扬州市扬州大学附属中学东部分校2019-2020学年八年级(上)期末数学试题及答案【推荐】.doc
2019-2020学年江苏省扬州市邗江区某中学八年级(上)期末数学试卷

2019-2020学年江苏省扬州市邗江区某中学八年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题3分,共24分)1.25的算术平方根是()A.5 B.C.﹣5 D.±52.已知实数x,y满足|x﹣5|+=0,则以x,y的值为两边长的等腰三角形的周长为()A.20或25 B.25C.20 D.以上答案都不对3.下列由线段a、b、c组成的三角形是直角三角形的是()A.a=1,b=2,c=3 B.a=4,b=5,c=6C.a=9,b=12,c=15 D.a=13,b=14,c=154.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD5.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)6.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10 B.8 C.6 D.47.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.8.如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=6,点M、N分别为OA、OB 边上动点,则△MNP周长的最小值为()A.3 B.6 C.3D.6二、填空题(每小题3分,共30分)9.0.000077用科学记数法表示为.(精确到0.00001)10.若的值在两个整数a与a+1之间,则a=.11.等腰三角形有一个内角等于110°,则它的底角等于度.12.将直线y=2x﹣4向下平移4个单位后,所得直线的表达式是.13.如图,在△ABC中,AB=5,AC=4,BC=3,分别以点A、点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交AB于点O,连接CO,则CO的长为.14.已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+3的图象上的两点,则y1y2(填“>”或“<”或“=”).15.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.16.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是.17.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.18.七个边长为1的正方形按如图所示的方式放置在平面直角坐标系中,直线l经过点A(4,4)和点B,且将这七个正方形的面积分成相等的两部分,则直线l的函数表达式是.三、解答题(共96分)19.(8分)计算(1)()2+4×(﹣)﹣(2)(3﹣π)0﹣|﹣2|﹣.20.(8分)求各式中的实数x(1)2x2=18;(2)x3﹣3=5.21.(8分)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.22.(8分)已知y与x+2成正比例,且当x=1时,y=6;(1)求出y与x之间的函数关系式;(2)当x=﹣3时,求y的值;(3)当y<﹣1时,求x的取值范围.23.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C (﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.24.(10分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.25.(10分)学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD中,BC=8,AB=4,点E为AD的中点,BD和CE相交于点P.求△BPC的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适当的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点P的坐标,从而可求得△BPC的面积.请你按照小明的思路解决这道思考题.26.(12分)已知:如图,等腰△ABC,AB=AC,点D为△ABC的BC边上一点,连接AD,将线段AD旋转至AE,使得∠DAE=∠BAC,连接CE.(1)求证:△ACE≌△ABD;(2)若∠BAC=∠DAE=90°,EC=3,CD=1,求AC的长.27.(12分)小明从家去李宁体育馆游泳,同时,妈妈从李宁体育馆以50米/分的速度回家,小明到体育馆后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D、F四点在一条直线上)(1)求线段OB及线段AF的函数表达式;(2)求C点的坐标及线段BC的函数表达式;(3)当x为时,小明与妈妈相距1500米;(4)求点D坐标,并说明点D的实际意义.28.(12分)【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45°至直线l2,如图2,求直线l2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=﹣2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.。
江苏省扬州大学附属中学东部分校2018-2019学年八上数学期末考试试题

江苏省扬州大学附属中学东部分校2018-2019学年八上数学期末考试试题一、选择题1.将0.000000567用科学记数法表示为( )A .85.6710-⨯B .75.6710-⨯C .65.6710-⨯D .55.6710-⨯2.在1x ,12,212x +,3xy π,3x y +,1a m +中分式的个数有() A .2 个B .3 个C .4 个D .5 个 3.下列计算结果正确的是( ) A .2a ·3a =6aB .6a ÷3a =3aC .(a-b)=2a -2bD .32a +23a =55a 4.如果2(1)3,|1|1x y +=-=,那么代数式22225x x y y ++-+的值是( )A .7B .9C .13D .145.某物业公司将面积相同的一部分门脸房出租.随着城市发展,每间房屋的租金今年比去年多500元,已知去年和今年的租金总额分别为9.6万元和10.2万元,若设今年每间房屋的租金是x 元,那么依题意列方程正确的是( )A .96000102000500x x =- B .9.610.2500x x =- C .96000102000500x x=+ D .9.610.2500x x =+ 6.下列式子中,从左到右的变形是因式分解的是( ) A.()()2x 1x 1x 2x 1--=-+B.()()224x 9y 2x 3y 2x 3y -=-+C.()2x 4x 4x x 44++=-+D.()()22x y x y x y +=+- 7.若等腰直角三角形底边上的高为1,则它的周长是( )A .4B .1C .D .28.如图,在△ABC 中,AB=AC ,∠BAC=120°,AB 的垂直平分线交AB 于点E ,交BC 于点F ,连接AF ,则∠AFC 的度数( )A .80B .70C .60D .509.如图,在△ABC 中,∠BAC=90°,AB=AC ,AD 是经过A 点的一条直线,且B 、C 在AD 的两侧,BD ⊥AD 于D ,CE ⊥AD 于E ,交AB 于点F ,CE=10,BD=4,则DE 的长为( )A.6B.5C.4D.810.如图,已知ABD BAC ∠∠=,添加下列条件不能判断ABD ≌BAC 的条件是( )A .D C ∠∠=B .AD BC = C .BAD ABC ∠∠= D .BD AC =11.如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有( )①DF 平分∠BDE ;②△BFD 是等腰三角形;;③△CED 的周长等于BC 的长.A .0个;B .1个;C .2个;D .3个. 12.如图,在中,D 是BC 边的中点,AE 是的角平分线,于点E ,连接DE .若,,则AC 的长度是( )A.5B.4C.3D.2 13.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠214.如图,直线AB 和CD 交于点O ,OA 平分∠EOC ,若∠EOC =70°,则∠BOD 的度数为( )A .70°B .35°C .30°D .110°15.一根长为l 的绳子围成一个三边不相等的三角形,则三角形的最长边x 的取值范围为( )A .32l l x << B .32l l x <≤ C .32l l x ≤< D .32l l x ≤≤ 二、填空题16x 的取值范围是______. 17.若a+b =3,ab =2,则a 2+b 2=_____.【答案】518.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,CF 平分∠ACB ,CF,BE 交于点P ,AC=4cm ,BC=3 cm ,AB=5cm ,则△CPB 的面积为_______cm 219.如图,在四边形ABCD 中,∠A 与∠DCB 互补,E 为BC 延长线上的点,且∠1+∠2+∠DCE=224°,则∠A 的度数是______.20.如图,ABC ∆中, 90ACB ∠=,AC BC <,将ABC ∆沿EF 折叠,使点A 落在直角边BC 上的D 点处,设EF 与AB AC 、边分别交于点E F 、,如果折叠后CDF ∆与BDE ∆均为等腰三角形,那么B ∠=__________.三、解答题21.(1)分解因式:a 2﹣1+b 2﹣2ab(2)解方程:22x x -+=22x x +-+2164x - 22.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x=-1,y=23. 23.如图,ABC 中,D 为BC 的中点,DE 平分ADB ∠,DF 平分ADC ∠,BE DE ⊥,CF DF ⊥,P 为AD 与EF 的交点,证明:EF 2PD =.24.已知:如图,直线AB 、CD 相交于点O ,OE ⊥OC ,OF 平分∠AOE.(1)若,则∠AOF 的度数为______; (2)若,求∠BOC 的度数。
扬州市扬州大学附属中学东部分校八年级(上)期末数学试卷及答案-最新精品

扬大附中东部分校2019—2020学年度第一学期期末考试八 年 级 数 学 试 卷(总分150分 时间120分钟)一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.下列四种汽车标志中,不属于...轴对称图形的是 ( ▲ )2.在实数:0722,0.74, ,39中,有理数的个数是 ( ▲ ) A .1 B .2 C .3 D .43.下列事件中,最适合使用普查方式收集数据的是 ( ▲ ) A .了解扬州人民对建设高铁的意见 B .了解本班同学的课外阅读情况 C .了解同批次LED 灯泡的使用寿命 D .了解扬州市八年级学生的视力情况4.一架5m 长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角3m ,如果梯子的顶端沿墙下滑1m ,那么梯脚移动的距离是 ( ▲ )A .0.5mB .0.8mC .1mD .1.2m5.如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是 ( ▲ )A .1对B .2对C .3对D .4对(第5题图) (第6题图) (第7题图)6.如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,若点A 关于CD 所在直线的对称点E 恰好为AB 的中点,则∠B 的度数是 ( ▲ ) A .60°B . 45°C .30°D .75°7.如图,函数x y 2 和b ax y 2+=的图像相交于点A (m ,2),则不等式b ax x 2≤2+的解集为 ( ▲ )A . x <1B .x >1C .x ≥1D . x ≤18.直线2-3-b x y +=过点(1x ,1y ),(2x ,2y ),若1x —2x =2,则1y —2y = ( ▲ )A . 3B .—3C . 6D . —6二、填空题(本大题共10小题,每小题3分,共30分,请将答案填在答题卡相应的位置上)9.—8的立方根是 ▲ .10.将点A (-2,-3)先向右平移3个单位长度再向上平移2个单位长度得到点B ,则点B所在象限是第 ▲ 象限.11.王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择.... ▲ 统计图.12.(填“>”、“=”、“<”)13.