连续信息与连续信源

合集下载

信息论与编码复习总结

信息论与编码复习总结

x2 x3 x4 x5 x6 X x1 P 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6 1 / 6
• • 发出单个符号的信源 – 指信源每次只发出一个符号代表一个消息; 发出符号序列的信源 – 指信源每次发出一组含二个以上符号的符号序列代表一个消息 信源的描述

平均自信息 平均不确定度 信源熵(公式一定要记住) H(X):平均信息量,称为信源 X 的熵。 信源熵、香农熵 离散信源熵 H(X)
(平均不确定度/平均信息量/平均自信息量) 定义:信源的平均不确定度 H(X)为信源中各个符号不确定度的数学期望,即:
H ( X ) p( xi ) I ( xi ) p( xi ) log p( xi )
简答题: 一、 信源编码与信道编码的区别 答:信源编码是压缩信源发出的信息的冗余度,是为了提高信息传输的有效性;而信 道编码是在信源编码器输出的代码组上有目的地增加了一些监督码元,增大了信息的 冗余度,以提高传输信息的可靠性。 二、 能否将三种码(信源编码、信道编码、密码)合成一种码进行编译? 答:提高有效性必须去掉信源符号中的冗余部分,此时信道误码会使接收端不能恢复原 来的信息,也就是必须相应提高传送的可靠性,不然会使通信质量下降; 反之,为了可靠而采用信道编码,往往需扩大码率,也就降低了有效性。安全性也有 类似情况 编成密码,有时需扩展码位,这样就降低有效性;有时也会因失真而使授权用户无法 获得信息,必须重发而降低有效性,或丢失信息而降低可靠性。 从理论方面来说,若能把三种码合并成一种码来编译,即同时考虑有效、可靠和安全, 可使编译码器更理想化,在经济上可能也更优越。 这种三码合一的设想是当前众所关心的课题,但因理论上和技术上的复杂性,要 取得有用的结果,还是相当困难。

信息论与编码 第二章 信源与信息熵

信息论与编码 第二章 信源与信息熵

现概率是它自身的先验概率。
无记忆信源
{发出符号序列的无记忆信源
发出单个符号的无记忆信源
{
离散 连续
2.1.1 无记忆信源
发出单个符号的离散无记忆信源
——指信源每次只发出一个符号代表一个消息, 且消息的取值个数是有限的(或可列无限多个)。 例如扔骰子,每次实验结果必然是1~6点中的某一 个面朝上。每次实验的结果不随实验次数变化,也 不与先前的实验结果相关,因而该信源是单符号离
p( X1 , X 2 , X l , X L ) p( X l ) [ p( X )]L
l 1
L
2.1.2 有记忆信源
有记忆信源——在不同时刻发出的符号是相互依赖的。 发出符号序列的有记忆信源 ——每次发出1组含2个以上符号的符号序列来代表一 个消息的信源,且各符号之间是相互依赖的。
I=-log2(1/2m)=m bit
2.2.1 自信息量
自信息量I (xi)的特性:
⑴ I (xi)是非负值
⑵ 当p(xi) = 1时, I (xi) = 0
⑶ 当p (xi) = 0时, I (xi) =∞
⑷ I (xi)是先验概率p (xi)的单调递减函数,即 当p (x1)>p (x2)时, I (x1) < I (x2) ⑸可加性 : 两个独立事件的联合信息量等于它们分别的信 息量之和。
发出符号序列的无记忆信源
——每次发出1组含2个以上符号的符号序列来代表一 个消息的信源,且各符号之间没有统计关联性。
需要用随机序列(或随机矢量) X =(X1, X2,…, Xl, …, XL)来描 述信源输出的消息,用联合概率分布p(X1, X2,…, Xl, …, XL)来表 示信源特性。 p (X 1 ) p (X 2 ) … p (X l ) … p (X L ) 若离散信源输出的每个符号是统计独立的,且具有相同的概 率空间,则该信源是离散平稳无记忆信源,亦称为独立同分布 (independently identical distribution,i. i. d.)信源。

连续信源高斯分布微分熵

连续信源高斯分布微分熵

连续信源高斯分布微分熵连续信源高斯分布微分熵在信息论中,熵是一个非常重要的概念,它用来度量一个随机变量的不确定性。

对于离散信源,我们可以通过计算每个符号出现的概率来计算熵。

但是对于连续信源,情况就变得复杂了。

在本文中,我们将讨论连续信源高斯分布微分熵的计算方法。

首先,我们需要了解高斯分布的概念。

高斯分布又称为正态分布,是一种连续概率分布。

它的概率密度函数可以表示为:$$f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$其中,$\mu$是均值,$\sigma$是标准差。

