2020-2021昆明市云大附中九年级数学上期末第一次模拟试卷(带答案)

合集下载

2020-2021初三数学上期末第一次模拟试卷及答案

2020-2021初三数学上期末第一次模拟试卷及答案

2020-2021初三数学上期末第一次模拟试卷及答案一、选择题1.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤2.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540 D .(32﹣x )(20﹣x )+x 2=5403.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( )A .16(1+2x)=25B .25(1-2x)=16C .25(1-x)²=16D .16(1+x)²=25 4.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°5.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .126.关于下列二次函数图象之间的变换,叙述错误的是( ) A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象 B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象 C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象 7.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )A .15B .18C .20D .248.以394cx ±+=为根的一元二次方程可能是( ) A .230x x c --=B .230x x c +-=C .230-+=x x cD .230++=x x c9.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x 1.1 1.2 1.3 1.4 1.5 1.6 y﹣1.59﹣1.16﹣0.71﹣0.240.250.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( ) A .1.2<x <1.3 B .1.3<x <1.4 C .1.4<x <1.5 D .1.5<x <1.6 10.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36°B .54°C .72°D .108°11.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 212.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒二、填空题13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为________个.14.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________. 15.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB V 连续作旋转变换,依次得到1234V V V V 、、、,则2019V 的直角顶点的坐标为__________.16.如图,抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为__________.17.如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 长为半径画»AC,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 1﹣S 2的值为_____.(结果保留π)18.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.19.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.20.若二次函数y=x2﹣3x+3﹣m的图象经过原点,则m=_____.三、解答题21.有四张完全相同的卡片,正面分别写有四个角度现将这四张卡片洗匀后,背面朝上;(1)若从中任意抽取一张,求抽到锐角卡片的概率;(2)若从中任意抽取两张,求抽到两张角度恰好互余卡片的概率;22.在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.23.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率mn0.680.740.680.690.680.70(结果保留小数点后两位)(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.24.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题(1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人?(3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A,B两球分在同一组的概率.25.已知关于x的一元二次方程x2+(m+3)x+m+2=0.(1)求证:无论m取何值,原方程总有两个实数根;(2)若x1,x2是原方程的两根,且x12+x22=2,求m的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所给结论进行判断即可.【详解】Q ①对称轴在y 轴的右侧,ab 0∴<,由图象可知:c 0>,abc 0∴<,故①不正确;②当x 1=-时,y a b c 0=-+<, b a c ∴->,故②正确;③由对称知,当x 2=时,函数值大于0,即y 4a 2b c 0=++>,故③正确;bx 12a=-=Q ④, b 2a ∴=-, a b c 0-+<Q , a 2a c 0∴++<, 3a c <-,故④不正确;⑤当x 1=时,y 的值最大.此时,y a b c =++,而当x m =时,2y am bm c =++, 所以()2a b c am bm c m 1++>++≠,故2a b am bm +>+,即()a b m am b +>+,故⑤正确, 故②③⑤正确, 故选B . 【点睛】本题考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,熟练掌握二次函数的性质是关键.2.B解析:B 【解析】 【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x , 根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.3.C解析:C【解析】解:第一次降价后的价格为:25×(1﹣x),第二次降价后的价格为:25×(1﹣x)2.∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选C.4.C解析:C【解析】试题分析:如图,连接OC.∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.【考点】圆周角定理.5.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.6.D解析:D【解析】【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解.【详解】A选项,将y=﹣2x2+1的图象向下平移3个单位得到y=﹣2x2﹣2的图象,故A选项不符合题意;B选项,将y=﹣2(x﹣1)2的图象向左平移3个单位得到y=﹣2(x+2)2的图象,故B选项不符合题意;C选项,将y=﹣2x2的图象沿x轴翻折得到y=2x2的图象,故C选项不符合题意;D选项,将y=﹣2(x﹣1)2+1的图象沿y轴翻折得到y=﹣2(x+1)2+1的图象,故D选项符合题意.故选D.【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.7.C解析:C【解析】【分析】连结AC,先由△AGH≌△ADH得到∠GHA=∠AHD,进而得到∠AHD=∠HAP,所以△AHP是等腰三角形,所以PH=PA=PC,所以∠HAC是直角,再在Rt△ABC中由勾股定理求出AC的长,然后由△HAC∽△ADC,根据=求出AH的长,再根据△HAC∽△HDA求出DH的长,进而求得HP和AP的长,最后得到△APH的周长.【详解】∵P是CH的中点,PH=PC,∵AH=AH,AG=AD,且AGH与ADH都是直角,∴△AGH ≌△ADH ,∴∠GHA =∠AHD ,又∵GHA =HAP ,∴∠AHD =∠HAP ,∴△AHP 是等腰三角形,∴PH =PA =PC ,∴∠HAC 是直角,在Rt △ABC 中,AC ==10,∵△HAC ∽△ADC ,∴=,∴AH ===7.5,又∵△HAC ∽△HAD ,=,∴DH =4.5,∴HP ==6.25,AP =HP =6.25,∴△APH 的周长=AP +PH +AH =6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.8.A解析:A 【解析】 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】设x 1,x 2是一元二次方程的两个根, ∵394cx ±+=∴x 1+x 2=3,x 1∙x 2=-c ,∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=故选A. 