材料拉伸实验-1资料
ISO 6892-1-2016 金属材料拉伸试验 第1部分:室温测试方法

INTERNATIONALSTANDARD国际标准化组织6892-1第二版2016-07-01金属材料拉伸试验第1部分:室温测试方法matériaux métalliques-Essai de traction-Partie 1:mémethod d ' Essaiàtemperature Ambiente参考号:国际标准化组织6892-1:2016(英)ISO 2016版权保护文件国际标准化组织2016,瑞士出版保留所有权利。
除非另有说明,未经事先书面许可,不得以任何形式或通过任何电子或机械手段复制或使用本出版物的任何部分,包括影印或在互联网或内部网上发布。
可以向以下地址的国际标准化组织或申请人所在国家的国际标准化组织成员机构申请许可。
国际标准化组织版权办公室Ch。
de Blandonnet 8 CP 401瑞士日内瓦,邮编:CH-1214游标电话。
+41 22 749 01 11传真+41 22 749 09 47copyright@Contents PageForeword vIntroduction viScope 1Normativereferences 1 Termsanddefinitions 1Symbols 6Principle 7Testpieces 8Shapeanddimensions 8General 8Machinedtestpieces 8 Unmachinedtestpieces 9Types 9准备oftestpieces 9originalcross-sectionalarea 9的决定原始标距长度和extensometergaugelength 10 originalgaugelength 10的选择标记originalgaugelength 10 extensometergaugelength 10的选择准确性oftestingapparatus 10 Conditionsoftesting 11设置forcezeropoint 11 Methodofgripping 11Testingrates 11regardingtestingrates 11一般信息基于应变rate(methodA) 11的测试基于压力率的测试(methodB) 13 chosentestingconditions 15的报告upperyieldstrength 15的决定theloweryieldstrength 15的决定证据的确定strength,plasticextension 15证据的确定strength,totalextension 16 permanentsetstrength 16的核查方法yieldpointextension 16百分比的确定atmaximumforce 17塑料延伸百分比的测定atmaximumforce 17总延期百分比的确定确定extensionatfracture 17总数的百分比elongationafterfracture 18百分比的确定reductionofarea 18百分比的确定Testreport 19Measurementuncertainty 20General 20Testconditions 20Testresults 20关于使用计算机控制的建议tensiletestingmachines 34附件B(标准)用于薄产品的试样类型:薄板、带材和0.1毫米到3mmthick 40之间的公寓附件C(标准)用于钢丝、钢筋和截面的试件类型直径或厚度小于than4mm 43附录D(标准)厚度等于或大于3毫米的板材和平面以及直径或厚度相等的线材、棒材和型材所用的试样类型去或大than4mm 44annexe(normative)typesoftestpiecestobeusedfortubes 48附录F(信息性)十字头分离率的估算,考虑到thetestingequipment 50的僵硬(或顺从)附录G(标准)金属材料弹性模量的测定使用uniaxialtensiletest 52附录H(信息性)如果规定,测量断裂后的伸长率价值更少的是than5% 61附件一(信息性)基于断裂后伸长率的测量论originalgaugelength 62的细分附录J(信息性)无颈缩的塑性伸长率的测定,奥恩,用于长产品,如酒吧,wire,androds 64附件k(资料性)对uncertaintyofmeasurement 65的估计附件一(信息性)精确度测试—结果主实验室程序..69Bibliography 76序国际标准化组织是国际标准组织的世界性联合会。
