仰角、俯角和方位角(五).共32页
九年级下册数学仰角和俯角知识点

九年级下册数学仰角和俯角知识点九年级下册数学知识点: 仰角和俯角在九年级的数学学习中,仰角和俯角是两个重要的概念。
仰角和俯角是与水平线之间的夹角,用于描述物体在垂直方向上的视角。
在日常生活中,我们经常会用到仰角和俯角的概念,比如测量高楼的高度、确定飞机的飞行高度等等。
接下来,让我们深入了解仰角和俯角吧。
一、仰角和俯角的定义仰角和俯角是与水平线之间的夹角,用来描述物体在垂直方向上的视角。
仰角是指从水平线向上看时,视线与水平线之间的夹角;俯角则相反,是指从水平线向下看时,视线与水平线之间的夹角。
例如,当我们仰望一棵树时,我们所看到的视线与水平线之间的夹角就是仰角;而当我们低头俯视地面时,视线与水平线之间的夹角就是俯角。
二、仰角和俯角的计算方法我们可以通过三角函数来计算仰角和俯角的数值。
一般来说,我们会用正切函数来求取夹角的数值。
例如,假设一架飞机在空中低飞,飞机和地面之间的夹角为35度。
我们可以通过计算正切函数来求得仰角(从地面向上看时的夹角)和俯角(从飞机向下看时的夹角)的数值。
正切函数的公式为:tanθ = 对边 ÷邻边在这个例子中,飞机和地面之间的夹角为35度,我们可以假设对边(飞机在地面上的高度)为x,邻边(飞机离开地面的水平距离)为1。
代入公式,我们就可以求得正切值。
通过反函数,我们可以得到对应夹角的数值,也就是仰角和俯角。
三、仰角和俯角的应用仰角和俯角的应用非常广泛。
比如在航空领域,飞行员需要准确测量飞机与地面之间的仰角或俯角来确保飞行的安全。
而在建筑领域,工程师需要计算仰角和俯角来确定大楼的高度和斜坡的陡峭程度。
此外,仰角和俯角也在数学的几何和三角学中有着重要的应用。
它们是理解和计算立体图形、三角形、锥体等形状的关键概念之一。
四、总结仰角和俯角是九年级下册数学中的重要知识点。
通过了解仰角和俯角的定义、计算方法和应用,我们可以更好地理解和运用这一概念。
无论是在生活中还是学习中,仰角和俯角都有着广泛的应用价值。
《 仰角、俯角问题》完整版教学课件PPT

D′
C′
B′
D
C
B
解:如图,由题意可知,∠AD′B′=30°,
∠AC′B′=60°,
D′C′=50m
∴ ∠D′AB′=60°,∠C′AB′=30°,D′C′=50m ,
设tanD' AB' D' B' ,tanC' AB' C' B' ,
ABD′=B m
x
x tan60,CB
x
tan30,
x
C
解:如图,a = 30°,β= 60°, AD=120.
tan a BD , tan CD .
AD
AD
BD AD tan a 120 tan 30 120 3 40 3(m). 3
CD AD tan 120 tan 60 A
120 3 120 3(m).
B
αD β
BC BD CD 40 3 120 3
45° 37° B 400米 A
解:作O⊥AB交AB的延长线于O
设O=米,
在Rt△OB中,∠BO=45°,
OB=O= 米
在Rt△OA中,∠AB=37°,
tan∠PAB PO 0.75 , OA
O
即
x x 400
0.75 ,解得=1200
故飞机的高度为1200米
45° 37° B 400米 A
当堂练习
1 如图①,在高出海平面100米的悬崖顶A处,观测海平 面上一艘小船B,并测得它的俯角为45°,则船与观 测者之间的水平距离BC=_____1_0_0__米 2 如图②,两建筑物0°,测得C点的俯角为60°,则 建筑物CD的高为__2_0__米3
x tan 60 x tan 30 50,
九下数学课件仰角、俯角和方向角有关的问题(课件)

(参考数据:sin 43°≈0.68,cos 43°≈0.73,tan 43°≈0.93) A.23米 B.24米 C.24.5米 D.25米
题型一 仰角、俯角问题
解:过点E作EF⊥CD于点F,过点E作EM⊥AC于点M,如图. ∵斜坡DE的坡度(或坡比)i=1:2.4,∴设EF=x米,则DF=2.4x米. 在Rt△DEF中,DE=78米,∵EF2+DF2=DE2,∴x2+(2.4x)2=782, 解得x=30(负值舍去),∴EF=30米,DF=72米.∴CF=DF+DC=72+78=150(米). ∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形.∴EM=CF=150米, CM=EF=30米.在Rt△AEM中,∵∠AEM=43°, ∴AM=EM·tan 43°≈150×0.93=139.5(米), ∴AC=AM+CM≈139.5+30=169.5(米). ∴AB=AC-BC≈169.5-144.5=25(米). 故选D.
为50°,则建筑物AB的高度约为( D )
(参考数据:sin 50°≈0.77;cos 50°≈0.64;tan 50°≈1.19) A.69.2米 B.73.1米 C.80.0米 D.85.7米
题型一 仰角、俯角问题
【变式2】如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操
作:
①在点C处放置测角仪,测得旗杆顶部的仰角∠ACE=α; ②量得测角仪的高度CD=a;
题型一 仰角、俯角问题
【变式4】如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的
俯角为60°,已知楼高AB为30米,则荷塘的宽CD为__________米(结果保留根
26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)

例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
仰角、俯角和方位角(五)