下列事件中,①打开电视,它正在播关于扬州特产的广告;②太阳绕着地球转;③掷一枚正方体骰子,点数“4”朝上;④13人中至少有2人的生日是同一个月.属于随机事件的个数是 ▲ .14.如图,数轴上的点A 表示的数是 ▲ .15.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于点D ,且AB =4,BD =5,则点D 到BC 的距离为 ▲ .(第14题图) (第15题图) (第17题图)16.若正比例函数x m y )21(-=的图像经过点A (3,y 1)和点B (5,y 2),且y 1>y 2,则m的取值范围是 ▲ .17.元旦期间,胡老师开车从扬州到相距150千米的老家探亲,如果油箱里剩余油量 y (升)与行驶里程 x (千米)之间是一次函数关系,其图像如图所示,那么胡老师到达老家时,油箱里剩余油量是 ▲ 升.18.如图,△ABC 中,AB =AC =26,BC =20,AD 是BC 边上的中线,AD =24,F 是AD 上的动点,E 是AC 边上的动点,则CF +EF 的最小值为 ▲ .三、解答题(本大题共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(本题满分8分)(1)计算:()()23322143⎪⎭⎫ ⎝⎛-⨯-+-(2)求x 的值:27)2(3--=x20.(本题满分8分)已知△ABC 的三边a 、b 、c 满足010)12(24212=++c b a ---,求最长边上的高h . 21.(本题满分8分)为了进一步了解八年级500名学生的身体素质情况,体育老师对八年级(1)班50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图如下所示:请结合图表完成下列问题:(1)表中的m = ,次数在140≤x <160这组的频率为 ; (2)请你把频数分布直方图补充完整;(3)若八年级学生一分钟跳绳次数(x )达标要求是:x <120不合格;x ≥120为合格,求八年级合格的学生有多少人.22.(本题满分8分)一个不透明的袋中装有20个球,其中7个黄球,8个黑球,5个红球,这些球只有颜色不同,其它都相同. (1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是31,求从袋中取出黑球的个数.23.(本题满分10分)将等腰直角△ABC 斜放在平面直角坐标系中,使直角顶点C 与点(1,0)重合,点A 的坐标为(—2,1). (1)求△ABC 的面积S ;(2)求直线AB 与y 轴的交点坐标.24.(本题满分10分)如图,已知函数12y x b =-+的图像与x 轴、y 轴分别交于点A 、B ,与函数x y =的图像交于点M ,点M 的横坐标为2. (1)求点A 的坐标;(2)在x 轴上有一点动点P (),0a (其中a >2),过点P 作x 轴的垂线,分别交函数12y x b =-+和y x =的图像于点C 、D ,且OB =2CD ,求a 的值.25.(本题满分10分)扬州商场某商家计划购进一批甲、乙两种LED 节能灯共120只,这两种节能灯的进价、售价如下表:(1(2)如果规定:当销售完这批节能灯后,总利润不超过进货总费用的30%,请问如何进货,使得该商家获得的总利润最多,此时总利润最多为多少元?26.(本题满分10分)如图,在△ABC中,∠ACB=90°,AC=BC,BE是中线,CG平分∠ACB交BE于点G,F为AB边上一点,且∠ACF=∠CBG.(1)求证:CF=BG;(2)延长CG交AB于点H,判断点G是否在线段AB的垂直平分线上?并说明理由.(3)过点A作AD⊥AB交BE的延长线于点D,请证明:CF=2DE.27.(本题满分12分)甲、乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲、y乙与x之间的函数图像如图所示,结合图像解答下列问题:(1)甲车的速度是km/h,乙车休息了h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当甲车出发多少小时后,两车相距80km?28.(本题满分12分)阅读理解:【问题情境】金老师给“数学小达人”小明和小军提出这样一个问题:如图1,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AB+BD=A C.【证明思路】小明的证明思路是:如图2,在AC上截取AE=AB,连接DE.……小军的证明思路是:如图3,延长CB至点E,使BE=AB,连接AE.可以证得:AE=DE.……请你从他们的思路中,任意选择一种....思路继续完成下一步的证明.【变式探究】如图4,金老师把“AD是∠BAC的平分线”改成“AD是BC边上的高”,其它条件不变,那么AB+BD=AC还成立吗?若成立,请证明;若不成立,写出正确结论,并说明理由.【迁移拓展】如图5,△ABC中,∠B=2∠C.求证:AC2—AB2=AB×B C.2015—2016学年度第一学期期末考试八 年 级 数 学参 考 答 案9.—2 10.四 11.扇形 12.< 13.214.2- 15.3 16.21>m 17.20 18.13240三、解答题:19.解:(1)原式=414-3× …………3分=2; …………4分 (2)x —1=—2 …………6分x = —1 …………8分20. 解:由题意,得:04-21=a ,012-b 2=,0-10=c ,∴a =8,b =6,c =10, …………4分∵2221003664c b a ==+=+,∴△ABC 为Rt △ABC ,且∠C =90°,…………6分∵ab ch 2121=,∴h =4.8 …………8分 21.(1) 12,0.36; (每个1分,共2分) …………2分 (2)补充后的频数分布直方图如下所示;(每个1分,共2分) …………6分(3)抽样调查中合格的频率为:(12+18+6)÷50=0.72,估计该年级学生合格的人数大约有500×0.72=360(个),答:估计该年级学生合格的人数大约有360个人. ……8分 22.解:(1)∵一个不透明的袋中装有20个黑球,54分(2)设从袋中取出x 个黑球,根据题意,得: )20(318x x -=-, …………6分 解得:x =2 …………7分 答:从袋中取出黑球的个数为2个. …………8分 23. 解:(1)过点A 作AD ⊥x 轴,垂足为D .则AD =1,CD =3, ∴10222=+=DC AD AC ,S =221AC =5. …………3分 (2)过点B 作BE ⊥x 轴,垂足为E , ∴∠ADC =∠CEB =90°,则∠CAD + ∠ACD =90°,∴ ∠ACB =90°,则∠BCE + ∠ACD =90°, ∴ ∠CAD =∠BCE , 又∵∠ADC =∠CEB =90°,AC =BC ,∴△ADC ≌△CEB , ∴CD =BE =3,CE =AD =1,∴点B 的坐标为(2,3). …………7分设直线AB 的解析式为y =kx +b ,则⎩⎨⎧=+-=+12,32b k b k ,解得:⎪⎩⎪⎨⎧==2,21b k ,所以y =21x +2,所以直线AB 交y 轴于点(0,2). …………10分24.解:(1)∵ 点M 在函数y =x 的图象上,且横坐标为2,∴ 点M 的纵坐标为2.∵ 点M (2,2)在一次函数y =—12x +b 的图象上,∴ —12×2+b =2,∴ b =3, …………4分∴ 一次函数的表达式为y =—12x +3,令y =0,得x =6,∴ 点A 的坐标为(6,0). …………6分(2) 由题意得:C (a ,—12a +3),D (a ,a ), ∴ CD = a —(—12a +3). …………8分 ∵ OB =2CD ,∴ 2[a —(—12a +3)]=3,∴ a =3. …………10分 25.解:(1)设商家应购进甲型节能灯x 只,则乙型节能灯为(120-x )只,根据题意,得:25x +45(120-x )=4600,解得x =40, (3)分∴乙型节能灯为120-40=80.答:商家购进甲型节能灯40只,乙型节能灯80只时,进货总费用恰好为4600元. (4)分(2)设商家应购进甲型节能灯t 只,销售完这批节能灯可获利为y 元.根据题意,得:y =(30-25)t +(60-45)(120-t )=5t +1800-15t =-10t +1800, (6)分∵ 规定在销售完节能灯时利润不得高于进货价的30%,∴-10t +1800≤[25t +45(120-t )]×30%,解得t ≥45. …………8分 又∵ k =-10<0,y 随t 的增大而减小,∴t =45时,y 取得最大值,最大值为-10t +1800=1350(元). …………10分 答:商家购进甲型节能灯45只,乙型节能灯75只,销售完节能灯时获利最多,此时利润为1350元.26.解:证明:(1)∵∠ACB =90°,CG 平分∠ACB ,AC =B C .∴∠BCG =∠CAB =45°,又∵∠ACF =∠CBG ,AC =BC ,∴△ACF ≌△CBG (ASA ),∴AF =CG ,CF =BG . …………3分(2)点G 在线段AB 的垂直平分线上,理由如下:∵AC =BC ,CG 平分∠ACB ,∴ CH ⊥AB ,H 为AB 中点,∴ 点G 在线段AB 的垂直平分线上 …………5分(3)连接AG .由(2)可知,AG =BG ,∠GAB =∠GBA ,∵AD ⊥AB ,∴∠GAB +∠GAD =∠GBA +∠D =90°,∴∠GAD =∠D ,∴GA =GD =GB =CF . …………7分 ∵AD ⊥AB ,CH ⊥AB∴CH ∥AD ,∴∠D =∠EGC ,∵E 为AC 中点,∴ AE =EC ,又∵∠AED =∠CEG ,∴△AED ≌△CEG ,∴DE =EG ,∴DG =2DE ,∴CF =2DE . …………10分27.解:(1)80,0.5 .(每空2分) …………4分(2)设y 乙与x 的函数解析式为y 乙=kx ﹢b ,把(2.5,200).(5,400)代入,得:⎩⎨⎧5k ﹢b=4002.5k ﹢b=200,解得:⎩⎨⎧k=80b=0,y 乙=80x (2.5≤x ≤5), …………6分(3)相遇前:100x ﹢80x ﹢80=400,解得x =916; …………9分 相遇后:80x ﹢200﹢80(x ﹣2.5)=400+80,解得x =3.综上可知,x =916或x =3. …………12分28.解:【问题情境】 小明的证明思路是:在AC 上截取AE =AB ,连接DE .(如图2) ∵AD 是∠BAC 的平分线,∴∠BAD =∠EAD ,又∵AD =AD , ∴△ABD ≌△AED ,∴BD =DE ,∠ABD =∠AED ,又∵∠AED =∠EDC +∠C ,∠B =2∠C ,∴∠EDC =∠C ,∴ DE =EC , 即AB +BD =A C . …………4分小俊的证明思路是:延长CB至点E,使BE=AB,连接AE.(如图3)则∠E=∠BAE,∴∠ABC=2∠E,∵∠ABC=2∠C,∴∠E=∠C,∴△AEC是等腰三角形.∵∠ADE=∠DAC+∠C,∠DAE=∠BAD+∠BAE,又∵AD是∠BAC的平分线,∴∠BAD=∠DAC,∴∠ADE=∠DAE,∴△AED是等腰三角形.∴EA=ED=AC,∴AB+BD=A C.…………4分【变式探究】AB+BD=AC不成立.正确结论是:AB+BD=C D.…………5分方法1:如图4,在CD上截取DE=DB,∵AD⊥BC,∴AD是BE的垂直平分线,∴AE=AB,∴∠B=∠AED,∵∠AED =∠C+∠CAE,∵∠B=2∠C,∴∠C=∠CAE,∴AE=EC,即AB+BD=C D.…………8分方法2:如图5,延长DB至点E,使BE=AB,则∠E=∠BAE,∵∠ABD =∠E+∠BAE =2∠E,∵∠B=2∠C,∴∠E=∠C,∴△AEC是等腰三角形.∵AD⊥BC,∴CD=ED,即AB+BD=C D.…………8分【迁移拓展】证明:如图6,过点A作AD⊥BC于D.由勾股定理得:AB2=BD2+AD2,AC2=CD2+AD2,∴AC2—AB2=CD2—BD2=(CD+BD)×(CD—BD)=BC×(CD—BD),…………10分∵AB+BD=CD,∴CD—BD=AB,∴AC2—AB2=BC×(CD—BD)=BC×AB,即AC2=AB2+AB×B C.…………12分。
2019-2020学年江苏扬州八年级上数学期末试卷