材料力学拉伸实验报告(1)

材料力学拉伸实验报告(1)材料力学拉伸实验报告一、实验目的研究材料在拉伸力的作用下的断裂性质和机械性能,了解材料的力学行为,检验材料的质量。
二、实验原理拉伸实验是用拉伸试验机将试样沿轴向逐渐拉伸,测量试样拉伸变形量和负荷之间的关系,得到在拉伸状态下材料的力学性质和变形破坏的特征,即应力-应变曲线。
应力-应变曲线是材料拉伸性致塑性行为、弹性行为和断裂行为的表现。
三、实验步骤1.选择平均直径为10mm、长度为50mm的试验铜棒,并通过光栅仪测量试验铜棒的横截面积。
2.将试验铜棒固定在拉伸试验机上,调整夹持架,使试验铜棒不能侧向移动,确定试样的初始长度L0。
3.开始拉伸试验,逐渐增加拉力,记录铜棒的拉伸长度L和拉力F,得到应力-应变曲线。
在试验过程中,每隔一定的时间将试样停止拉伸,记录拉力和长度,检测背景温度和湿度等相关因素。
4.持续拉伸到铜棒断裂,记录材料的极限断裂力和最大断裂拉伸率。
5.将数据记录到实验记录表中。
四、实验数据处理根据实验数据计算出拉伸试验的机械性能参数,如极限强度、屈服强度、断裂拉伸率等等。
1.极限强度:σmax = Fma x / S其中,Fmax为材料拉伸到断裂的最大力;S为试验铜棒的横截面积。
2.屈服强度:σs = Fs / S其中,Fs为材料开始塑性变形前的单位应力;S为试验铜棒的横截面积。
3.断裂拉伸率:A = (Lmax - L0)/ L0 × 100%其中,Lmax为材料拉伸到断裂时的长度;L0为材料载荷前的长度。
五、实验结果分析根据实验数据计算得到的拉伸试验机械性能参数可以反映出材料的力学行为。
在拉伸实验过程中,材料首先呈现弹性变形,后进入塑性变形阶段,这个过程体现在应力-应变曲线上就是曲线急速上升然后平缓变化,然后在拉伸到达一定程度后,材料会出现颈缩现象,最终断裂。
通过拉伸实验,我们可以得到应力-应变曲线,可以直观的看到材料的力学行为并计算出其力学性能参数。
实验一低碳钢和铸铁的拉伸实验

第一部分基本实验实验一低碳钢和铸铁的拉伸实验一、实验目的:1、测定低碳钢在拉伸时屈服极限σs 、强度极限σb、延伸率δ和截面收缩率Ψ。
2、观察低碳钢拉伸过程中的各种现象(包括屈服、强化、颈缩等现象),及拉伸图(P-ΔL曲线)。
3、测定铸铁拉伸时的强度极限σb。
4、比较低碳钢与铸铁抗拉性能的特点,并进行断口分析。
二、实验设备:1、万能材料实验机2、游标卡尺三、试件:由于试件的形状和尺寸对实验结果有一定的影响。
为了便于互相比较应按统一规定加工成标准试件。
试件加工须按《金属拉伸实验试样》(GB6397-86)的有关要求进行。
本实验的试件采用国家标准(GB6397-86)所规定的圆棒试件,尺寸为d=10mm,标距长度L=100mm,见图1-1。
为测定低碳钢的断后延伸率δ,须用刻线机在试样标距范围内刻划圆周线,将标距L分为等长的10格。
图1-1 圆形拉伸试件四、实验原理和方法拉伸实验是测定材料力学性能最基本的实验之一。
材料的力学性能如:屈服极限、强度极限、延伸率、截面收缩率等均是由拉伸破坏实验确定的。
1、低碳钢(1)力-伸长曲线的绘制:通过实验机绘图装置可自动绘成以轴向力P为纵坐标、试件伸长量ΔL为横坐标的力-伸长曲线(P-ΔL图),如图1-2所示。
低碳钢的力-伸长曲线是一种典型的形式,整个拉伸变形分四个阶段:弹性阶段、屈服阶段、强化阶段和颈缩阶段。
应当指出,绘图仪所绘出的拉伸变形ΔL是整个试件(不只是标距部分)的伸长,而且还包括机器本身的弹性变形和试件头部在夹头中的滑动等。
试件开始受力时,头部夹头中的滑动很大,故绘出的拉伸图最初一般是曲线。
图1-2 低碳钢拉伸图(2)屈服极限的测定:随着荷载的增加,变形也与荷载呈正比增加,P-ΔL图上为一直线,此即直线弹性段。
过了直线弹性段,尚有一极小的非直线弹性段。
弹性阶段包括直线弹性段和非直线弹性段。