【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.9.C解析:C 【解析】 【分析】仔细看表,可发现y 的值-0.24和0.25最接近0,再看对应的x 的值即可得. 【详解】解:由表可以看出,当x 取1.4与1.5之间的某个数时,y=0,即这个数是ax 2+bx+c=0的一个根.ax 2+bx+c=0的一个解x 的取值范围为1.4<x <1.5. 故选C . 【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.10.C解析:C【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度,故选C.11.D解析:D【解析】【分析】抛物线的形状只是与a有关,a相等,形状就相同.【详解】y=2(x﹣1)2+3中,a=2.故选D.【点睛】本题考查了抛物线的形状与a的关系,比较简单.12.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得A CO∠'的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.二、填空题13.25【解析】【分析】【详解】试题分析:根据实验结果估计袋中小球总数是10÷=35个所以袋中红球约为35-10=25个考点:简单事件的频率【解析】 【分析】 【详解】试题分析:根据实验结果估计袋中小球总数是10÷27=35个,所以袋中红球约为35-10=25个.考点:简单事件的频率.14.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:15 【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15. 点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.15.【解析】【分析】根据勾股定理列式求出AB 的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第201 解析:()8076,0【解析】 【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可. 【详解】解:∵点A (-3,0)、B (0,4),∴,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, ∵2019÷3=673, ∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点, ∵673×12=8076, ∴△2019的直角顶点的坐标为(8076,0). 故答案为(8076,0).本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.16.(0)【解析】∵抛物线的对称轴为点P 点Q 是抛物线与x 轴的两个交点∴点P 和点Q 关于直线对称又∵点P 的坐标为(40)∴点Q 的坐标为(-20)故答案为(-20)解析:(2-,0) 【解析】∵抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点, ∴点P 和点Q 关于直线1x =对称, 又∵点P 的坐标为(4,0), ∴点Q 的坐标为(-2,0). 故答案为(-2,0).17.π【解析】【分析】如图设图中③的面积为S3构建方程组即可解决问题【详解】解:如图设图中③的面积为S3由题意:可得S1﹣S2=π故答案为π【点睛】本题考查扇形的面积正方形的性质等知识解题的关键是学会利解析:12π 【解析】 【分析】如图,设图中③的面积为S 3.构建方程组即可解决问题. 【详解】解:如图,设图中③的面积为S 3.由题意:2132231··241··12S S S S ππ⎧+=⎪⎪⎨⎪+=⎪⎩,可得S 1﹣S 2=12π, 故答案为12π.本题考查扇形的面积、正方形的性质等知识,解题的关键是学会利用参数构建方程组解决问题.18.k <2且k≠1【解析】试题解析:∵关于x 的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k-1≠0且△=(-2)2-4(k-1)>0解得:k <2且k≠1考点:1根的判别式;2一元二次解析:k <2且k≠1 【解析】试题解析:∵关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根, ∴k-1≠0且△=(-2)2-4(k-1)>0, 解得:k <2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.19.4【解析】【分析】由a+b2=2得出b2=2-a 代入a2+5b2得出a2+5b2=a2+5(2-a )=a2-5a+10再利用配方法化成a2+5b2=(a-即可求出其最小值【详解】∵a+b2=2∴b2解析:4 【解析】 【分析】由a+b 2=2得出b 2=2-a ,代入a 2+5b 2得出a 2+5b 2=a 2+5(2-a )=a 2-5a+10,再利用配方法化成a 2+5b 2=(a-2515)24+,即可求出其最小值. 【详解】 ∵a+b 2=2, ∴b 2=2-a ,a≤2,∴a 2+5b 2=a 2+5(2-a )=a 2-5a+10=(a-2515)24+, 当a=2时,a 2+b 2可取得最小值为4. 故答案是:4. 【点睛】考查了二次函数的最值,解题关键是根据题意得出a 2+5b 2=(a-2515)24+. 20.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m 求得m 的值即可【详解】由于二次函数y=x2-3x+3-m 的图象经过原点把(00)代入y=x2-3x+3-m 得:3-m=0解得:m=解析:【解析】 【分析】此题可以将原点坐标(0,0)代入y=x 2-3x+3-m ,求得m 的值即可. 【详解】由于二次函数y=x2-3x+3-m的图象经过原点,把(0,0)代入y=x2-3x+3-m,得:3-m=0,解得:m=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解.三、解答题21.(1)34;(2)16【解析】【分析】(1)利用四张卡片有三张锐角卡片即可得出答案;(2)利用列表法得出多少可能结果,找到两张角度恰好互余卡片的可能结果即可得出答案.【详解】解:(1)一共有四张卡片,其中写有锐角的卡片有三张,因此P(抽到写有锐角卡片)3 4 =(2)列表如下:所以(抽到两张角度恰好互余卡片)1 6 =【点睛】本题考查了概率的求法,根据题意得出总数与可能的结果数是解题的关键.22.(1)13;(2)16.【解析】【分析】(1)由题意直接利用概率公式求解即可求得答案;(2)根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中小敏、小洁两位同学的情况,再利用概率公式求解即可求得答案. 【详解】解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P (恰好选中小丽)=13; (2)列表如下:所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P (小敏,小洁)=212=16. 【点睛】本题考查列表法与树状图法.23.(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36 【解析】 【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n+4000×0.5(1-360n)=3000,然后解方程即可. 【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7; 故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000, 所以该商场每天大致需要支出的奖品费用为5000元; (3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1﹣360n)=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度. 故答案为36. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.24.(1)详见解析;(2)280人;(3).【解析】【分析】(1) 由总人数以及条形统计图求出喜欢“豆腐干” 的人数,补全条形统计图即可;(2) 求出喜欢“笋干”的百分比, 乘以1000即可得到结果;(3) 列表得出所有等可能的情况数, 找出A,B两球分在同一组的情况数, 即可求出所求的概率.【详解】解:(1)喜爱豆腐干的人数为50﹣14﹣21﹣5=10,条形图如图所示:(2)根据题意得:1000××100%=280(人),所以估计全校同学中最喜爱“笋干”的同学有280人.(3)列表如下:A B C DA A,B A,C A,DB B,A B,C B,DC C,A C,B C,DD D,A D,B D,C∴A、B两球分在同一组的概率为=.【点睛】本题主要考查条形统计图、用样本估计总体及列表法或树状图求概率.25.(1)详见解析;(2)m=﹣3或m=﹣1【解析】【分析】(1)根据根的判别式即可求出答案.(2)利用跟与系数的关系可以得到如果把所求代数式利用完全平方公式变形,结合前面的等式即可解答.【详解】解:(1)证明:∵△=(m+3)2﹣4(m+2)=(m+1)2,∵无论m取何值,(m+1)2≥0,∴原方程总有两个实数根.(2)∵x1,x2是原方程的两根,∴x1+x2=﹣(m+3),x1x2=m+2,∵x12+x22=2,∴(x1+x2)2﹣2x1x2=2,∴代入化简可得:m2+4m+3=0,解得:m=﹣3或m=﹣1【点睛】此题考查根与系数的关系,根的判别式,解题的关键是熟练运用根与系数的关系,本题属于基础题型.。