2019-2020学年江苏扬州八年级上数学期末试卷一、选择题1. 下列四个实数中,属于无理数的是()A.√12B.23C.0D.√92. 如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是()A. B.C. D.3. 已知等腰三角形的两边长分别为3和4,则它的周长为()A.7B.10或11C.10D.114. 如图,AB=AC,D,E分别是AB,AC上的点,下列条件不能判定△ABE≅△ACD的是( )A.BD=CEB.AD=AEC.BE=CDD.∠B=∠C5. 如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P表示的数是()A.−√13 B.√13−2 C.−√13−2 D.−√13+26. 满足下列条件的△ABC,不是直角三角形的是()A.AC2−BC2=AB2B.∠C=∠A−∠BC.BC:AC:AB=3:4:5D.∠A:∠B:∠C=9:12:157. 下列有关一次函数y=−3x+2的说法中,错误的是()A.函数图像经过第一、二、四象限B.函数图像与y轴的交点坐标为(0, 2)C.y的值随着x增大而减小D.当x>0时,y>28. 如图,点P在长方形OABC的边OA上,连接BP,过点P作BP的垂线,交射线OC于点Q,在点P从点A出发沿AO方向运动到点O的过程中,设AP=x,OQ=y,则下列说法正确的是()A.随x的增大,y先减小后增大B.随x的增大,y先增大后减小C.y随x的增大而增大D.y随x的增大而减小二、填空题地球上七大洲的总面积约为149480000km2,将149480000km2用四舍五入法精确到10000000km2,并用科学记数法表示为________km2.比较大小:√10________3(填“>”,“<”或“=”).已知点P的坐标为(4, 5),则点P到x轴的距离是________.如图,△ACB≅△A′CB′,若∠ACB=60∘,∠ACB′=100∘,则∠BCA′=________∘.如图,在△PAB中,PA=PB,D,E,F分别是边PA,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=40∘,则∠P=________∘.如图,一艘轮船由海平面上的A地出发向南偏西45∘的方向行驶50海里到达B地,再由B地向北偏西15∘的方向行驶50海里到达C地,则A,C两地相距________海里.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a,b且a<b)拼成的边长为c的大正方形,如果每个直角三角形的面积都是3,大正方形的边长是√13,那么b−a=________.一次函数y=kx+b的图像如图所示,则关于x的不等式kx−m+b>0的解集是________.如图,等边△OAB的边长为2,以它的顶点O为原点,OB所在的直线为x轴,建立平面直角坐标系.若直线y=x+b与△OAB的边界总有两个公共点,则实数b的范围是________.如图,在Rt△ABO中,∠OBA=90∘,AB=OB,点C在边AB上,且C(6, 4),点D为OB的中点,点P为边OA 上的动点,当∠APC=∠DPO时,点P的坐标为________.三、解答题计算:(1)√83−√16+30;(2)|2−√5|−(√6)2+√(−5)33.求下列各式中的x.(1)3x2−12=0;(2)(x−1)3=−64.已知y−1与x+3成正比例,当x=−2时,y=4.(1)求出y与x的函数关系式;(2)设点(a, −2)在这个函数的图象上,求a的值.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(−4,−1),B(−5,−4),C(−1,−3).(1)画△A′B′C′,使△A′B′C′与△ABC关于y轴对称;(2)在y轴上作一点P,使得PA+PC最短;(3)将△ABC向右平移m个单位,向上平移n个单位,若点A落在第二象限内,且点C在第四象限内,则m的范围是________,n的范围是________.如图,在△ABC中,AB=AC,点D是BC边上的中点,G是AC边上一点,过G作EF⊥BC,交BC于点E,交BA的延长线于点F.(1)求证:AD//EF;(2)求证:△AFG是等腰三角形.如图,∠MON=90∘,点A,B分别在边ON和OM上(∠OAB≠45∘).(1)根据要求,利用尺规作图,补全图形:第①步:作∠MON的平分线OC,作线段AB的垂直平分线l,OC和l交于点P,第②步:连接PA,PB;(2)结合补完整的图形,判断PA和PB有什么数量关系和位置关系?并说明理由.某商场计划购进A,B两种新型节能台灯共80盏,这两种台灯的进价,售价如下表所示:(1)若商场的进货款为3700元,则这两种台灯各购进了多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的2倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?【提出问题】课间,一位同学拿着方格本遇人便问:“如图所示,在边长为1的小正方形组成的网格中,点A,B,C都是格点,如何证明点A,B,C在同一直线上呢?”【分析问题】一时间,大家议论开了.同学甲说:“可以利用代数方法,建立平面直角坐标系,利用函数的知识解决”,同学乙说:“也可以利用几何方法…”同学丙说:“我还有其他的几何证法”……方法一(用代数方法):方法二(用几何方法):在Rt△ABC中,∠ACB=90∘,AC=15,AB=25,点D为斜边AB上动点.(1)如图1,当CD⊥AB时,求CD的长度;(2)如图2,当AD=AC时,过点D作DE⊥AB交BC于点E,求CE的长度;(3)如图3,在点D的运动过程中,连接CD,当△ACD为等腰三角形时,直接写出AD的长度.如图1,在Rt△ABC中,∠ACB=90∘,动点M从点A出发沿A−C−B向点B匀速运动,动点N从点B出发沿B−C−A向点A运动.设MC的长为y1(cm),NC的长为y2(cm),点M的运动时间为x(s);y1,y2与x的函数图像如图2所示.(1)线段AC=________cm,点M运动________s后点N开始运动;(2)求点P的坐标,并写出它的实际意义;(3)当∠CMN=45∘时,求x的值.参考答案与试题解析2019-2020学年江苏扬州八年级上数学期末试卷一、选择题1.【答案】此题暂无答案【考点】无理根助判定【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】镜来冷称【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】三角常三簧关系等体三火暗服判定与性质【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】全等三表形木判定【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】勾体定展在数轴来表示兴数【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】三角形常角簧定理勾股定体的展定理【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】一次常数图按上点入适标特点一次水体的性质【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】动表问擦勾体定展【解析】此题暂无解析【解答】此题暂无解答二、填空题【答案】此题暂无答案【考点】科学较盛法含-表项较大的数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】实数根盖比较算三平最根【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】点较严标【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全等三来形的稳质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全根三烛形做给质与判定三角形射外角性过【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等三三程形写建质与判定方向角【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角表的病积勾股明理轮证明【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次验我与一萄一次人等式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次常数图按上点入适标特点待定正数键求一程植数解析式一次都数资象与纳数鱼关系勾体定展【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等腰三验库的性质【解析】此题暂无解析【解答】此题暂无解答三、解答题【答案】此题暂无答案【考点】立方于的性术实因归运算实数根盖比较算三平最根绝对值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】立方根隐应用平方根【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】待定正数键求一程植数解析式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】轴明称月去最键路线问题作图-射对称变面解一元表次镜等式组平水因性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等腰使方形的刻质:总线合一等腰三射形的判经平行体的省质平行水因判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角形都右平分线作角正区分线作线段较垂直严分线线段垂直来分线慢性质直角三角射全等从判定全等三来形的稳质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一元一因方程梯社法——打折销售问题一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次常数图按上点入适标特点全根三烛形做给质与判定待定正数键求一程植数解析式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角表的病积勾体定展等体三火暗服判定与性质直角三角射全等从判定全等三来形的稳质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】动表问擦一次常数图按上点入适标特点一次射可的图象等体三火暗服判定与性质两点表的烧离由实因滤题让围出一元一次方程【解析】此题暂无解析【解答】此题暂无解答。
【推荐】扬州市邗江区2019-2020学年第一学期八年级数学期末试题及答案.doc

2019-2020学年度第一学期期末试卷八年级数学(总分150分 时间120分钟) 成绩一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求,把答案填在下面的表格内.)1.2的算术平方根是( ) A .2±B .2-C .32D .22.在实数4872222.732、13π、、、--中,无理数有( ) A .1个 B .2个 C .3个 D .4个 3.与点P (2a 1a 22--+,)在同一个象限内的点是( ) A .(3,2) B .(—3,2) C .(—3,2) D .(3,—2)4.点A (1,y 1)、B (2,y 2)都在一次函数y =−2x +3的图象上,则y 1、y 2的大小关系是A .y 1>y 2B .y 1=y 2C .y 1 <y 2D .不确定5.等腰三角形的一个外角等于110°,则与它不相邻的两个内角的度数分别为( ) A .55°,55° B .70°,40° C .35°,35° D .55°,55°或70°,40°6.数学老师布置10道选择题作为课堂练习,学习委员将全班同学的答题情况绘制成条形图, 据统计图可知,答对8道题的同学的频率是 ( )A .0.38B .0.4C .0.16D .0.087.如图,△ABC 中,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .EF =6 BE =4,则CF 的长为( )A .6B .4C .2D .58.在直角坐标系中,等腰直角三角形A 1B 1O 、A 2B 2B 1、A 3B 3B 2、…、A n B n B n -1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n 均在一次函数y kx b =+的图像上,点B 1、B 2、B 3、…、B n 均在x 轴上。
扬州市第一学期八年级数学期末试卷(含解析)