北
A
30°
西
东
O
45°
B
南
例1. 如图,一艘海轮位于灯塔P的北偏东45°方向,距 离灯塔80海里的A处,它沿正南方向航行一段时间后, 到达位于灯塔P的南偏东30°方向上的B处,这时,海 轮所在的B处距离灯塔P有多远?
45° A P
=300 30
2、在山脚C处测得山顶A的仰角为45°。问 题如下: 1)沿着水平地面向前300米到达D点,在D点 测得山顶A的仰角为600 , 求山高AB。
A
3x
45° 60°
C 300米
D
xB
2、在山脚C处测得山顶A的仰角为450。问题如下:
变式: 沿着坡角为30 °的斜坡前进300米到达D 点,在D点测得山顶A的仰角为600 ,求山高AB。
P
X
A 4X5° C
60° B
157.73海里
为45°,求旗杆的高度(tan50°≈1.19精确到
0.1m)
A
B
45°50°
C
D
40米
4. 两座建筑AB及CD,其地面距离AC为50米,
从AB的顶点测得CD的顶部D的仰角β=300,
测得其底部C的俯角a=600, 求两座建筑物AB 及CD的高.
30° 60°
50米
(第 2 题)
方位角
指南或指北的方向线与目标方向线构成小于 900的角,叫做方位角.
1.解直角三角形
在直角三角形中,除直角外,由已知两元素 (必有一边)
求其余未知元素的过程叫解直角三角形.
2.解直角三角形的依据
B
(1)三边之间的关系: a2+b2=c2(勾股定理); c
仰角和俯角的意思

仰角和俯角的意思仰角和俯角是物理学中常用的概念,用于描述物体或光线与地平面的夹角。
在空间导航、航空航天、地理测量等领域中,仰角和俯角的应用非常广泛。
本文将详细介绍仰角和俯角的概念、计算方法及实际应用。
1. 仰角仰角是指物体或者观测点朝天空方向偏离地面的角度,通常用竖直线与视线的夹角来表示。
在天文学中,仰角通常用于描述天体在天空中的位置。
在观测卫星时,需要知道卫星的仰角,以便调整观测仪器的朝向和位置。
2. 俯角二、仰角和俯角的计算方法1. 计算方法(1)在地理测量中,仰角和俯角可以通过测量两点之间的水平距离和垂直距离来计算。
假设A点比B点高h米,则A点到B点的俯角为atan(h/d),其中d为A点到B点的水平距离。
如果B点比A点高,则仰角为90度减去俯角。
(2)在天文学中,仰角可以通过观测天体时测量天顶角(垂直于地面的角度)和天体高度角(天体与地平面的夹角)来计算。
仰角=90度-天体高度角。
俯角=天体高度角。
(3)在航空航天领域中,仰角和俯角需要通过仪器进行测量。
无人机上装有摄像头,可以通过调整仰角和俯角来改变拍摄视角。
2. 测量仪器(1)测距仪:可以测量两点之间的水平距离和垂直距离。
(2)全站仪:可测量目标物体的仰角、方位角和距离等参数。
三、仰角和俯角的实际应用1. 航空航天在航空航天中,仰角和俯角的应用非常广泛。
飞机、无人机等航空器需要根据目标物体的仰角和俯角来选择飞行高度,调整拍摄角度等。
在航天探测中,也需要测量行星、卫星等目标物体的仰角和俯角。
在地理测量中,仰角和俯角用于计算两点之间的高度差,确定地形高低等。
地面的地形特征对于城市规划、农业种植等方面有着重要的参考价值。
3. 天文观测在天文观测中,仰角和俯角通常用于描述恒星、行星等天体在天空中的位置。
天文观测对于了解宇宙的物理特性和演化历史具有重要的意义。
四、小结仰角和俯角是物理学中重要的概念,在导航、航空航天、地理测量等领域有着广泛的应用。
第02课时 仰角、俯角、方位角

1.(5 分)如图,某地修建高速公路,要从 B 地向 C 地修一座隧道(B,
C 在同一水平面上),为了测量 B,C 两地之间的距离,某工程师乘坐热
气球从 C 地出发,垂直上升 100 m 到达 A 处,在 A 处观察 B 地俯角为
30°,则 B,C 两地之间的距离为( A )
A.100 3 m
B.50 2 m
一、选择题(每小题 6 分,共 12 分)
7.如图,从热气球 C 处测得地面 A,B 两点的俯角分别为 30°,45°,
如果此时热气球 C 处的高度 CD 为 100 米,点 A,D,B 在同一直线上,
则 A,B 两点的距离是( D )
A.200 米
B.200 3 米
C.220 3 米
D.100( 3+1)米
CED=60°,sin∠CED=CCDE ,∴CE= sinC6D0°= 2
3+1.5 3 =(4+
3)
2
≈5.7(米),答:拉线CE的长约为5.7米
11.(14分)(2014·黔东南州)黔东南州某校九年级某班开展数学活 动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得 旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为 30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身 高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,
三、解答题(共42分) 10.(14分)(2014·钦州)如图,在电线杆CD上的C处引拉线CE,CF 固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米 的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30 °,求拉线CE的长.(结果保留小数点后一位,参考数据: 2 ≈ 1.414, 3≈1.732)
三角函数之仰角俯角坡度

仰角俯角坡度
⑴:使学生了解仰角、俯角的概念,
复习:(1)勾股定理:
(2)锐角之间的关系:
(3)边角之间的关系
仰角、俯角
当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水
平线下方的角叫做俯角.
、例题
例1热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?
例22003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400 km,结果精确到0. 1 km)
例3如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?
二用三角函数有关知识解决方位角问题
坡度与坡角
坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),
一般用i表示。
即i=,常写成i=1:m的形式如i=1:2.5
把坡面与水平面的夹角α叫做坡角.
结合图形思考,坡度i与坡角α之间具有什么
关系?
例4同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。