2020-2021九年级数学上期末一模试题附答案(1)

2020-2021九年级数学上期末一模试题附答案(1)
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
23.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y与销售单价x之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
一、选择题
1.D
解析:D
【解析】
【分析】
根据二次项系数非零及根的判别式列出关于m的一元一次不等式组,然后方程组即可.
【详解】
解:∵(m-3)x2-4x-2=0是关于x的方程有两个不相等的实数根,

解得:m>1且m≠3.
故答案为D.
【点睛】
本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.
2.D
解析:D
【解析】
【分析】
将 化简可得, ,
利用韦达定理, ,解得,k=±2,由题意可知△>0,
可得k=2符合题意.
【详解】
解:由韦达定理,得:
=k-1, ,
由 ,得:

即 ,
所以, ,
化简,得: ,
解得:k=±2,
因为关于x的一元二次方程 有两个实数根,
所以,△= = 〉0,
k=-2不符合,
所以,k=2
三、解答题
21.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;

2020-2021九年级数学上期末第一次模拟试题带答案(1)

2020-2021九年级数学上期末第一次模拟试题带答案(1)

2020-2021九年级数学上期末第一次模拟试题带答案(1)一、选择题1.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒2.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .23.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣14.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个5.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等6.将抛物线y=2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y=2(x ﹣3)2﹣5B .y=2(x+3)2+5C .y=2(x ﹣3)2+5D .y=2(x+3)2﹣57.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( ) A .59B .49C .56D .138.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .459.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( ) A .4B .5C .6D .710.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >411.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( ) A .74-B .3或3-C .2或3-D .2或3-或74-12.如图,AB 为⊙O 的直径,四边形ABCD 为⊙O 的内接四边形,点P 在BA 的延长线上,PD 与⊙O 相切,D 为切点,若∠BCD =125°,则∠ADP 的大小为( )A .25°B .40°C .35°D .30°二、填空题13.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.14.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是_________.(写出所有正确结论的序号)①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.15.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.16.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是_____cm2.17.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米精确到1米18.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路3035t≤≤3540t<≤4045t<≤4550t<≤合计A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.19.一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),则x1﹣x2=_____.20.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s =60t﹣1.5t2,飞机着陆后滑行_____米才能停下来.三、解答题21.已知二次函数2y x bx c =++(b ,c 为常数). (1)当2b =,3c =-时,求二次函数的最小值;(2)当5c =时,若在函数值1y =的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(3)当2c b =时,若在自变量x 的值满足b ≤x ≤3b +的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.22.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______; (2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.23.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y (吨)与销售价x (万元)之间的函数关系为y =-x +2.6 (1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?24.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE . (Ⅰ)求证:∠A =∠EBC ;(Ⅱ)若已知旋转角为50°,∠ACE =130°,求∠CED 和∠BDE 的度数.25.如图,某足球运动员站在点O 处练习射门.将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y (单位:m )与飞行时间t (单位:s )之间满足函数关系y =at 2+5t +c ,己知足球飞行0.8s 时,离地面的高度为3.5m . (1)a = ,c = ;(2)当足球飞行的时间为多少时,足球离地面最高?最大高度是多少?(3)若足球飞行的水平距离x (单位:m )与飞行时间t (单位:s )之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数. 【详解】 ∵35C ∠=︒∴35BAD C =∠=︒∠ ∵AB 是圆O 的直径 ∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠ 故答案为:A .本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.2.D解析:D 【解析】 【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--,利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意. 【详解】解:由韦达定理,得:12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--, 所以,()2142(2)3k k ----+=-, 化简,得:24k =, 解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根, 所以,△=()214(2)k k ---+=227k k +-〉0, k =-2不符合, 所以,k =2 故选:D. 【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.3.B解析:B 【解析】 【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1, 故选B .二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.4.B解析:B 【解析】 【分析】 【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x =﹣2ba=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.5.A解析:A 【解析】选项A ,经过不在同一直线上的三个点可以作圆;选项B ,经过切点且垂直于切线的直线必经过圆心,正确;选项C ,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D ,三角形的外心到三角形各顶点的距离相等,正确;故选A.6.A解析:A 【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .7.B解析:B【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.8.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.9.B解析:B【解析】【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤193且a≠6,然后找出此范围内的最大整数即可.【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a≤193且a≠6,所以整数a的最大值为5.故选B.本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.10.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.11.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=74,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣故选C.12.C解析:C【解析】【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.二、填空题13.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410) (510) (610) (810) (910) (109) (4解析:7 15.【解析】【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可.