当荷载增加到一定程度,测力指针往回偏转,继而缓慢的来回摆动,相应地在P-ΔL图上画出一段锯齿形曲线,此段即屈服阶段。
实验1_金属材料拉伸实验

实验一金属材料拉伸实验拉伸试验是检验金属材料力学性能普遍采用的一种极为重要的基本试验。
金属的力学性能可用强度极限σb、屈服极限σs、延伸率δ、断面收缩率Ψ和冲击韧度αk五个指标来表示。
它是机械设计的主要依据。
在机械制造和建筑工程等许多领域,有许多机械零件或建筑构件是处于受拉状态,为了保证构件能够正常工作,必须使材料具有足够的抗拉强度,这就需要测定材料的性能指标是否符合要求,其测定方法就是对材料进行拉伸试验,因此,金属材料的拉伸试验及测得的性能指标,是研究金属材料在各种使用条件下,确定其工作可靠性的主要工具之一,是发展新金属材料不可缺少的重要手段,所以拉伸试验是测定材料力学性能的一个基本试验。
一、实验目的1、测定低碳钢在拉伸过程中的几个力学性能指标:屈服极限σs、强度极限σb、延伸率δ、断面收缩率Ψ。
铸铁的σb 。
2、观察低碳钢、铸铁在拉伸过程中的各种现象,绘制拉伸图(P—ΔL图)由此了解试件变形过程中变形随荷载变化规律,以及有关的一些物理现象。
3、观察断口,比较低碳钢和铸铁两种材料的拉伸性能,及断口形貌。
二、实验设备仪器及量具万能材料实验机,引伸仪,划线台,游标卡尺;小直尺。
三、试件金属材料拉伸实验常用圆形试件。
为了使实验测得数据可以互相比较,试件形状尺寸必须按国家标准GB228—76的规定制造成标准试件。
如因材料尺寸限制等特殊情况下不能做成标准试件时,应按规定做成比例试件。
图1为圆形截面标准试件和比例试件的国标规定。
对于板材可制成矩形截面。
园形试件标距L。
和直径之比,长试件为L0/d=10,以δ10表示,短试件为L/d=5以δs表示。
矩形试件截面面积A0和标距L之间关系应为或试件两端为夹持部分,因夹具类形不同,圆形试件端部可做成圆柱形,阶梯形或螺纹形如图1。
四、实验原理1.由材料力学EAFl l =∆ 得到 lAFl E ∆=其中,l 是试样标距,F 是载荷,l ∆是变形量,A 是试样横截面积。
材料拉伸实验

实验一:光滑静态拉伸试验金属材料的拉伸试验是人们应用最广泛的测定其力学性能的方法。
试验时取一定的标准试样,在温度、环境介质、加载速度均为确定条件下将载荷施加于试样两端,使试样在轴向拉应力作用下产生弹性变形、塑性变形、直至断裂。
通过测定载荷和试样尺寸变化可以求出材料的力学性能指标。
一、实验数据分析与处理附表光滑试样拉伸试验数据表1.1光滑钢1.1.1计算机数据图1—1 钢光滑拉伸试验应力~应变曲线图1—2 钢光滑拉伸试验均匀塑性变形阶段lgS~lge的线性拟合2010-4-5 15:43Linear Regression for A0709032_lgS:Y = A + B * XParameter Value Error------------------------------------------------------------A 2.9417 0.00425B 0.2721 0.00386------------------------------------------------------------R SD N P------------------------------------------------------------ 0.99321 0.00788 70 <0.0001经计算得:K=10A=102.9417=874.38MPan=B=0.27211.1.2坐标纸数据图1—3 钢光滑拉伸试验载荷~位移曲线图1—4 钢光滑拉伸试验应力~应变曲线图1—5 钢光滑拉伸试验均匀塑性变形阶段lgS~lge的线性拟合2010-4-6 20:24Linear Regression for Data1_lgs:Y = A + B * XParameter Value Error------------------------------------------------------------A 3.19016 0.05524B 0.6578 0.06625------------------------------------------------------------R SD N P------------------------------------------------------------ 0.95726 0.02645 11 <0.0001经计算得:K=10A=103.19016=1549.39MPan=B=0.65781.2光滑铸铁1.2.1计算机数据图1—6 铸铁光滑拉伸试验应力~应变曲线1.2.2坐标纸数据图1—7 铸铁光滑拉伸试验载荷~位移曲线图1—8 光滑铸铁拉伸试验应力~应变曲线(注:对于光滑铸铁,没有“均匀塑性变形阶段”,所以不能得到K,n值。