高斯分布的图像呈钟形,均值处为最高点。

接下来,我们需要计算高斯分布的微分熵。

微分熵是指在连续信源中,每个微小的时间段内,信源输出的信息量。

对于高斯分布,微分熵的计算公式为:$$H=-\int_{-\infty}^{\infty}f(x)\ln f(x)dx$$将高斯分布的概率密度函数代入上式,得到:$$H=\frac{1}{2}\ln(2\pi e\sigma^2)$$这个公式告诉我们,高斯分布的微分熵只与标准差有关,与均值无关。

标准差越大,微分熵越大,表示信源输出的信息量越大。

微分熵的计算对于信源编码和信道编码都有重要的意义。

在信源编码中,我们需要将信源输出的符号进行编码,使得编码后的信息量最小。

微分熵可以帮助我们评估不同编码方案的效果。

在信道编码中,我们需要将信源输出的符号通过信道传输到接收端,由于信道的噪声等原因,传输过程中会出现误码。

微分熵可以帮助我们评估信道的容量,即信道可以传输的最大信息量。

总之,连续信源高斯分布微分熵是一个重要的概念,它可以帮助我们评估信源编码和信道编码的效果,同时也可以帮助我们评估信道的容量。

在实际应用中,我们需要根据具体情况选择合适的编码方案和信道方案,以达到最优的传输效果。

信息论与编码2-信源及信源熵

信息论与编码2-信源及信源熵
随机英文字母信源,其中每个英文字母出现的概率是固定的。
实例3
随机天气状况信源,其中晴天、雨天、雪天出现的概率分别是0.7、0.2、0.1。
实例1
随机二进制信源,其中每个二进制符号(0或1)出现的概率为0.5。
离散无记忆信源的实例
离散有记忆信源
03
离散有记忆信源是输出符号序列中符号与符号之间存在记忆关系的离散随机序列。
应用场景
广泛应用于网络通信、金融交易、军事通信等领域,保障信息安全和隐私。
加密通信
03
应用景
广泛应用于通信系统、数据存储等领域,如CD、DVD、硬盘等存储设备的纠错编码。
01
纠错原理
通过在数据中添加冗余信息,检测和纠正数据传输过程中的错误。
02
常见纠错编码
如奇偶校验码、海明码、循环冗余校验码等,这些编码利用数学原理对数据进行校验,确保数据的正确性。
纠错编码
THANKS
感谢观看
离散有记忆信源的输出符号之间存在统计依赖关系,这种关系会影响信息熵的计算。
定义
性质
离散有记忆信源的定义与性质
计算方法
条件熵
联合熵
离散有记忆信源熵的计算
离散有记忆信源熵是描述信源不确定性的度量,可以通过统计模型来计算。具体计算方法包括条件熵和联合熵等。
条件熵是在给定前一个或多个符号条件下,输出符号的熵。
应用场景
广泛应用于文件存储、网络传输、多媒体处理等领域,如JPEG图片压缩、MP3音频压缩等。
数据压缩原理
通过去除数据中的冗余信息,将数据压缩至更小的存储空间,提高存储和传输效率。
数据压缩
加密原理
通过特定的加密算法将明文转换为密文,确保信息在传输过程中的保密性。

第二章基本信息论6_连续信源的熵

第二章基本信息论6_连续信源的熵
2.6 连续信源的熵
一、连续信源熵的定义
♦连续信源:输出在时间和取值上都是连续的信源 连续信源:
连续信源
采样
离散信源
求信源熵
若连续信源的频带受限, 若连续信源的频带受限,为W,则根据采样定理, ,则根据采样定理, 只要采样频率大于2W, 只要采样频率大于 ,则连续信源经采样离散 不损失任何信息。 后,不损失任何信息。 p( x ) 将连续信源离散化为离散 信源,其信源熵为: 信源,其信源熵为:

1 λ1 −1 e = σ 2π ⇒ λ =− 1 2 2 2σ
− 2 1 得p ( x ) = e 2σ 为高斯分布 σ 2π
x2
P(x)
最大熵
H max ( X ) = − ∫ p ( x )log p( x )dx
−∞
x 1 − 2 = − ∫ p ( x )ln e 2σ −∞ σ 2π
H max ( X ) = − ∫
V2 −V1
V2
x
p ( x )log p ( x )dx = log(V1 + V2 )
2、输出平均功率受限的信源 、 设信源 ( X ) = − ∫ p( x )log p ( x )dx为极大值的p ( x )
−V
V
以及对应的最大熵H max ( X ), 其限制条件:
P( x )
1/ 2
0
1 dx1 3
x
P(x)
2
dx2
6 x
二、连续信源熵的性质
♦ 连续信源熵可正可负
H ( X ) = −∫
−∞

p ( x )log p( x )dx
1 1 = − ∫ lb dx = −1比特/采样 3 2 2

信息论第3章信源及信息熵

信息论第3章信源及信息熵

举例
数学描述
离散信源 (数字信源)
连续信号
文字、数据、 离散化图象
离散随机变量 序列
跳远比赛的结果、语音 连续随机变量
信号抽样以后
序列
波形信源 (模拟信源)
语音、音乐、热噪声、 图形、图象
不常见
随机过程
表3.1 信源的分类
3.1 信源的分类及其数学模型
我们还可以根据各维随机变量的概率分布是否随时间的推移 而变化将信源分为平稳信源和非平稳信源,根据随机变量间 是否统计独立将信源分为有记忆信源和无记忆信源。
定义3.2 随机变量序列中,对前N个随机变量的联合熵求平
均:
HN
(X)
1 N
H ( X1X 2
XN)
称为平均符号熵。如果当N
时上式极限存在,则
lim
N
H
N
(X)
称为熵率,或称为极限熵,记为
def
H
lim
N
H
N
(
X
)
3.3.1 离散平稳无记忆信源
离散平稳无记忆信源输出的符号序列是平稳随机序列,并且
H(X ) H(X1X2 XN ) H ( X1) H ( X2 | X1) H ( X3 | X1X 2 ) H ( X N | X1X 2 X N1)
定理3.1 对于离散平稳信源,有以下几个结论:
(1)条件熵 H (X N | X1X 2 X N1) 随N的增加是递减的;
(2)N给定时平均符号熵大于等于条件熵,即
s1
si p(s j
| si )
s q
m
状态空间由所有状态及状态间的状态转移概率组成。通过引
入状态转移概率,可以将对马尔可夫信源的研究转化为对马 尔可夫链的研究。

信息论课件 2-1.3马尔科夫信源

信息论课件 2-1.3马尔科夫信源

1:0.75


1 0.5 0 0.25
0:0.5
12
• 例3 设有一个二元二阶马尔科夫信源,其信源 符号集X={0,1},信源输出符号的条件概率为
P(0|00)=p(1|11)=0.8, p(1|00)=0.2
p(0|01)=p(0|10)=p(1|01)=p(1|10)=0.5 求状态转移概率矩阵,画出状态转移图
p(x2|x1)
x2
x1
0
1
0
0.3
0.4
1
0.7
0.6
再下一单位时间:输出随机变量X3与X2X1有依赖关系
p(x3|x1x2) x3
00
x1 x2 01 10
11
0 0.4 0.2 0.3 0.4
1 0.6 0.8 0.7 0.6
23
• 从第四单位时间开始,随机变量Xi只与前面二 个单位时间的随机变量Xi-2Xi-1有依赖关系:
–齐次马尔可夫链可以用其
0/0.4
状态转移图(香农线图)表示
–每个圆圈代表一种状态
so
s1
–状态之间的有向线代表某 1/0.6
一状态向另一状态的转移
0/0.3
1/0.2
1/0.7
–有向线一侧的符号和数字
分别代表发出的符号和条
s2
件概率
0/0.8
11
• 例2 设一个二元一阶马尔科夫信源,信源符号 集X={0,1},信源输出符号的条件概率为
• 由 p(s3 ) 0.4 p(s3 ) 0.3 p(s5 )
Wj=p(sj) p(s4 ) 0.6 p(s3 ) 0.7 p(s5 ) p(s5 ) 0.2 p(s4 ) 0.4 p(s6 )

信息论复习知识点

信息论复习知识点

信息论复习知识点本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。

平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。

2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。

3、最大熵值为。

4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。

6、只要,当N足够长时,一定存在一种无失真编码。

7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。

8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。

9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。

按照信息的地位,可以把信息分成客观信息和主观信息。

人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

信息的可度量性是建立信息论的基础。

统计度量是信息度量最常用的方法。

熵是香农信息论最基本最重要的概念。

事物的不确定度是用时间统计发生概率的对数来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。

12、自信息量的单位一般有 比特、奈特和哈特 。

13、必然事件的自信息是 0 。

14、不可能事件的自信息量是 ∞ 。

15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章连续信息与连续信源第4章连续信息与连续信源本章主要内容:1. 连续随机变量集合的熵2. 离散时间高斯信源的熵3. 连续最大熵定理4. 连续随机变量集的平均互信息5. 离散集与连续集之间的互信息本章在研究第3章离散信源的基础上研究连续信源的信息量度量。