扬州市第一学期八年级数学期末试卷(含解析)一、选择题1.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD 的长为( )A .3B .7C .4D .112.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .3.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案: 方案(一):第一次提价%p ,第二次提价%q ; 方案(二):第一次提价%q ,第二次提价%p ; 方案(三):第一、二次提价均为2%p q+; 其中p ,q 是不相等的正数. 有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价; ③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价. 其中正确的有( ) A .②③B .①③C .①④D .②④4.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC的长为( )A .51-B .51+C .31-D .31+ 5.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( ) A .(-2,-5)B .(-4,-3)C .(0,-3)D .(-2,1)6.如图,动点P 从点A 出发,按顺时针方向绕半圆O 匀速运动到点B ,再以相同的速度沿直径BA 回到点A 停止,线段OP 的长度d 与运动时间t 的函数图象大致是( )A .B .C .D .7. 4的平方根是( ) A .2B .±2C .16D .±16 8.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( ) A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2)9.下列各数中,无理数是( ) A .πB .C .D .10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.12.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.13.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.14.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b =+⎧⎨=+⎩的解为____. 15.在实数:311-50.2-803.010010001 (72)π、、、、、、中,无理数有______个. 16.若分式293x x --的值为0,则x 的值为_______.17.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.18.一次函数32y x =-+的图象一定不经过第______象限.19.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.20.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.三、解答题21.如图,在Rt ABC ∆中,90ACB ︒∠=,60B ︒∠=,CD 是AB 边上的中线,那么BC 与AB 有怎样的数量关系?试证明你的结论.22.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形. 23.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人在终点休息等候对方.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y m 与甲出发的时间t min 之间的函数关系如图所示.(1)甲步行的速度为 m/min ; (2)解释点P (16,0)的实际意义; (3)乙走完全程用了多少分钟?(4)乙到达终点时,甲离终点还有多少米? 24.已知2y -与x 成正比例,当2x =时,6y =. (1)求y 与x 的函数关系式; (2)当6y >时,求x 的取值范围.25.一次函数()0y kx b k =+≠的图像为直线l .(1)若直线l 与正比例函数2y x =的图像平行,且过点(0,−2),求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.四、压轴题26.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCES 最大值.27.如图,在△ABC 中,AB =AC =18cm ,BC =10cm ,AD =2BD .(1)如果点P 在线段BC 上以2cm /s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过2s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?28.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时, ①若D 点的坐标为(﹣5,0),求点E 的坐标. ②求证:M 为BE 的中点. ③探究:若在点D 运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).29.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.30.一次函数y=kx+b的图象经过点A(0,9),并与直线y=53x相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于272?请求出点Q的坐标;(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB=DC12=CB,AD⊥BC,再利用勾股定理求出AD的长.【详解】∵AB=AC,AD是边BC上的中线,∴DB=DC12=CB=3,AD⊥BC,在Rt△ABD中,∵AD2+BD2=AB2,∴AD==4.故选:C.【点睛】本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB是直角三角形.2.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,3.B解析:B【解析】 【分析】根据提价方案求出提价后三种方案的价格,得到方案(一)、方案(二)、方案(三)提价情况,进行对比即可得解. 【详解】∵方案(一):(1%)(1%)1%%%%p q p q p q ++=+++ 方案(二):(1%)(1%)1%%%%q p q p q p ++=+++ ∴方案(一)、方案(二)提价一样 ∴①对,②错; ∵方案(三):2(1%)(1%)1%%(%)222p q p q p q p q +++++=+++ ∴可知:21%%(%)(1%%%%)2p q p q p q p q ++++-+++2(%)%%2p q p q +=-2(%)2p q -= ∵p ,q 是不相等的正数 ∴2(%)02p q -> ∴方案(三)提价最多 ∴③对,④错 ∴①③对 故选:B. 【点睛】本题主要考查了销售问题中的增长率问题,熟练掌握增长率的相关知识及整式的乘法化简是解决本题的关键.4.B解析:B 【解析】 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1. 【详解】解:∵∠ADC 为三角形ABD 外角 ∴∠ADC=∠B+∠DAB ∵ADC 2B ∠=∠ ∴∠B=∠DAB∴BD AD ==在Rt△ADC中,由勾股定理得:DC1===∴1故选B【点睛】∠=∠这个特殊条件.本题考查勾股定理的应用以及等角对等边,关键抓住ADC2B5.B解析:B【解析】【分析】直接利用平移的性质得出答案.【详解】(−2,−3)向左平移2个单位长度得到的点的坐标是:(−4,−3).故选B.【点睛】考查点的平移,掌握上下改变纵坐标,左右横左标变化是解题的关键.6.B解析:B【解析】【分析】根据P点半圆O、线段OB、线段OA这三段运动的情况分析即可.【详解】解:①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选B.【点睛】本题主要考查动点问题的函数图象,熟练掌握是解题的关键.7.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即±.2故选B.【点睛】本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根.8.C解析:C 【解析】 【分析】直接利用关于y 轴对称则纵坐标相等横坐标互为相反数进而得出答案. 【详解】解:点M (﹣3,2)关于y 轴对称的点的坐标为:(3,2). 故选:C . 【点睛】本题考查的知识点是关于x 轴、y 轴对称的点的坐标,属于基础题目,易于掌握.9.A解析:A 【解析】 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】 A. π是无理数; B. =2,是有理数; C. 是有理数; D.=2,是有理数.故选:A . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.D解析:D 【解析】 【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可. 【详解】解:观察图象知:当1x ≥-时,3kx b +≥, 故选:D . 【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.二、填空题11.x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2解析:x≥1.【解析】【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.12..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k1x+b1与y =k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 13.(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).14..【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数与的图象的交点的坐标为(−1,2),∴方程组的解是.本题考查了一次函数和二元一次方程(组)解析:12x y =-⎧⎨=⎩. 【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数3y kx =+与2y x b =+的图象的交点的坐标为(−1,2),∴方程组32y kx y x b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.15.3【解析】【分析】根据无理数的三种形式求解即可.【详解】解:=-2,无理数有:,共3个.故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开解析:3【解析】【分析】根据无理数的三种形式求解即可.【详解】, 3.010010001 (2)π、、,共3个. 故答案为:3.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.16.-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2 解析:-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:29=030 xx⎧-⎨-≠⎩,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.【解析】【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】由数轴可得:0<a<2,则a+=a+=a+(2﹣a)=2.故答案为2.【点睛】本题主要考查了解析:【解析】【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】由数轴可得:0<a<2,则(2﹣a)=2.故答案为2.【点睛】本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.18.三【解析】【分析】根据一次函数的解析式中的k、b的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y轴的正半轴,解析:三【解析】【分析】根据一次函数的解析式中的k、b的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y轴的正半轴,k=-3<0,∴y随x的增大而减小,∴函数的图象经过第一、二、四象限,∴不经过第三象限.故答案为:三.【点睛】本题考查了一次函数的性质. 解题时可根据解析式中的k、b的值的正负作出草图,从而很容易判断函数经过(或不经过)那一象限.19.4【解析】【分析】先求出直线与y轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m的值.【详解】解:当x=0时,=4,则直线与y轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.20.8【解析】【分析】【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=8,经检验:x=8是原分式方程的解,解析:8【解析】【分析】【详解】解:设乙每小时做x 个,则甲每小时做(x+4)个,甲做60个所用的时间为604x +,乙做40个所用的时间为40x , 列方程为:604x +=40x, 解得:x=8,经检验:x=8是原分式方程的解,且符合题意,所以乙每小时做8个,故答案为8.