实验1-金属材料的拉伸实验

实验一 金属材料的拉伸实验一、试验目的1.测定低碳钢(Q235 钢)的强度性能指标:下屈服强度sL σ(eL R )和抗拉强度b σ(m R )。
2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率δ(A )和断面收缩率ψ(Z )。
3.测定灰铸铁(HT250)的强度性能指标:抗拉强度b σ(m R )。
4.观察、比较低碳钢(Q235 钢)和铸铁两种材料的力学性能、拉伸过程及破坏现象。
5. 学习试验机的使用方法。
二、设备和仪器1.WEW-600B 型电液式万能试验机。
2.游标卡尺、钢板尺三、试样国标GB/T228-2002采用直径d 0=10mm (名义尺寸)的圆形截面长比例试样。
四、实验原理1)低碳钢(Q235 钢)的拉伸实验将试样安装在试验机的上下夹头中,连接试验机和微机的数据线,启动试验机对试样加载,微机自动绘制出载荷位移曲线。
观察试样的受力、变形直至破坏的全过程。
屈服阶段反映在F l -∆曲线图上为一水平波动线。
上屈服力su F 是试样发生屈服而载荷首次下降前的最大载荷。
下屈服力sL F 是试样在屈服期间去除初始瞬时效应(载荷第一次急剧下降)后波动最低点所对应的载荷。
最大力b F 是试样在屈服阶段之后所能承受的最大载荷。
相应的强度指标由以下公式计算:图1-1 试样图1-2 低碳钢的拉伸曲线下屈服强度sL σ(eL R ): sLsL 0F A σ=(1-2 ) 抗拉强度b σ(m R ): bb 0F A σ=(1-3) 测量断后的标距部分长度u l 和颈缩处最小直径d u ,按以下两式计算其主要塑性指标:断后伸长率δ(A ):100%u l l l δ-=⨯ (1-4) 式中0l 为试样原始标距长度,l 为试样断后的标距部分长度。
断面收缩率ψ(Z ):00100%uA A A ψ-=⨯ (1-5) 式中0A 和u A 分别是原始横截面积和断后最小横截面积。
移位法(亦称为补偿法)测定断后的标距部分长度u l 。
实验一 低碳钢拉伸试验

低碳钢拉伸试验姓名:班级:日期:指导老师:一、试验目的1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。
2、测定低碳钢的应变硬化指数和应变硬化系数。
二、试验要求按照相关国标标准(GB/T228-2002:金属材料室温拉伸试验方法)要求完成实验测量工作。
三、试验材料与试样本次试验的三个试样分别为经过退火、正火和淬火三种不同热处理的低碳钢试样。
退火是指将金属或合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
其组织晶粒细小均匀,碳化物呈颗粒状,分布均匀。
正火是指将钢件加热到上临界点(AC3或Acm)以上30—50℃或更高的温度,保温达到完全奥氏体化后,在空气中冷却的热处理工艺。
其组织可能是珠光体、贝氏体、马氏体或它们的混合组织,它的晶粒和碳化物细小(比退火的晶粒更细小),分布均匀。
退火可消除过共析钢的网状二次碳化物。
淬火是指将钢件加热到奥氏体化温度并保持一定时间,然后以大于临界冷却速度冷却,以获得非扩散型转变组织,如马氏体、下贝氏体的热处理工艺。
其组织可能为片状马氏体、板状马氏体、片状下贝氏体或它们的混合组织。
其组织是细小的马氏体及少量残余奥氏体,不存在先共析铁素体。
试样要进行机加工。
平行长度和夹持头部之间应以过渡弧连接,试样头部形状应适合于试验机夹头的夹持。
夹持端和平行长度之间的过渡弧的半径应为:≥0.75d即7.5mm。