【详解】解:从6张牌中任意抽两张可能的情况有:(4,10)(5,10)(6,10)(8,10)(9,10)(10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8) (4,8)(5,8)(6,8)(8,6)(9,6)(10,6) (4,6)(5,6)(6,5)(8,5)(9,5)(10,5) (4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个,∴点数和是偶数的概率是147 3015;故答案为715. 【点睛】本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.14.③④【解析】【分析】①首先根据抛物线开口向上可得a >0;然后根据对称轴为x=﹣>0可得b <0据此判断即可②根据抛物线y=ax2+bx+c 的图象可得x=﹣1时y >0即a ﹣b+c >0据此判断即可③首先判解析:③④ 【解析】 【分析】①首先根据抛物线开口向上,可得a >0;然后根据对称轴为x=﹣2ba>0,可得b <0,据此判断即可.②根据抛物线y=ax 2+bx+c 的图象,可得x=﹣1时,y >0,即a ﹣b+c >0,据此判断即可. ③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是2424ac b a-=-,判断出c=﹣1时,a 、b 的关系即可.【详解】解:∵抛物线开口向上,∴a >0,又∵对称轴为x=﹣2ba>0,∴b <0,∴结论①不正确; ∵x=﹣1时,y >0,∴a ﹣b+c >0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax 2+bx+c 的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确; ∵2424ac b a-=-,c=﹣1,∴b 2=4a ,∴结论④正确.故答案为:③④. 【点睛】本题考查二次函数图象与几何变换;二次函数图象与系数的关系.15.相离【解析】r=2d=3则直线l 与⊙O 的位置关系是相离解析:相离 【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离16.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6π【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴135180Rπ⨯=3π,解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm2),故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.17.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:18.C【解析】分析:样本容量相同观察统计表可以看出C线路上的公交车用时超过分钟的频数最小即可得出结论详解:样本容量相同C线路上的公交车用时超过分钟的频数最小所以其频率也最小故答案为C点睛:考查用频率估计解析:C【解析】分析:样本容量相同,观察统计表,可以看出C线路上的公交车用时超过45分钟的频数最小,即可得出结论.详解:样本容量相同,C线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故答案为C.点睛:考查用频率估计概率,读懂统计表是解题的关键.19.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x ﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4 【解析】 【分析】利用根与系数的关系求出所求即可.此题也可解出x 的值,直接计算. 【详解】∵一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),∴x 1+x 2=2,x 1x 2=﹣3,则x 1﹣x 2=﹣=﹣=﹣4.故答案为﹣4. 【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.20.600【解析】【分析】将函数解析式配方成顶点式求出s 的最大值即可得【详解】∵s =60t ﹣15t2=﹣t2+60t =﹣(t ﹣20)2+600∴当t =20时s 取得最大值600即飞机着陆后滑行600米才能解析:600 【解析】 【分析】将函数解析式配方成顶点式求出s 的最大值即可得. 【详解】 ∵s =60t ﹣1.5t 2, =﹣32t 2+60t , =﹣32(t ﹣20)2+600, ∴当t =20时,s 取得最大值600,即飞机着陆后滑行600米才能停下来, 故答案为:600. 【点睛】此题考查二次函数解析式的配方法,利用配方法将函数解析式化为顶点式由此得到函数的最值是一种很重要的解题方法.三、解答题21.(1)二次函数取得最小值-4;(2)245y x x =++或245y x x =-+;(3)277y x x =++或2416y x x =-+.【解析】 【分析】(1)当b=2,c=-3时,二次函数的解析式为223y x x =+-,把这个解析式化为顶点式利用二次函数的性质即可求最小值.(2)当c=5时,二次函数的解析式为25y x bx =++,又因函数值y=1的情况下,只有一个自变量x 的值与其对应,说明方程251x bx ++=有两个相等的实数根,利用0∆=即可解得b 值,从而求得函数解析式.(3)当c=b 2时,二次函数的解析式为22y x bx b =++,它的图象是开口向上,对称轴为2bx =-的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即2b -<b ;②对称轴位于b≤x≤b+3这个范围时,即b≤2b-≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即2b->b+3,根据列出的不等式求得b 的取值范围,再根据x 的取值范围b≤x≤b+3、函数的增减性及对应的函数值y 的最小值为21可列方程求b 的值(不合题意的舍去),求得b 的值代入也就求得了函数的表达式. 【详解】解:(1)当b=2,c=-3时,二次函数的解析式为223y x x =+-,即2y (x 1)4=+-.∴当x=-1时,二次函数取得最小值-4.(2)当c=5时,二次函数的解析式为25y x bx =++.由题意得,方程251x bx ++=有两个相等的实数根. 有2160b ∆=-=,解得124,4b b ==-,∴此时二次函数的解析式为245y x x =++或245y x x =-+.(3)当c=b 2时,二次函数的解析式为22y x bx b =++.它的图象是开口向上,对称轴为2bx =-的抛物线. ①若2b-<b 时,即b >0, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而增大, 故当x=b 时,2223y b b b b b =+⋅+=为最小值.∴2321b =,解得1b =2b =(舍去). ②若b≤2b-≤b+3,即-2≤b≤0, 当x=2b -时,2223224b b y b b b ⎛⎫⎛⎫=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭为最小值.∴23214b =,解得1b =(舍去),2b =- ③若2b->b+3,即b <-2, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而减小,故当x=b+3时,222(3)(3)399y b b b b b b =++++=++为最小值. ∴239921b b ++=,即2340b b +-= 解得11b =(舍去),24b =-. 综上所述,7b =或b=-4.∴此时二次函数的解析式为277y x x =++或2416y x x =-+. 考点:二次函数的综合题.22.(1)60,10;(2)96°;(3)1020;(4)23【解析】 【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案; (4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可. 【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020; (4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.23.(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【解析】【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,令w=0.96,则-x2+3x-1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.24.(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35°【解析】【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=180ACD2︒-∠,∠CBE=180BCE2︒-∠,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE ∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE =80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等. 25.(1)2516-,12;(2)当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ;(3)能. 【解析】 【分析】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5),代入函数的表达式即可求出a ,c 的值;(2)利用配方法即可求出足球飞行的时间以及足球离地面的最大高度;(3)把x =28代入x =10t 得t =2.8,把t =2.8代入解析式求出y 的值和2.44m 比较大小即可得到结论. 【详解】(1)由题意得:函数y =at 2+5t +c 的图象经过(0,0.5)(0.8,3.5), ∴20.53.50.850.8ca c =⎧⎨=+⨯+⎩, 解得:251612a c ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的解析式为:y =﹣2516t 2+5t +12,故答案为:﹣2516,12; (2)∵y =﹣2516t 2+5t +12,∴y =﹣2516(t ﹣85)2+92, ∴当t =85时,y 最大=4.5, ∴当足球飞行的时间85s 时,足球离地面最高,最大高度是4.5m ; (3)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =﹣2516×2.82+5×2.8+12=2.25<2.44, ∴他能将球直接射入球门. 【点睛】本题考查了待定系数法求二次函数的解析式,以及二次函数的应用,正确求得解析式是解。