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.三、解答题21.2AB BC =,证明见解析.【解析】【分析】根据直角三角形斜边上的中线得到CD BD AD ==,再根据60B ∠=︒得到DBC ∆为等边三角形,故可求解.【详解】2AB BC =因为90ACB ∠=,CD 是AB 边上的中线,所以CD BD AD ==.因为60B ∠=︒,所以DBC ∆为等边三角形,所以BC BD =.所以CB BD AD ==,即2AB BC =.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA 证明ΔABF ≌ΔBCE 即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC =∠BDE ,根据等角对等边即可得到BC =CD ,从而得到结论.【详解】(1)∵BE ⊥CD ,AF ⊥BE ,∴∠BEC =∠AFB =90°,∴∠ABE +∠BAF =90°.∵∠ABC =90°,∴∠ABE +∠EBC =90°,∴∠BAF =∠EBC .在ΔABF 和ΔBCE 中,∵∠AFB =∠BEC ,AF =BE ,∠BAF =∠EBC ,∴ΔABF ≌ΔBCE .(2)∵∠ABC =90°,∴∠ABD +∠DBC =90°.∵∠BED =90°,∴∠DBE+∠BDE=90°.∵BD分∠ABE,∴∠ABD=∠DBE,∴∠DBC=∠BDE,∴BC=CD,即ΔBCD是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF≌ΔBCE.23.(1)甲步行的速度为60 m/min;(2)当甲出发16 min时,甲乙两人距离0 m(或乙出发12 min时,乙追上了甲);(3)乙步行的速度为80 m/min;乙走完全程用的时间为30min;(4)乙到达终点时,甲离终点距离是360米.【解析】【分析】(1)根据甲先出发4 min,结合图象可知4 min他们的距离为240,即可求甲的速度;(2)结合函数图象可知,当t=16分钟时,y为0,据此可答;(3)根据t=16分钟时,甲乙所走的路程相等求得乙步行的速度,再用总路程÷乙步行的速度即可得解;(4)甲的速度×(乙走完全程的时间+4)=乙到达终点时甲的路程.再用总路程-甲的路程即可.【详解】(1)甲步行的速度为:240÷4=60 m/min;(2)当甲出发16 min时,甲乙两人距离0 m(或乙出发12 min时,乙追上了甲);(3)乙步行的速度为:16×60÷12=80 m/min;乙走完全程用的时间为:2400÷80=30min;(4)乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.y 时,x>224.(1) y=2x+2 (2) 6【解析】【分析】(1) 根据正比例函数的定义设y-2=kx(k≠0)然后把x,y的值代入求出k,即可求出解析式;(2)根据 (1)中的解析式,判断即可.【详解】(1)∵y-2与x成正比例函数∴设 y-2=kx(k≠0)将x=2,y=6 代入得,2k=6-2 k=2∴ y-2=2x∴y=2x+2(2)根据函数解析式 y=2x+2得到y 随x 的增加而增大∵ y=6时 x=2∴6y >时,x >2.【点睛】此题主要考查了待定系数法求一次函数解析式及判断函数取值范围,熟练掌握相关概念是解题的关键.25.(1)y=2x-2;(2)b=2或-2.【解析】【分析】(1)因为直线l 与直线2y x =平行,所以k 值相等,即k=2,又因该直线过点(0,−2),所以就有-2=2×0+b ,从而可求出b 的值,于是可解;(2)直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),然后根据三角形面积公式列方程求解即可.【详解】解:(1)∵直线l 与直线2y x =平行,∴k=2,∴直线l 即为y=2x+b .∵直线l 过点(0,−2),∴-2=2×0+b ,∴b=-2.∴直线l 的解析式为y=2x-2.(2)∵直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),∴直线l 与两坐标轴围成的三角形面积=132b ⨯⋅. ∴132b ⨯⋅=3, 解得b=2或-2.【点睛】 本题考查了一次函数的有关计算,两条直线平行问题,直线与两坐标轴围成的三角形面积等,难度不大,关键是掌握两条直线平行时k 值相等及求直线与两坐标轴的交点坐标.四、压轴题26.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS ≅△△,根据全等三角形的性质得到BD CE =;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AECABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+,即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形, 当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==, 422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.27.(1)①△BPD 与△CQP 全等,理由见解析;②当点Q 的运动速度为125cm /s 时,能够使△BPD 与△CQP 全等;(2)经过90s 点P 与点Q 第一次相遇在线段AB 上相遇.【解析】【分析】(1)①由“SAS”可证△BPD ≌△CQP ;②由全等三角形的性质可得BP=PC=12BC=5cm ,BD=CQ=6cm ,可求解; (2)设经过x 秒,点P 与点Q 第一次相遇,列出方程可求解.【详解】 解:(1)①△BPD 与△CQP 全等,理由如下:∵AB =AC =18cm ,AD =2BD ,∴AD =12cm ,BD =6cm ,∠B =∠C ,∵经过2s 后,BP =4cm ,CQ =4cm ,∴BP =CQ ,CP =6cm =BD ,在△BPD 和△CQP 中,BD CP B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵点Q 的运动速度与点P 的运动速度不相等,∴BP≠CQ,∵△BPD与△CQP全等,∠B=∠C,∴BP=PC=12BC=5cm,BD=CQ=6cm,∴t=52,∴点Q的运动速度=612552=cm/s,∴当点Q的运动速度为125cm/s时,能够使△BPD与△CQP全等;(2)设经过x秒,点P与点Q第一次相遇,由题意可得:125x﹣2x=36,解得:x=90,点P沿△ABC跑一圈需要181810232++=(s)∴90﹣23×3=21(s),∴经过90s点P与点Q第一次相遇在线段AB上相遇.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.28.(1)①E(3,﹣2)②见解析;③12OMBD=,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.29.(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【解析】【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E 是DC 的中点,即 DE =CE ,∴△DEG ≌△CEB (AAS ), ∴DG =BC ;(2)解:当F 运动到AF =AD 时,FD ∥BG .理由:由(1)知DG =BC ,∵AB =AD +BC ,AF =AD ,∴BF =BC =DG ,∴AB =AG ,∵∠BAG =90°,∴∠AFD =∠ABG =45°,∴FD ∥BG ,故答案为:F 运动到AF =AD 时,FD ∥BG ;(3)解:结论:FH =HD .理由:由(1)知GE =BE ,又由(2)知△ABG 为等腰直角三角形,所以AE ⊥BG , ∵FD ∥BG ,∴AE ⊥FD ,∵△AFD 为等腰直角三角形,∴FH =HD ,故答案为:FH =HD .【点睛】本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解; (2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解;(3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
江苏省扬州大学附属中学东部分校2019年数学八上期末检测试题

江苏省扬州大学附属中学东部分校2019年数学八上期末检测试题一、选择题1.已知a 为整数,且221369324a a a a a a a +--+-÷-+-为正整数,求所有符合条件的a 的值的和( ) A .0 B .12 C .10 D .82.化简222x y x xy-+的结果为( )A .﹣y xB .﹣yC .x yx+ D .x yx- 3.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A .20.210-⨯克B .2210-⨯克C .3210-⨯ 克D .4210-⨯克4.下列运算正确的是( )A .a+a= a 2B .a 6÷a 3=a 2C .(a+b)2=a 2+b 2D .(a b 3) 2= a 2 b 6 5.下列计算中,正确的是( ) A .336x x x += B .623a a a ÷= C .3a 5b 8ab += D .333(ab)a b -=- 6.点A (﹣5,4)关于y 轴的对称点A′的坐标为( )A .(﹣5,﹣4)B .(5,﹣4)C .(5,4)D .(﹣5,4)7.窗花是我国传统民间艺术,下列窗花中,是轴对称图形的为( )A. B. C. D.8.如图,△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线与 BC 交于点D ,交 AB 于 E ,DB =10,则 AC 的长为( )A.2.5B.5C.10D.209.如果一个三角形是轴对称图形,那么这个三角形一定不是( )A .直角三角形B .等腰直角三角形C .等边三角形D .等腰三角形 10.如图,中,,,平分,于,则下列结论:①平分,②,③平分,④,其中正确的有( )A.1个B.2个C.3个D.4个11.如图,A B ∠=∠,AE BE =, 点D 在AC 边上,12∠=∠,AE 和BD 相交于点O ,若0140∠=,则BDE ∠为( )度.A .030B .040C .060D .07012.如图,在中,点,,分别是边,,上的点,且,,相交于点,若点是的重心.则以下结论:①线段,,是的三条角平分线;②的面积是面积的一半;③图中与面积相等的三角形有5个;④的面积是面积的.其中一定正确的结论有( )A.①②③B.②④C.③④D.②③④13.一个多边形的边数增加1,则内角和与外角和增加的度数之和是( ) A .60° B.90° C.180° D.360°14.若△ABC 的三个内角的比为2:5:3,则△ABC 的形状是( ) A .等腰三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 15.下列计算中,正确的是( )A.a 3+a 2=a 5B.(2a)3=6a 3C.a 5÷a 2=a 3D.(a+1)2=a 2+1二、填空题16.分式()231214322x y xy x y x x y---,,的最简公母为________________. 17.计算:-22017×(-0.5)2018_________.18.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直,垂足为A ,交CD 于D ,若AD =8,则点P 到BC 的距离是_____.19.已知a ,b ,c 是ΔABC 的三边长,a ,b 满足()2a 7b 10-+-=,c 为奇数,则c =__________.20.如图,点D 、E 分别在纸片的边AB 、AC 上.将沿着DE 折叠压平,使点A 与点P 重合.若,则_____°.三、解答题 21.化简:(1)22414a a ++- (2)222222x y x xy x xy y x y ⎛⎫-÷- ⎪+++⎝⎭ 22.阅读理解:整体代换是一个重要的数学思想方法.例如:计算4(a+b )-7(a+b )+(a+b )时可将(a+b )看成一个整体,合并同类项得-2(a+b ),再利用分配律去括号得-2a-2b .同时,我们也知道:代数的基本要义就是用字母表示数使之更具一般性.所以,在计算a (a+b )时,同样可以利用分配律得a 2+ab .(1)请你尝试着把(a-2)或(b-2)看成整体计算:(a-2)(b-2)(2)创新应用:如果两个数的乘积等于它们的和的两倍,则我们称这两个数为“积倍和数对”.即:若ab=2(a+b ),则a 、b 是一对积倍和数对,记为(a 、b ).