本次试验采用的试样编号为R4,直径是10 mm,原始标距为50mm,平行长度Le≥55mm。
试样的精度要求包括①直径的尺寸公差为±0.07mm②形状公差即沿试样的平行长度的最大直径与最小直径之差不应超过0.04mm。
四、实验测量工具、仪器与设备根据国标要求,对于比例试样,应将原始标距的计算值修月之最接近5mm 的倍数,中间数值向较大一方修约,原始标距的标记应准确到±1%,即±0.5mm。
测量原始直径的分辨率不大于0.05mm。
试验1高分子材料拉伸强度及断裂伸长率测定

实验1 高分子材料拉伸强度及断裂伸长率测定一、实验目的通过实验了解聚合物材料应力—应变曲线特点、试验速度对应力—应变曲线的影响、拉伸强度及断裂伸长率的意义,熟悉它们的测试方法;并通过测试应力—应变曲线来判断不同聚合物的力学性能。
二、实验原理为了评价聚合物材料的力学性能,通常用等速施力下所获得的应力—应变曲线来进行描述。
所谓应力是指拉伸力引起的在试样内部单位截面上产生的内力;而应变是指试样在外力作用下发生形变时,相对其原尺寸的相对形变量。
不同种类聚合物有不同的应力—应变曲线。
等速条件下,无定形聚合物典型的应力—应变曲线如图1所示。
图中的α点为弹性极限,σα为弹性(比例)极限强度,εα为弹性极限伸长。
在α点前,应力—应变服从虎克定律:σ=Έε式中σ——应力,MPa;ε——应变,%;Ε——弹性(杨氏)模量(曲线的斜率),MP 。
曲线斜率E反映材料的硬性。
Y称屈服点,对应的σy和εy称屈服强度和屈服伸长。
材料屈服后,可在t点处,也可在t′点处断裂。
因而视情况,材料断裂强度可大于或小于屈服强度。
εt(或εt′)称断裂伸长率,反映材料的延伸性。
从曲线的形状以及σt和εt的大小,可以看出材料的性能,并借以判断它的应用范围。
如从σt的大小,可以判断材料的强与弱;而从εt的大小,更正确地讲是从曲线下的面积大小,可判断材料的脆性与韧性。
从微观结构看,在外力的作用下,聚合物产生大分子链的运动,包括分子内的键长、键角变化,分子链段的运动,以及分子间的相对位移。
沿力方向的整体运动(伸长)是通过上述各种运动来达到的。
由键长、键角产生的形变较小(普弹形变),而链段运动和分子间的相对位移(塑性流动)产生的形变较大。
材料在拉伸到破坏时,链段运动或分子位移基本上仍不能发生,或只是很小,此时材料就脆。
若达到一定负荷,可以克服链段运动及分子位移所需要的能量,这些运动就能发生,形变就大,材料就韧。
如果要使材料产生链段运动用分子位移所需要的负荷较大,材料就较强及硬。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆 弧同 步带
张 紧轮
电机
减速 器
丝杠下端上装有圆弧 同步带轮,经减速器、 电机传动而带动移动 横梁移动。主机左侧 设有移动横梁保护机 构,可防止移动横梁 移动超过上下极限位 置造成机械事故,也 可以使移动横梁停止 在预定位置。
l 0 5d 0
三、拉伸试件 为比较不同材料的试验结果,对试样形状、加工精度、 加载速度、试验环境,国家标准《金属拉伸试验方法》 (GB228-87)有统一规定,按照国标,做成标准试件。 圆截面试件
标距与直径的比例为:
l 0 5d 0
l 0 10d 0
对于板的材料拉伸实验,按国家标准做成矩形截面试件。
截面面积和试件标距关系为:
l 0 5.65 A 0
l 0 11.3 A0
四、实验原理 1.夹头形式 圆形和矩形截面试件所用夹板分别如图1—3(a)(b) 夹板表面制成凸纹, 以夹牢试件。
4.清零及实验条件设定: (1)录入试样:单击主菜单上〖试样〗,选择试 验材料、试验方法、试样形状,输入试验编号、 试件原始尺寸。 (2)实验参数设定:单击主菜单上〖参数设置〗, 设定初始试验力值、横梁移动速度(1~3mm/min) 与移动方向(向下)、试验结束条件等参数。 (3)清零:单击主菜单上的〖位移清零〗、〖变 形清零〗、〖试验力清零〗,进行清零。
2.拉伸曲线 屈服极限
F
D
s Fs / A
强度极限
B C A B
E
FS
Fb
b Fb / A
O
L 低碳钢试件的拉伸曲线
F
强度极限
Fb
b Fb / A
O
L
铸铁试件的拉伸曲线
五、实验步骤 1.试件的准备: 在试件中段取标距 l0 10d 0 或 l 5d ,在标距两端做好标 0 0 记。