2020-2021九年级数学上期末第一次模拟试卷及答案(1)

2020-2021九年级数学上期末第一次模拟试卷及答案(1)

2020-2021九年级数学上期末第一次模拟试卷及答案(1)一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在的圆的圆心为图中的( )A .MB .PC .QD .R2.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .3.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和c y x=的图象为( )A .B .C .D .4.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°5.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( ) A .13 B .14 C .15 D .166.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,17.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .8 8.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( ) A .3 B .3- C .9 D .9-9.若20a ab -=(b ≠0),则a ab +=( ) A .0 B .12 C .0或12 D .1或 210.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36° B .54° C .72° D .108°11.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒ 12.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .3二、填空题13.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.14.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.15.心理学家发现:学生对概念的接受能力y 与提出概念的时间x (分)之间的关系式为y=﹣0.1x 2+2.6x+43(0≤x≤30),若要达到最强接受能力59.9,则需________ 分钟.16.已知二次函数,当x _______________时,随的增大而减小. 17.抛物线21(2)43y x =++关于x 轴对称的抛物线的解析式为_______ 18.在一空旷场地上设计一落地为矩形ABCD 的小屋,AB +BC =10m ,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S (m 2).(1)如图1,若BC =4m ,则S =_____m 2.(2)如图2,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为____m .19.已知在同一坐标系中,抛物线y 1=ax 2的开口向上,且它的开口比抛物线y 2=3x 2+2的开口小,请你写出一个满足条件的a 值:_____.20.如图,在平面直角坐标系中,二次函数y=ax 2+c (a≠0)的图象过正方形ABOC 的三个顶点A ,B ,C ,则ac 的值是________.三、解答题21.若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为a 、十位上的数字为b ,三位数t 是“差数”,我们就记:()()F t b a b =⨯-,其中,19a ≤≤,09b ≤≤.例如三位数514.∵514-=,∴514是“差数”,∴()()5141514F =⨯-=.F m=,求m的(1)已知一个三位数m的百位上的数字是6,若m是“差数”,()9值;(2)求出小于300的所有“差数”的和,若这个和为n,请判断n是不是“差数”,若F n;若不是,请说明理由.是,请求出()22.如图,在⊙O中,点C为»AB的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.23.石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.24.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.25.已知关于x的一元二次方程x2+(m+3)x+m+2=0.(1)求证:无论m取何值,原方程总有两个实数根;(2)若x1,x2是原方程的两根,且x12+x22=2,求m的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.3.C解析:C【解析】【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线cyx=在二、四象限.【详解】根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线cyx=在二、四象限,∴C是正确的.故选C.【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.解析:A【解析】【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=由于COP ∆为直角三角形所以可得905832P ︒︒︒∠=-=故选A.【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.5.A解析:A【解析】【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是2163=.故选A .【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程. 7.A解析:A【解析】【分析】【详解】解:连接OA ,OC ,过点O 作OD ⊥AC 于点D ,∵∠AOC=2∠B ,且∠AOD=∠COD=12∠AOC , ∴∠COD=∠B=60°; 在Rt △COD 中,OC=4,∠COD=60°,∴CD=2,∴.故选A .【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.8.C解析:C【解析】由题意得:2a 2-a-3=0,所以2a 2-a=3,所以6a 2-3a=3(2a 2-a)=3×3=9, 故选C.9.C解析:C【解析】【分析】【详解】解:∵20a ab -= ()0b ≠,∴a(a-b)=0,∴a=0,b=a .当a=0时,原式=0;当b=a 时,原式=12,故选C 10.C解析:C【解析】 正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度, 故选C . 11.D解析:D【解析】【分析】根据旋转的性质可得∠B ′=∠B =30°,∠BOB ′=52°,再由三角形外角的性质即可求得A CO ∠'的度数.【详解】∵△A ′OB ′是由△AOB 绕点O 顺时针旋转得到,∠B =30°,∴∠B ′=∠B =30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.12.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】连接OC,∵CD⊥AB,CD=8,∴PC=12CD=12×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP-OA=8-x,∴OC2=PC2+OP2,即x2=42+(8-x)2,解得x=5,∴⊙O的直径为10.故选A.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题13.1250cm2【解析】【分析】设将铁丝分成xcm和(200﹣x)cm两部分则两个正方形的边长分别是cmcm再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm和(200﹣x)cm两部分列二次解析:1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.14.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二解析:(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差,据此即可列出方程.