例如:因为3×6=2(3+6),所以3和6是一对积倍和数对,记为(3、6).请你找出所有a 、b 均为整数的积倍和数对.23.已知:在△ABC 中,且∠BAC =70°,AD 是△ABC 的角平分线,点E 是AC 边上的一点,点F 为直线AB 上的一动点,连结EF ,直线EF 与直线AD 交于点P ,设∠AEF =α° (1)如图①,若 DE//AB ,则①∠ADE 的度数是_______;②当∠DPE =∠DEP 时,∠AEF= _____度:当∠PDE =∠PED ,∠AEF=_______度;(2)如图②,若DE ⊥AC ,则是否存在这样的α的值,使得△DPE 中有两个相等的角?若存在求出α的值;若不存在,说明理由24.已知等腰直角ABD ∆和等腰直角DFC ∆如图放置,BD AD =,DF DC =,90ADB FDC ∠=∠=︒,其中,B 、D 、C 在一条直线上,连接BF 并延长交AC 于E ,(1)求证:BF AC =(2)BF 与AC 有什么位置关系?请说明理由.(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.已知:如图,点C 在AOB ∠的一边OA 上,过点C 的直线//DE OB ,CF 平分ACD ∠,CG CF ⊥于C .()1若40O ∠=,求ECF ∠的度数; ()2求证:CG 平分OCD ∠;【参考答案】*** 一、选择题16.()212x y y x -17.-0.5 18.4 19.7 20.三、解答题 21.(1)2aa -;(2)2x. 22.(1)ab-2a-2b+4;;(2)(a 、b )=(3、6);(1、-2);(4、4);(0、0);(6、3);(-2、1).23.(1)①35°;②37.5,75;(2)27.5°或20°或35°. 【解析】 【分析】(1)①利用平行线的性质,可知∠ADE=∠BAD ,由此即可解决问题; ②利用三角形的内角和定理以及三角形的外角的性质解决问题即可; (2)用分类讨论的思想思考问题即可; 【详解】解:(1)①∵∠BAC=70°,AD 是△ABC 的角平分线,∴∠BAD=12∠BAC=35°,∵DE∥AB,∴∠ADE=∠BAD=35°,故答案为35°.②在△DPE中,∵∠ADE=35°,∴∠DPE=∠PED=12(180°-35°)=72.5°,∵∠DPE=∠AEP+∠DAE,∴∠AEF=72.5°-35°=37.5°;∵当∠PDE=∠PED时,∠DPE=70°,∴∠AEF=∠DPE-∠DAE=75°.故答案为37.5,75;(2)在Rt△ADE中,∠ADE=90°-35°=55°.①当DP=DE时,∠DPE=62.5°,∠AEF=∠DPE-∠DAC=62.5°-35°=27.5°.②当EP=ED时,∠EPD=∠ADE=55°,∠AEF=∠DPE-∠DAC=55°-35°=20°.③当DP=PE时,∠EPD=180°-2×55°=70°,∠AEF=∠DPE-∠DAC=70°-35°=35°.【点睛】本题考查三角形的内角和定理、三角形的外角的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.24.(1)见解析;(2)BF⊥AC,理由见解析;(3)BF=2AE,理由见解析.【解析】【分析】(1)利用SAS定理证明△BDF≌△ADC,根据全等三角形的性质证明结论;(2)根据全等三角形的性质得到∠DBF=∠DAC,得到∠BEA=90°即可证明;(3)根据等腰三角形的三线合一得到AE=12AC,结合(1)中结论证明即可.【详解】解答:(1)证明:在△BDF和△ADC中,BD ADBDF ADC DF DC=⎧⎪∠∠⎨⎪=⎩=,∴△BDF≌△ADC(SAS)∴BF=AC;(2)BF⊥AC,理由:∵△BDF≌△ADC,∴∠DBF=∠DAC,∵∠DBF+∠DFB=90°,∠DFB=∠EFA,∴∠EFA+∠DAC=90°,∴∠BEA=90°,∴BF⊥AC;(3)若AB=BC,BF=2AE,理由:∵AB=BC,BF⊥AC,∴AE=12 AC,∵BF=AC,∴BF=2AE.【点睛】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(1)110°;(2)证明见详解。
扬州市八年级上学期期末数学试卷 (解析版)

扬州市八年级上学期期末数学试卷 (解析版)一、选择题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0< 2.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x = B .||y x = C .1y x = D .412x y = 3.下列四组数,可作为直角三角形三边长的是A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、4.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)5.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4) 6.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限B .第二象限C .第三象限D .第四象限 7.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有 ( ) A .1个 B .2个 C .3个 D .4个8.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-9.估算x 5 )A .0<x <1B .1<x <2C .2<x <3D .3<x <410.4,﹣3.14,227,2π3 )A .1个B .2个C .3个D .4个二、填空题11.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.12.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.13.某种型号汽车每行驶100km 耗油10L ,其油箱容量为40L .为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的18,按此建议,一辆加满油的该型号汽车最多行驶的路程是_____km .14.2,227,2543.14,这些数中,无理数有__________个. 15.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.16.点A (2,-3)关于x 轴对称的点的坐标是______.17.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.18.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),则关于x 、y 的二元一次方程组2x y a x y b -=⎧⎨+=⎩的解是________.19.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____.20.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.三、解答题 21.先化简,再求值:35(2)362x x x x -÷+---,其中53x =- 22.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.①请你再选择一个类似的部分试一试,看看是否符合这个规律;②请你利用整式的运算对以上的规律加以证明.23.计算与求值:(1)计算:()203120195274+-+--. (2)求x 的值:24250x -=24.已知:如图,点A 是线段CB 上一点,△ABD 、△ACE 都是等边三角形,AD 与BE 相交于点G ,AE 与CD 相交于点F .求证:△AGF 是等边三角形.25.如图,在等腰△ABC 中,AB =AC ,BC =5.点D 为AC 上一点,且BD =4,CD =3.(1)求证:BD ⊥AC ;(2)求AB 的长.四、压轴题 26.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).27.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义: 若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.28.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.29.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫ ⎪⎝⎭都是“白马有理数对”. (1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)30.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.2.C解析:C【解析】【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数.【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x =,y 是x 的函数,故正确; D. 412x y =,y 不是x 的函数,故错误; 故选C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.3.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A 、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B 、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C 、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D 、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确. 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.4.D解析:D【解析】【分析】先求出A 点绕点C 顺时针旋转90°后所得到的的坐标A ',再求出A '向右平移3个单位长度后得到的坐标A '',A ''即为变换后点A 的对应点坐标.【详解】将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2).【点睛】本题考察点的坐标的变换及平移.5.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.6.C解析:C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像7.A解析:A【解析】【分析】根据无理数的定义进行求解.【详解】解:无理数有:−π,共1个.故选:A.【点睛】本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.8.C解析:C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.9.C解析:C【解析】【分析】.【详解】∴23,故选:C.【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.10.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.二、填空题11.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.13.【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×,解解析:【解析】【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的18,列出不等式,即可求解.【详解】设该型号汽车行驶的路程是xkm,∵油箱内剩余油量不低于油箱容量的18,∴﹣10100x+40≥40×18,解得:x≤350,答:该辆汽车最多行驶的路程是350km,故答案为:350.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.14.1【解析】【分析】根据无理数的定义,即可得到答案.【详解】解:根据题意,是无理数;,,3.14是有理数;∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟解析:1【解析】【分析】根据无理数的定义,即可得到答案.【详解】是无理数;227, 3.14是有理数; ∴无理数有1个;故答案为:1.【点睛】 本题考查了无理数的定义,解题的关键是熟练掌握无理数的定义.15.