包问题是动态规划中的经典问题之一。

其目标是在给定的背
包容量下,选择一些物品放入背包中,使得物品总价值最大。

解决
这个问题的常见方法是使用动态规划的思想,定义一个二维数组来
记录每个物品放入背包时的最大价值,然后逐步计算出最终的结果。

2. 最长公共子序列问题
最长公共子序列问题是寻找两个字符串中最长的公共子序列的
问题。

解决这个问题的常见方法是使用动态规划的思想,定义一个
二维数组来记录两个字符串中每个位置的最长公共子序列的长度。

然后通过递推关系来计算出最终的结果。

3. 矩阵链乘法问题
矩阵链乘法问题是计算一系列矩阵相乘的最佳顺序的问题。


决这个问题的常见方法是使用动态规划的思想,定义一个二维数组
来记录每个矩阵相乘时的最小乘法次数,然后逐步计算出最终的结果。

4. 最长递增子序列问题
最长递增子序列问题是寻找一个序列中最长的递增子序列的问题。

解决这个问题的常见方法是使用动态规划的思想,定义一个一
维数组来记录每个位置处的最长递增子序列的长度,然后通过递推
关系来计算出最终的结果。

以上是一些常见的动态规划问题解法。

通过灵活运用这些方法,我们可以更高效地解决优化问题和最短路径计算等相关任务。

采用二阶动态规划算法的火力分配

采用二阶动态规划算法的火力分配
关键词 : 火力分 配 ; 目标分群 ; 二 阶动 态规 划; 群 目标 :群 内 目标 中图分类 号 :T 3 1 文献 标识 码 :A P0. 6
Fie we l t e a e o Ra k Dy m i o a m i g Al rt r po rAlo m ntB s d onTw — n na cPr gr m n go ihm
pr obl m ,an nc ea eca c a i pe e d i r s l ul top we l t n ; r e l se i i i g Two r n y a i l n; u t rt r e ; r e n i e c u t r y r s Fie o r l me t Ta g t u t rd v d n ; a o c a k d n m c p a Cl se a g t Ta g ti sd l s e
动 态规 划对 群 目标 分配 火 力 ,第二 阶 动态规 划对 各群 内 目标 分 配 火 力, 最后 综合 各 群 的分 配 方案 ,得 出火 力分 配 问
题 的解 。其 仿真 证 明 ,该 方法可 解 决在 来 袭 目标较 多 时动 态规 划 求解 火 力分 配计 算量 太 大的 问题 ,提 高 了计 算速度 。
Ab ta t h ie o r al t n d p e wo r n y a c p o r m mi g a g rt m,d v d d c u t r t r u h t r e s r c :T e fr p we l me t a o td t - a k d n mi r g a o n l o ih i i e l se h o g a g t
p o r mm i g d srb t d fr p we o h l s e a g t a d t e s c n a k d n mi r g a rga n iti u e ie o rf rt e c u t rt r e ; n h e o d r n y a c p o r mm i g d s rb t d fr p we n i ti u e ie o r ∑ l l f re c a g ti sd l se ; tl s . h lo me ts h me o v r l s e s i t g = t d t c i v O v n ffr p we n 0 a h t r e n i e c u t r a a t t e a l t n c e fe e y c u t rwa n e r e o a h e e S l i g o ie o r a a l t n u si n . e s mu a i n s o d t a h s me h d c u d t o v y a c p we l t n a c l to o i l me tq e to s Th i l t h we h tt i t o o l o s l e d n mi o ra l me tc l u a i n t o b g o o o =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档