• 3.观察低碳钢和铸铁在拉伸过程中的各种现象,绘制拉 伸曲线。
• 4.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。
二、实验设备和工具 1.WDW3200型微机控制电子 万能试验机 2.刻线机 3.游标卡尺
上 横梁 立柱 移动 横梁
万能试验机的工作原理:
滚 珠丝 杠杆
双 向推 力球 轴承 台面 深沟 球轴 承
四、实验原理 F 1.低碳钢的压缩曲线 压缩过程中产生屈服以前的 基本情况与拉伸时相同,载 荷到达B点时,实验力值不变 FS 或下降,材料产生屈服,当 载荷超过B点后,塑性变形逐 渐增加,试件横截面积逐渐 O 增大,试件最后被压成鼓形 而不断裂,只能测出产生屈 服时的载荷 FS,由 S FS / A0 得出材料受压时的屈服极限。
六、实验结果处理 1.根据测得的屈服载荷 FS 和最大载荷 Fb ,计算屈 服极限 S 和强度极限 b ,铸铁不存在屈服阶段只计 算强度极限 b 。 2.根据拉伸前后试件的标距长度和横截面面积,计算 出低碳钢的延伸率 和截面收缩率 。
3.画出试件的破坏形状图,并分析其破坏原因。 4.按规定格式写出实验报告。报告中各类表格、曲线、 简图和原始数据应齐全。
实验二
一、目的与要求
压缩实验
• 1.测定压缩时低碳钢的屈服极限 s 和铸铁的强度极 限 b 。
• 2.观察两种材料压缩时的变形和破坏现象,比较和分 析原因。
二、实验设备和工具 1.WDW3200型微机控制电子万能试验机
2.游标卡尺
三、压缩试件 试件受压时,两端面与试验机垫板间 的摩擦力约束试件的横向变形,影响试 件的强度,随着比值h0/d0的增加,上述 摩擦力对试件中部的影响减弱。但比值 h0/d0也不能过大,否则将引起失稳。一 般要求 1 h0 / d 0 3 。
对低碳钢试件,用刻线机在标距长度内每隔 10mm画一圆 周线,将标距10等分或5等分,为断口位置的补偿作准 备。用游标卡尺在标距线附近及中间各取一截面,每个 截面沿互相垂直的两个方向各测一次直径取平均值,取 这三处截面直径的最小值d0作为计算试件横截面面积A0 的依据。
2.试验机的准备:首先了解电子万能试验机的基本 构造原理,学习试验机的操作规程。 (1)旋开钥匙开关,启动试验机。第一步:连接好试 验机电源线及各通讯线缆;第二步:打开空气开关; 第三步:打开钥匙开关。 (2)连接试验机与计算机。打开计算机显示器与主机, 运行实验程序,进入实验主界面,单击主菜单上“联 机”,连接试验机与计算机。 3.安装试件:根据试件形状和尺寸选择合适的夹头, 先将试件安装在下夹头上,移动横梁调整夹头间距,将 试件另一端装入上夹头夹紧。缓慢加载,观察微机实验 主界面上实验力的情况,以检查试件是否已夹牢,如有 打滑则需重新安装。
七、实验报告
试件形状和尺寸
实验数据及计算结果
计算公式:
FS S A0
Fb b A0
A1 A0 100% A0
L1 L0 100% L0
八、思考题 1.参考低碳钢拉伸图,分段回答力与变形的关系以及 在实验中反映出的现象。 2.由低碳钢、铸铁的拉伸图和试件断口形状及其测试 结果,回答二者机械性能有什么不同。 3.回忆本次实验过程,你从中学到了哪些知识?
5.进行实验:选定曲线显示类型为“负荷-位移曲线” (不接引伸计)或“负荷-变形曲线”(接引伸计), 单击主菜单上的〖试验开始〗,进行实验,实验过程中 注意观察曲线的变化情况与试件的各种物理现象。 6.实验结束:当试件被拉断或达到设定结束条件时,单 击主菜单上的〖试验结束〗,结束实验。 7.保存结果:单击主菜单上的〖数据管理〗,进入下一 级界面,单击〖输出〗,得到EXCEL形式的数据文件,输 入文件名,以‘另存’方式建立拉伸曲线数据文件。 8.实验完毕,取下试件,退出实验程序,仪器设备恢复 原状,关闭电源,清理现场。检查实验记录是否齐全, 并请指导教师签字。
材料力学实验
指导教三
拉伸实验
压缩实验 纯弯曲梁的正应力实验
实验四
弯扭组合应力测定实验
实验一
一、目的与要求
拉伸实验
• 1.了解电子万能试验机的工作原理,熟悉其操作规程和 正确的使用方法。 • 2.测定低碳钢的屈服极限 s、强度极限 b 、延伸 率 、截面收缩率 和铸铁的强度极限 b 。