内容安排如下:首先研究离散时间连续信源的差熵,主要是高斯信源的差熵;然后介绍连续信源最大熵定理;最后介绍连续集合之间的平均互信息、离散集合与连续集合的平均互信息。

§4.1 连续随机变量集合的熵本节主要内容:1.连续随机变量的离散化2.连续随机变量集的熵3.连续随机变量集的条件熵4.连续随机变量集的联合熵5.连续随机变量集合差熵的性质6.连续随机变量集合的信息散度4.1.1 连续随机变量的离散化一个连续随机变量的离散化过程大致如下:若给定连续随机变量集合的概率分布或概率密度;再给定一个由实数集合到有限或可数集合的划分,使得,其中表示离散区间,为实数集合,且互斥;用将进行划分,划分后的离散集合表示为或,且使得:(4.1.2)即,把的概率看成取值的概率,这样就得到离散化后随机变量的概率分布。

X (){ }F x P X x =≤()p x P i {S , 1,2,}P i == i S i Si ∪i S P X []P X []X {[] } {S } () (S ) r i i i i i P X i P x p x x x ==∈≈Δ∈S i i x ∈[]X i 4.1.1 连续随机变量的离散化(续)对于二维连续随机变量,可采用类似方法,得到离散化后对应的二维离散随机变量的联合概率分布:(4.1.3)其中,分别为的某种划分,且。

{[],[]} { , }( , ) r i j i j i j P X i Y j P x S y T p x y x y ===∈∈≈ΔΔXY i j {S }, {T },X Y , i i j j x S y T ∈∈4.1.2 连续随机变量集的熵设连续随机变量集合在离散化后分别为,根据离散化后的离散事件的概率可得(4.1.4)取等间隔划分,即令,则(4.1.5)X Y 、[][]X Y 、i ([]) ()lo g [()]i i i i H X p x x p x x =−ΔΔ∑i x x Δ=Δ ([] ) () log [() ]() log ()() log i i ii i i i iH X p x x p x x p x x p x p x x x =−ΔΔ=−Δ−ΔΔ∑∑∑4.1.2 连续随机变量集的熵(续)这样,离散化后信源的熵可看成由(4.1.5)式中的两项组成,当Δx→0 时,第一和第二项分别用和来表示。

那么(4.1.6)(4.1.7)()h x 0()h x 000 ()lim (log )()lim log x x h X x p x dx x Δ→Δ→=−Δ=−Δ→∞∫0 ()lim () log () ()log () i i x ih X p x x p x p x p x dx Δ→=−Δ=−∑∫4.1.2 连续随机变量集的熵(续)可见,连续信源的熵由两部分组成:一部分为绝对熵,其值为无限大,用表示;另一部为差熵(或微分熵),用表示。

通常我们所说的连续信源的熵就是差熵,可写成:(4.1.8)差熵的单位为:比特(奈特)/自由度。

0()h x ()h x ()() { log ()} ()log ()p x h X E p x p x p x dx =−=−∫4.1.3 连续随机变量集的条件熵类似地,可计算离散化后的为:取等间隔划分,即令,则(4.1.9)([] / [] )H X Y , ([][])( )log [() ]i j i j i j i j i jH X Y p x y x y p x y x y =−ΔΔΔΔ∑ , i j x x y y Δ=ΔΔ=Δ, ([][]) ( )log[( )]i j i j i jH X Y p x y x y p x y x =−ΔΔΔ∑, ( )log ()( )log i j i j i j i j p x y x y p x y p x y x y x=−ΔΔ−ΔΔΔ∑4.1.3 连续随机变量集的条件熵(续)当时,第一和第二项分别用和来表示。

那么(4.1.11)0,0x y Δ→Δ→()h X Y 0()h X Y 00,00()lim log ()lim logi i x y x h X Y x p x y dxdy x Δ→Δ→Δ→=−Δ=−Δ→∞∫ 0,0, ()lim ()lo g ()i j i j x y i jh X Y p x y x y p x y Δ→Δ→=−ΔΔ∑( )lo g ( )p x y p x y d x d y =−∫∫4.1.3 连续随机变量集的条件熵(续)与前面类似以,连续信源的条件熵也由两部分组成:一部分为绝对熵,其值为无限大,用表示;另一部分为差熵,用表示,可写成:(4.1.12)条件差熵的单位也为:比特(奈特)/自由度。