【详解】根据题意得:(x+1) 2 -1=24,即:(x+1) 2 =25.故答案为(x+1) 2 =25.【点睛】本题考查了一元二次方程的应用——图形问题,解题的关键是明确图中不规则图形的面积计算方法.15.13【解析】【分析】直接代入求值即可【详解】试题解析:把y=599代入y=﹣01x2+26x+43得599=-01x2+26x+43解得:x1=x2=13分钟即学生对概念的接受能力达到599时需要1 解析:13【解析】【分析】直接代入求值即可.试题解析:把y=59.9代入y=﹣0.1x 2+2.6x+43得,59.9=-0.1x 2+2.6x+43解得:x 1=x 2=13分钟.即学生对概念的接受能力达到59.9时需要13分钟.故答案为:13.考点:二次函数的应用.16.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质17.【解析】【分析】由关于x 轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x 轴对称的抛物线解析式【详解】∵∴关于x 轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何 解析:()21243y x =-+- 【解析】【分析】由关于x 轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线21(2)43y x =++关于x 轴对称的抛物线解析式. 【详解】 ∵21(2)43y x =++, ∴关于x 轴对称的抛物线解析式为-21(2)43y x =++,即()21243y x =-+-, 故答案为:()21243y x =-+-. 【点睛】 此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴、y 轴对称点的特点.18.88π;【解析】【分析】(1)小狗活动的区域面积为以B 为圆心10m 为半径的圆以C 为圆心6m 为半径的圆和以A 为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B 为圆心10为半解析:88π; 52【分析】(1)小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4为半径的14圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的34圆,以A为圆心、x为半径的1 4圆、以C为圆心、10-x为半径的30360圆的面积和,列出函数解析式,由二次函数的性质解答即可.【详解】解:(1)如图,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4m为半径的14圆的面积和,∴S=34×π•102+14•π•62+14•π•42=88π;(2)如图,设BC=x,则AB=10-x,∴S=34•π•102+14•π•x2+30360•π•(10-x)2=π3(x2-5x+250)=π3(x-52)2+325π4,当x=52时,S取得最小值,∴BC=5 2 .故答案为:(1)88π;(2)5 2 .【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.19.4【解析】【分析】由抛物线开口向上可知a>0再由开口的大小由a的绝对值决定可求得a的取值范围【详解】解:∵抛物线y1=ax2的开口向上∴a>0又∵它的开口比抛物线y2=3x2+2的开口小∴|a|>3解析:4【解析】【分析】由抛物线开口向上可知a>0,再由开口的大小由a的绝对值决定,可求得a的取值范围.【详解】解:∵抛物线y1=ax2的开口向上,∴a>0,又∵它的开口比抛物线y2=3x2+2的开口小,∴|a|>3,∴a>3,取a=4即符合题意【点睛】本题主要考查二次函数的性质,掌握二次函数的开口大小由a的绝对值决定是解题的关键,即|a|越大,抛物线开口越小.20.-2【解析】【分析】设正方形的对角线OA长为2m根据正方形的性质则可得出BC坐标代入二次函数y=ax2+c中即可求出a和c从而求积【详解】设正方形的对角线OA长为2m则B(﹣mm)C(mm)A(02解析:-2.【解析】【分析】设正方形的对角线OA长为2m,根据正方形的性质则可得出B、C坐标,代入二次函数y=ax 2+c 中,即可求出a 和c ,从而求积.【详解】设正方形的对角线OA 长为2m ,则B (﹣m ,m ),C (m ,m ),A (0,2m ); 把A ,C 的坐标代入解析式可得:c=2m ①,am 2+c=m ②,①代入②得:am 2+2m=m ,解得:a=-1m , 则ac=-1m⨯2m=-2. 考点:二次函数综合题.三、解答题21.(1)633m =;(2)小于300的“差数”有101,110,202,211,220,n 是“差数”,()16F n =【解析】【分析】(1)设三位数m 的十位上的数字是x ,根据()=(6)F m x x -进行求解;(2)根据“差数”的定义列出小于300的所有“差数”,进而求解.【详解】解:(1)设三位数m 的十位上的数字是x ,∴()=(6)9F m x x -=,解得,3x =,∴个位上的数字为:633-=,∴633m =;(2)小于300的“差数”有101,110,202,211,220,∴101110202211220844n =++++=,显然n 是“差数”,()()8444(84)16F n F ==⨯-=.【点睛】本题是新定义问题,考查了解一元二次方程,理解新的定义是解题的关键.22.(1)见解析;(2)【解析】【分析】(1)连接OA ,由»»=CA CB ,得CA=CB ,根据题意可得出∠O=60°,从而得出∠OAD=90°,则AD 与⊙O 相切;(2)由题意得OC ⊥AB ,Rt △BCE 中,由三角函数得AB 的长.【详解】(1)证明:如图,连接OA,∵»»CA CB,=∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°﹣(∠O+∠D)=90°,∴AD与⊙O相切;(2)∵∠O=60°,OA=OC,∴△OAC是等边三角形,∴∠ACO=60°,∵∠ACB=120°,∴∠ACB=2∠ACO,AC=BC,∴OC⊥AB,AB=2BE,∵CE=4,∠B=30°,∴BC=2CE=8,∴BE22-3BC CE2284∴AB=2BE=3∴弦AB的长为3.【点睛】本题考查了切线的判定和性质,垂径定理,解直角三角形,熟练掌握切线的判定和性质是解题的关键.23.(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】【分析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,故答案为(20+2x ),(40-x );(2)、根据题意可得:(20+2x)(40-x)=1200,解得:121020x x ==,,即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000, 230x 6000x -+=,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.24.小路的宽为1m .【解析】【分析】如果设小路的宽度为xm ,那么整个草坪的长为(16﹣2x )m ,宽为(9﹣x )m ,根据题意即可得出方程.【详解】设小路的宽度为xm ,那么整个草坪的长为(16﹣2x )m ,宽为(9﹣x )m .根据题意得: (16﹣2x )(9﹣x )=112解得:x 1=1,x 2=16.∵16>9,∴x =16不符合题意,舍去,∴x =1.答:小路的宽为1m .【点睛】本题考查了一元二次方程的应用,弄清“整个草坪的长和宽”是解决本题的关键.25.(1)详见解析;(2)m =﹣3或m =﹣1【解析】【分析】(1)根据根的判别式即可求出答案.(2)利用跟与系数的关系可以得到如果把所求代数式利用完全平方公式变形,结合前面的等式即可解答.【详解】解:(1)证明:∵△=(m +3)2﹣4(m +2)=(m +1)2,∵无论m 取何值,(m +1)2≥0,∴原方程总有两个实数根.(2)∵x 1,x 2是原方程的两根,∴x 1+x 2=﹣(m +3),x 1x 2=m +2,∵x 12+x 22=2,∴(x 1+x 2)2﹣2x 1x 2=2,∴代入化简可得:m 2+4m +3=0,解得:m=﹣3或m=﹣1【点睛】此题考查根与系数的关系,根的判别式,解题的关键是熟练运用根与系数的关系,本题属于基础题型.。