【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析:1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.16.(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x 轴,y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.17..【解析】【分析】根据一次函数,,时图象经过第二、三、四象限,可得,,即可求解;【详解】经过第二、三、四象限,∴,,∴,,∴,故答案为.【点睛】本题考查一次函数图象与系数的关系解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.18.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1),所以解析:21x y =⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1), 所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】 本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.19.y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y解析:y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x +2的图象向下平移2个单位长度后,所得图象的函数关系式为y =2x +2﹣2=2x .故答案为:y =2x .【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x 左加右减;上下平移,b 上加下减”是解此题的关键.20.11【解析】【分析】根据函数图象可以直接得到AB 、BC 和三角形ADB 的面积,从而可以求得AD 的长,作辅助线CE⊥AD,从而可得CD 的长,进而求得点P 从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB 、BC 和三角形ADB 的面积,从而可以求得AD 的长,作辅助线CE ⊥AD,从而可得CD 的长,进而求得点P 从开始到停止运动的总路程,本题得以解决.【详解】解:作CE ⊥AD 于点E,如下图所示,由图象可知,点P 从A 到B 运动的路程是3,当点P 与点B 重合时,△PAD 的面积是212,由B 到C 运动的路程为3, ∴321222AD AB AD ⨯⨯== 解得,AD=7, 又∵BC//AD,∠A=90°,CE ⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE 是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4, ∴2222 345,CD CE DE =+=+=∴点P 从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.三、解答题21.()133x +15【解析】【分析】先根据分式混合运算法则进行化简,再代入已知值求值.【详解】 解:35(2)362x x x x -÷+--- =()2345()3222x x x x x --÷---- =()239322x x x x --÷-- =()()()323233x x x x x --⨯-+- =()133x +当3x =时,原式15== 【点睛】考核知识点:二次根式化简求值.先根据分式性质进行化简是关键.22.(1)见解析;(2)证明见解析.【解析】【分析】(1)直接利用已知数据求出即可;(2)利用数字之间的变化规律得出一般式,进而验证即可.【详解】(1)例如11×17-10×18=7;3×9-2×10=7;(2)设最小的一个数为x ,其他三个分别为x+1,x+7,x+8,则:(x+1)(x+7)-x (x+8),=x 2+8x+7-x 2-8x ,=7.【点睛】此题考查了数字的变化规律,整式的混合运算,由特殊到一般,利用日历表中数字的特点得出一般性结论解决问题.23.(1)52;(2)52x =±. 【解析】【分析】(1)分别计算零指数幂,利用平方根的性质化简,计算立方根和算术平方根,然后把所得的结果相加减;(2)依次移项,系数化为1,两边同时开平方即可.【详解】解:(1)原式=115(3)2++--=52; (2)移项得:2425x =,系数化为1得:2254x =, 两边同时开平方得:52x =±. 【点睛】 本题考查实数的混合运算和利用平方根解方程.(1)中需注意2||a a =,2()(0)a a a =≥;(2)中需注意的是方程右边的常数项(正数)有正负两个平方根,不要漏解.24.见解析【解析】【分析】由等边三角形可得AD=AB ,AE=AC ,∠BAE=∠DAC=120°,再由两边夹一角即可判定△BAE ≌△DAC ,可得∠1=∠2,进而可得出△BAG ≌△DAF ,AG=AF ,则可得△AGF 是等边三角形.【详解】证明:∵△ABD ,△ACE 都是等边三角形,∴AD=AB ,AE=AC ,∴∠DAE=∠BAD=∠CAE=60°∴∠BAE=∠DAC=120°,在△BAE 和△DAC 中AD=AB ,∠BAE=∠DAC ,AE=AC ,∴△BAE ≌△DAC .∴∠1=∠2在△BAG 和△DAF 中∠1=∠2,AB=AD ,∠BAD=∠DAE ,∴△BAG ≌△DAF ,∴AG=AF ,又∠DAE=60°,∴△AGF 是等边三角形.【点睛】本题主要考查了全等三角形的判定及性质,以及等边三角形的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.25.证明见解析;(2)AB=256. 【解析】【分析】(1)根据勾股定理逆定理判断即可;(2)设AB =x ,则AC =x ,AD =x -3,根据AB 2=AD 2+BD 2列方程求解即可.【详解】(1)证明:在△BDC 中,∵22291625CD BD BC +=+==,∴∠BDC=90° ,即BD ⊥AC ,(2)解:设AB =x ,则AC =x ,AD =x -3,∵BD ⊥AC ,∴∠ADB=90°.在Rt△ABD 中∴222AB BD AD =+,即 ()22163x x =+-, 解得:256x =, ∴AB=256. 【点睛】 本题考查了勾股定理及其逆定理的应用,直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.四、压轴题26.(1)A (0,3),B (4,0);(2)D (1,-265);(3)见解析 【解析】【分析】(1)根据非负数的性质求解;(2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证;【详解】(1)∵222110a b a b --++-=,∴220,2110a b a b --=+-=,∴2202110a b a b --=⎧⎨+-=⎩ ,∴34a b =⎧⎨=⎩,∴A (0,3),B (4,0);(2)如图1中,设直线CD 交y 轴于E .∵CD//AB ,∴S △ACB =S △ABE ,∴12AE×BO=16,∴12×AE×4=16,∴AE=8,∴E (0,-5),设直线AB 的解析式为y=kx+b ,将点A (0,3),(4,0)代入解析式中得:343k b ⎧=-⎪⎨⎪=⎩ ,∴直线AB 的解析式为y=334x -+,∵AB//CD ,∴直线CD 的解析式为y=34x c -+,又∵点E (0,-5)在直线CD 上,∴c=5,即直线CD 的解析式为y=354x --, 又∵点C (-3,m )在直线CD 上, ∴m=115, ∴C (-3, 115), ∵点A (0,3)平移后的对应点为C (-3,115), ∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,∴点D 的坐标为(1,-265); (3)如图2中,延长AB 交CE 的延长线于点M .∵AM ∥CD ,∴∠DCM=∠M ,∵∠BCE=2∠ECD ,∴∠BCD=3∠DCM=3∠M ,∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,∴∠BCD=3(∠CEP-∠OPE ).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.27.(1)①)3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x xb x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.28.(1)203;(2)①t =83;②a =185;(3)t =6.4或t =103 【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM =CN =3t ,则只可以是△CMN ≌△BAM ,AB =CM ,由此列出方程求解即可;②由题意得:CN ≠BM ,则只可以是△CMN ≌△BMA ,AB =CN =12,CM =BM ,进而可得3t =10,求解即可;(3)分情况讨论,当△CMN ≌△BPM 时,BP =CM ,若此时P 由A 向B 运动,则12-2t =20-3t ,但t =8不符合实际,舍去,若此时P 由B 向A 运动,则2t -12=20-3t ,求得t =6.4;当△CMN ≌△BMP 时,则BP =CN ,CM =BM ,可得3t =10,t =103,再将t =103代入分别求得AP ,BP 的长及a 的值验证即可.【详解】解:(1)20÷3=203, 故答案为:203; (2)∵CD ∥AB ,∴∠B =∠DCB ,∵△CNM 与△ABM 全等,∴△CMN ≌△BAM 或△CMN ≌△BMA ,①由题意得:BM =CN =3t ,∴△CMN ≌△BAM∴AB =CM ,∴12=20-3t ,解得:t =83;②由题意得:CN ≠BM ,∴△CMN ≌△BMA ,∴AB =CN =12,CM =BM ,∴CM =BM =12BC , ∴3t =10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.29.(1)35,2⎛⎫⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n 是“白马有理数对”,则m+n=mn-1,那么-n+(-m )=-(m+n )=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n ,-m )不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”, 故答案为:(6,75). 【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.30.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【解析】【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬大附中东部分校2019—2020学年度第一学期期末考试八 年 级 数 学 试 卷(总分150分 时间120分钟)一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.下列四种汽车标志中,不属于...轴对称图形的是 ( ▲ )2.在实数:0722,0.74, ,39中,有理数的个数是 ( ▲ ) A .1 B .2 C .3 D .43.下列事件中,最适合使用普查方式收集数据的是 ( ▲ ) A .了解扬州人民对建设高铁的意见 B .了解本班同学的课外阅读情况 C .了解同批次LED 灯泡的使用寿命 D .了解扬州市八年级学生的视力情况4.一架5m 长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角3m ,如果梯子的顶端沿墙下滑1m ,那么梯脚移动的距离是 ( ▲ ) A .0.5m B .0.8m C .1m D .1.2m5.如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是 ( ▲ ) A .1对 B .2对 C .3对 D .4对(第5题图) (第6题图) (第7题图)6.如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,若点A 关于CD 所在直线的对称点E 恰好为AB 的中点,则∠B 的度数是 ( ▲ ) A .60°B . 45°C .30°D .75°7.如图,函数x y 2 和b ax y 2+=的图像相交于点A (m ,2),则不等式b ax x 2≤2+的解集为 ( ▲ ) A . x <1 B .x >1 C .x ≥1 D . x ≤18.