昆明市2020-2021年九年级上册期末数学试题(含答案)

昆明市2020-2021年九年级上册期末数学试题(含答案)
A.7 : 12B.7 : 24C.13 : 36D.13 : 72
4.已知二次函数y=ax2+bx+c(a<0<b)的图像与x轴只有一个交点,下列结论:①x<0时,y随x增大而增大;②a+b+c<0;③关于x的方程ax2+bx+c+2=0有两个不相等的实数根.其中所有正确结论的序号是()
A.①②B.②③C.①③D.①②③
坐标y的对应值如下表
x

-1
0
1
2
3

y

-3
-3
-1
3
9

关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.
24.如图,直线l1∥l2∥l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且 ,则m+n的最大值为___________.
A.最小值―3B.最小值3C.最大值―3D.最大值3
13.点P1(﹣1, ),P2(3, ),P3(5, )均在二次函数 的图象上,则 , , 的大小关系是()
A. B. C. D.
14.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是( )
Aபைடு நூலகம்∠B=∠DB.∠C=∠EC. D.
32.A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:
5.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=( )

2020-2021九年级数学上期末第一次模拟试卷附答案

2020-2021九年级数学上期末第一次模拟试卷附答案
解析:(0,﹣1)
【解析】
【分析】
将x=0代入y=(x﹣1)2﹣2,计算即可求得抛物线与y轴的交点坐标.
【详解】
解:将x=0代入y=(x﹣1)2﹣2,得y=﹣1,
所以抛物线与y轴的交点坐标是(0,﹣1).
故答案为:(0,﹣1).
【点睛】
本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.
【解析】
【分析】
根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤ 且a≠6,然后找出此范围内的最大整数即可.
【详解】
根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,
解得a≤ 且a≠6,
所以整数a的最大值为5.
故选B.
∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.
故选D.
【点睛】
本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.
二、填空题
13.25【解析】【分析】【详解】试题分析:根据实验结果估计袋中小球总数是10÷=35个所以袋中红球约为35-10=25个考点:简单事件的频率
解析:25
【解析】
13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是 ,则袋中红球约为________个.
14.设 、 是方程 的两个实数根,则 的值为_____.
(1)求抛物线的解析式及点C的坐标;
(2)求△ABC的面积;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】
设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
【详解】
连接BE,
设⊙O半径为r,则OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC= AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE为⊙O的直径,
解析: ,且k≠0.
【解析】
【分析】
根据直线与圆相交确定k的取值,利用面积法求出相切时k的取值,再利用相切与相交之间的关系得到k的取值范围.
【详解】
∵ 交x轴于点A,交y轴于点B,
当 ,故B的坐标为(0,6k);
当 ,故A的坐标为(-6,0);
当直线y=kx+6k与⊙O相交时,设圆心到直线的距离为h,
2.C
解析:C
【解析】
试题解析:∵CC′∥AB,
∴∠ACC′=∠CAB=65°,
∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,
∴∠CAC′=∠BAB′=50°.
故选C.
3.A
解析:A
【解析】
【分析】
根据配方法,先提取二次项的系数-3,得到 ,再将括号里的配成完全平方式即可得出结果.
∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.
故选D.
【点睛】
本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.
10.C
解析:C
【解析】
【分析】
根据对称轴的位置,分三种情况讨论求解即可.
【详解】
二次函数的对称轴为直线x=m,
①m<﹣2时,x=﹣2时二次函数有最大值,
此时﹣(﹣2﹣m)2+m2+1=4,
在△ABG和△DBH中,

∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
= .
故选B.
6.A
解析:A
【解析】
【分析】
【详解】
解:连接OA,OC,过点O作OD⊥AC于点D,
∵∠AOC=2∠B,且∠AOD=∠COD= ∠AOC,
(2)若CE= ,CD=2,求直径BC的长.
22.如图,在⊙O中,点C为 的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.
(1)求证:AD与⊙O相切;
(2)若CE=4,求弦AB的长.
23.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE
【详解】
连接OC,
∵CD⊥AB,CD=8,
∴PC= CD= ×8=4,
在Rt△OCP中,设OC=x,则OA=x,
∵PC=4,OP=AP-OA=8-x,
∴OC2=PC2+OP2,
即x2=42+(8-x)2,
解得x=5,
∴⊙O的直径为10.
故选A.
【点睛】
本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
20.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.
三、解答题
21.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.
(1)求证:△DCE∽△DBC;
12.C
解析:C
【解析】
因为正八边形的每个内角为 ,不能整除360度,故选C.
二、填空题
13.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在
解析:
【解析】
14.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.
15.直线y=kx+6k交x轴于点A,交y轴于点B,以原点O为圆心,3为半径的⊙O与l相交,则k的取值范围为_____________.
16.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
解析:
【解析】
试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P= .
考点:概率公式
17.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6
3.二次函数 变形为 的形式,正确的是()
A. B.
C. D.
4.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()
A.y=2(x﹣3)2﹣5B.y=2(x+3)2+5
C.y=2(x﹣3)2+5D.y=2(x+3)2﹣5
5.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()
2020-2021昆明市云大附中九年级数学上期末第一次模拟试卷(带答案)
一、选择题
1.下列图形中,可以看作是中心对称图形的是()
A. B. C. D.
2.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为( )
A.25°B.30°C.50°D.55°
9.D
解析:D
【解析】
【分析】
根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得 的度数.
【详解】
∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,
∴∠B′=∠B=30°,
∵△AOB绕点O顺时针旋转52°,
∴∠BOB′=52°,
∵∠A′CO是△B′OC的外角,
根据面积关系可得: 解得 ;
∵直线与圆相交,即 ,即 解得
且直线中 ,
则k的取值范围为: ,且k≠0.
故答案为: ,且k≠0.
【点睛】
本题考查了直线与圆的位置关系,解题的关键在于根据相交确定圆的半径与圆心到直线距离的大小关系.
16.【解析】试题分析:确定出偶数有2个然后根据概率公式列式计算即可得解∵标号为12345的5个小球中偶数有2个∴P=考点:概率公式
11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若CD=AP=8,则⊙O的直径为( )
A.10B.8C.5D.3
12.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )
A.正三角形B.矩形C.正八边形D.正六边形
二、填空题
13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.
解得m= ,与m<﹣2矛盾,故m值不存在;
②当﹣2≤m≤1时,x=m时,二次函数有最大值,
此时,m2+1=4,
解得m=﹣ ,m= (舍去);
③当m>1时,x=1时二次函数有最大值,
此时,﹣(1﹣m)2+m2+1=4,
解得m=2,
综上所述,m的值为2或﹣ .
故选C.
11.A
解析:A
【解析】
【分析】
连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.
A.有两个不相等实数根B.有两个相等实数根
C.有且只有一个实数根D.没有实数根
9.如图, 中, .将 绕点 顺时针旋转 得到 ,边 与边 交于点 ( 不在 上),则 的度数为()
A. B. C. D.
10.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )
A. B. 或 C.2或 D.2或 或
解析:
【解析】
分析:直接利用概率公式求解即可求出答案.
详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为 .故答案为 .
点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.
15.且k≠0【解析】【分析】根据直线与圆相交确定k的取值利用面积法求出相切时k的取值再利用相切与相交之间的关系得到k的取值范围【详解】∵交x轴于点A交y轴于点B当故B的坐标为(06k);当故A的坐标为(
17.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是_____cm2.
18.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.
19.若实数a、b满足a+b2=2,则a2+5b2的最小值为_____.
相关文档
最新文档