直线2-3-b x y +=过点(1x ,1y ),(2x ,2y ),若1x —2x =2,则1y —2y = ( ▲ )A . 3B .—3C . 6D . —6二、填空题(本大题共10小题,每小题3分,共30分,请将答案填在答题卡相应的位置上)9.—8的立方根是 ▲ .10.将点A (-2,-3)先向右平移3个单位长度再向上平移2个单位长度得到点B ,则点B 所在象限是第 ▲ 象限.11.王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择.... ▲ 统计图.12.(填“>”、“=”、“<”)13.下列事件中,①打开电视,它正在播关于扬州特产的广告;②太阳绕着地球转;③掷一枚正方体骰子,点数“4”朝上;④13人中至少有2人的生日是同一个月.属于随机事件的个数是 ▲ .14.如图,数轴上的点A 表示的数是 ▲ .15.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于点D ,且AB =4,BD =5,则点D 到BC 的距离为 ▲ .(第14题图) (第15题图) (第17题图)16.若正比例函数x m y )21(-=的图像经过点A (3,y 1)和点B (5,y 2),且y 1>y 2,则m 的取值范围是 ▲ .17.元旦期间,胡老师开车从扬州到相距150千米的老家探亲,如果油箱里剩余油量 y (升)与行驶里程 x (千米)之间是一次函数关系,其图像如图所示,那么胡老师到达老家时,油箱里剩余油量是 ▲ 升.18.如图,△ABC 中,AB =AC =26,BC =20,AD 是BC 边上的中线,AD =24,F 是AD 上的动点,E 是AC 边上的动点,则CF +EF 的最小值为 ▲ .三、解答题(本大题共96分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(本题满分8分)(1)计算:()()23322143⎪⎭⎫⎝⎛-⨯-+-(2)求x 的值:27)2(3--=x20.(本题满分8分)已知△ABC 的三边a 、b 、c 满足010)12(24212=++c b a ---,求最长边上的高h . 21.(本题满分8分)为了进一步了解八年级500名学生的身体素质情况,体育老师对八年级(1)班50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图如下所示:请结合图表完成下列问题:(1)表中的m = ,次数在140≤x <160这组的频率为 ; (2)请你把频数分布直方图补充完整;(3)若八年级学生一分钟跳绳次数(x )达标要求是:x <120不合格;x ≥120为合格,求八年级合格的学生有多少人.22.(本题满分8分)一个不透明的袋中装有20个球,其中7个黄球,8个黑球,5个红球,这些球只有颜色不同,其它都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是31,求从袋中取出黑球的个数.23.(本题满分10分)将等腰直角△ABC 斜放在平面直角坐标系中,使直角顶点C 与点(1,0)重合,点A 的坐标为(—2,1). (1)求△ABC 的面积S ;(2)求直线AB 与y 轴的交点坐标.24.(本题满分10分)如图,已知函数12y x b =-+的图像与x 轴、y 轴分别交于点A 、B ,与函数x y =的图像交于点M ,点M 的横坐标为2. (1)求点A 的坐标;(2)在x 轴上有一点动点P (),0a (其中a >2),过点P 作x 轴的垂线,分别交函数12y x b =-+和y x =的图像于点C 、D ,且OB =2CD ,求a 的值.25.(本题满分10分)扬州商场某商家计划购进一批甲、乙两种LED 节能灯共120只,这两种节能灯的进价、售价如下表:(1(2)如果规定:当销售完这批节能灯后,总利润不超过进货总费用的30%,请问如何进货,使得该商家获得的总利润最多,此时总利润最多为多少元?26.(本题满分10分)如图,在△ABC中,∠ACB=90°,AC=BC,BE是中线,CG平分∠ACB 交BE于点G,F为AB边上一点,且∠ACF=∠CBG.(1)求证:CF=BG;(2)延长CG交AB于点H,判断点G是否在线段AB的垂直平分线上?并说明理由.(3)过点A作AD⊥AB交BE的延长线于点D,请证明:CF=2DE.27.(本题满分12分)甲、乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲、y乙与x之间的函数图像如图所示,结合图像解答下列问题:(1)甲车的速度是km/h,乙车休息了h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当甲车出发多少小时后,两车相距80km?28.(本题满分12分)阅读理解:【问题情境】金老师给“数学小达人”小明和小军提出这样一个问题:如图1,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AB+BD=A C.【证明思路】小明的证明思路是:如图2,在AC上截取AE=AB,连接DE.……小军的证明思路是:如图3,延长CB至点E,使BE=AB,连接AE.可以证得:AE=DE.……请你从他们的思路中,任意选择一种....思路继续完成下一步的证明.【变式探究】如图4,金老师把“AD是∠BAC的平分线”改成“AD是BC边上的高”,其它条件不变,那么AB+BD=AC还成立吗?若成立,请证明;若不成立,写出正确结论,并说明理由.【迁移拓展】如图5,△ABC中,∠B=2∠C.求证:AC2—AB2=AB×B C.2015—2016学年度第一学期期末考试八 年 级 数 学参 考 答 案一.选择题:9.—2 10.四 11.扇形 12.< 13.214.2- 15.3 16.21>m 17.20 18.13240三、解答题:19.解:(1)原式=414-3× …………3分=2; …………4分 (2)x —1=—2 …………6分x = —1 …………8分20. 解:由题意,得:04-21=a ,012-b 2=,0-10=c ,∴a =8,b =6,c =10, …………4分∵2221003664c b a ==+=+,∴△ABC 为Rt △ABC ,且∠C =90°,…………6分∵ab ch 2121=,∴h =4.8 …………8分 21.(1) 12,0.36; (每个1分,共2分) …………2分 (2)补充后的频数分布直方图如下所示;(每个1分,共2分) …………6分(3)抽样调查中合格的频率为:(12+18+6)÷50=0.72,估计该年级学生合格的人数大约有500×0.72=360(个),答:估计该年级学生合格的人数大约有360个人. ……8分 22.解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中7个黄球,8个黑球,5个红球,∴从袋中摸出一个球是黄球的概率为207; …………4分(2)设从袋中取出x 个黑球,根据题意,得: )20(318x x -=-, …………6分 解得:x =2 …………7分 答:从袋中取出黑球的个数为2个. …………8分 23. 解:(1)过点A 作AD ⊥x 轴,垂足为D .则AD =1,CD =3, ∴10222=+=DC AD AC ,S =221AC =5. …………3分 (2)过点B 作BE ⊥x 轴,垂足为E , ∴∠ADC =∠CEB =90°,则∠CAD + ∠ACD =90°,∴ ∠ACB =90°,则∠BCE + ∠ACD =90°, ∴ ∠CAD =∠BCE , 又∵∠ADC =∠CEB =90°,AC =BC ,∴△ADC ≌△CEB , ∴CD =BE =3,CE =AD =1,∴点B 的坐标为(2,3). …………7分设直线AB 的解析式为y =kx +b ,则⎩⎨⎧=+-=+12,32b k b k ,解得:⎪⎩⎪⎨⎧==2,21b k ,所以y =21x +2,所以直线AB 交y 轴于点(0,2). …………10分24.解:(1)∵ 点M 在函数y =x 的图象上,且横坐标为2,∴ 点M 的纵坐标为2.∵ 点M (2,2)在一次函数y =—12x +b 的图象上,∴ —12×2+b =2,∴ b =3, …………4分∴ 一次函数的表达式为y =—12x +3,令y =0,得x =6,∴ 点A 的坐标为(6,0). …………6分(2) 由题意得:C (a ,—12a +3),D (a ,a ),∴ CD = a —(—12a +3). …………8分 ∵ OB =2CD ,∴ 2[a —(—12a +3)]=3,∴ a =3. …………10分 25.解:(1)设商家应购进甲型节能灯x 只,则乙型节能灯为(120-x )只,根据题意,得:25x +45(120-x )=4600,解得x =40, …………3分 ∴乙型节能灯为120-40=80.答:商家购进甲型节能灯40只,乙型节能灯80只时,进货总费用恰好为4600元.………4分(2)设商家应购进甲型节能灯t 只,销售完这批节能灯可获利为y 元.根据题意,得:y =(30-25)t +(60-45)(120-t )=5t +1800-15t =-10t +1800,…………6分 ∵ 规定在销售完节能灯时利润不得高于进货价的30%,∴-10t +1800≤[25t +45(120-t )]×30%,解得t ≥45. …………8分 又∵ k =-10<0,y 随t 的增大而减小,∴t =45时,y 取得最大值,最大值为-10t +1800=1350(元). …………10分答:商家购进甲型节能灯45只,乙型节能灯75只,销售完节能灯时获利最多,此时利润为1350元.26.解:证明:(1)∵∠ACB =90°,CG 平分∠ACB ,AC =B C .∴∠BCG =∠CAB =45°,又∵∠ACF =∠CBG ,AC =BC ,∴△ACF ≌△CBG (ASA ),∴AF =CG ,CF =BG . …………3分(2)点G 在线段AB 的垂直平分线上,理由如下:∵AC =BC ,CG 平分∠ACB ,∴ CH ⊥AB ,H 为AB 中点,∴ 点G 在线段AB 的垂直平分线上 …………5分(3)连接AG .由(2)可知,AG =BG ,∠GAB =∠GBA ,∵AD ⊥AB ,∴∠GAB +∠GAD =∠GBA +∠D =90°,∴∠GAD =∠D ,∴GA =GD =GB =CF . …………7分 ∵AD ⊥AB ,CH ⊥AB∴CH ∥AD ,∴∠D =∠EGC ,∵E 为AC 中点,∴ AE =EC ,又∵∠AED =∠CEG ,∴△AED ≌△CEG ,∴DE =EG ,∴DG =2DE ,∴CF =2DE . …………10分27.解:(1)80,0.5 .(每空2分) …………4分(2)设y 乙与x 的函数解析式为y 乙=kx ﹢b ,把(2.5,200).(5,400)代入,得:⎩⎨⎧5k ﹢b=4002.5k ﹢b=200,解得:y 乙=80x (2.5≤x ≤5), …………6分(3)相遇前:100x ﹢80x ﹢80=400,解得x =916; …………9分 相遇后:80x ﹢200﹢80(x ﹣2.5)=400+80,解得x =3.综上可知,x =916或x =3. …………12分 28.解:【问题情境】 小明的证明思路是:在AC 上截取AE =AB ,连接DE .(如图2) ∵AD 是∠BAC 的平分线,∴∠BAD =∠EAD ,又∵AD =AD , ∴△ABD ≌△AED ,∴BD =DE ,∠ABD =∠AED ,又∵∠AED =∠EDC +∠C ,∠B =2∠C ,∴∠EDC =∠C ,∴ DE =EC , 即AB +BD =A C . …………4分小俊的证明思路是:延长CB 至点E ,使BE =AB ,连接AE .(如图3)则∠E =∠BAE ,∴∠ABC =2∠E ,∵∠ABC =2∠C ,∴∠E =∠C ,∴△AEC 是等腰三角形.∵∠ADE =∠DAC +∠C ,∠DAE =∠BAD +∠BAE ,又∵AD 是∠BAC 的平分线, ∴∠BAD =∠DAC ,∴∠ADE =∠DAE ,∴△AED 是等腰三角形.∴EA =ED =AC ,∴AB +BD =A C . …………4分【变式探究】AB+BD=AC不成立.正确结论是:AB+BD=C D.…………5分方法1:如图4,在CD上截取DE=DB,∵AD⊥BC,∴AD是BE的垂直平分线,∴AE=AB,∴∠B=∠AED,∵∠AED =∠C+∠CAE,∵∠B=2∠C,∴∠C=∠CAE,∴AE=EC,即AB+BD=C D.…………8分方法2:如图5,延长DB至点E,使BE=AB,则∠E=∠BAE,∵∠ABD =∠E+∠BAE =2∠E,∵∠B=2∠C,∴∠E=∠C,∴△AEC是等腰三角形.∵AD⊥BC,∴CD=ED,即AB+BD=C D.…………8分【迁移拓展】证明:如图6,过点A作AD⊥BC于D.由勾股定理得:AB2=BD2+AD2,AC2=CD2+AD2,∴AC2—AB2=CD2—BD2=(CD+BD)×(CD—BD)=BC×(CD—BD),…………10分∵AB+BD=CD,∴CD—BD=AB,∴AC2—AB2=BC×(CD—BD)=BC×AB,即AC2=AB2+AB×B C.…………12分。