0()h X Y ()h X Y ()(){ log ()} ( )log ( ) p xy h X Y E p x y p x y p x y dxdy =−=−∫∫4.1.4 连续随机变量集的联合熵类似地,可以定义N维连续随机变量集合的联合差熵为:(4.1.13)其中, N维连续随机变量, 为的联合概率密度,积分为在整个概率空间的多重积分。

联合差熵的单位为:比特(奈特)/N自由度。

()(){log ()}()log ()p x x h E p p p d =−=−∫N X x x x x 12N X X X π=N X ()p x N X 4.1.4 连续随机变量集的联合熵(续)对于平稳随机过程或平稳随机序列,定义熵率为:(4.1.14)实际上,熵率表示每自由度的熵。

注:(1)一维连续信源的符号含一个自由度,N维连续信源的符号含N个自由度;(2)一个连续信源的符号可能含多个自由度,所以比特/自由度不一定等于比特/符号;(3)对于某些信源有时也用比特/符号做单位。

{},(1,2,)i X i = 12()()lim N N h X X X h X N →∞=4.1.5 连续随机变量集合差熵的性质——连续熵与离散熵的类似性1.连续熵与离散熵计算表达式类似。

通过比较可见,由计算离散熵到计算连续熵,不过是将离散概率变成概率密度,将离散求和变成积分。

2.熵的不增性。

连续熵同样满足熵的不增原理,即(4.1.15)由于仅当X、Y独立时等式成立。

()(/)h X h X Y ≥(/)()(/)()log ()p x y h X h X Y p xy dxdyp x −=∫∫()()(1)0(|)p x p xy dxdy p x y ≥−=∫∫有关4.15推导的说明1、()()log ()h X p x p x dx =−∫ (1)()()(|)p x p y p x y dy =∫,代入(1)中有:()[()(|)]log ()h X p y p x y dy p x dx =−∫∫()(|)log ()(,)log ()p y p x y p x dxdy p x y p x dxdy =−=−∫∫∫∫2、1log 1x x ≥−4.1.5 连续随机变量集合差熵的性质(续)——连续熵与离散熵的类似性3.可加性设N维高斯随机矢量集合,很容易证明(4.1.16)且仅当相互独立时,熵的不增性等式成立。

12N X X X =ΝX 12111()()(/)(/)N N h h X h X X h X X X −=+++ΝX 12()()()N h X h X h X ≤+++ 12,,,N X X X 4.1.5 连续随机变量集合差熵的性质——连续熵与离散熵的差别1.差熵可以作为信源平均不确定性的相对量度但不是绝对的量度。

如前所述,差熵实际上只是连续信源熵的一部分,因此不能作为信源平均不确性大小的绝对量度。

但是每个信源所包含的绝对熵部分都等于,与信源的概率分布无关,所以差熵的大小仍然可以作为信源平均不确定性的相对量度,即差熵的大的信源平均不确定性大。

log x −Δ4.1.5 连续随机变量集合差熵的性质(续)——连续熵与离散熵的差别2.差熵不具有非负性。

根据差熵的公式,如果在整个积分区间概率密度的值若大于1,则计算出的差熵的值就小于零。

3.在连续信源中,在一一对应变换的条件下,差熵可能发生变化。

如果两个离散信源符号的取值有一一对应的变换关系,那么变换后信源的熵是不变的。

对于连续信源,差熵可能发生变化4.1.5 连续随机变量集合差熵的性质——连续信源变换的熵定理4.1.1 设、为定义在空间中的两个N维矢量,是一个可微的一对一的从RN到自身的变换,那末(4.1.17)其中为的概率密度,为逆变换的雅可比行列式,即(4.1.18)N X N Y N R ()y f x = ()()()ln ()N R h h d p J =−∫N N xY X x x y ()p x N X ()J xy 1f −1111()NNNNx xy y J x x y y ∂∂∂∂=∂∂∂∂xy4.1.5 连续随机变量集合差熵的性质(续)——连续信源变换的熵如果,不依赖于或者是一个线性变换,那么(4.1.17)式变为(4.1.20)设、为定义在空间中的两个N维随机矢量集合,,其中是一个的可逆线性变换,为N维常数列矢量。

这时由于,其中表示矩阵A的行列式,则(4.1.21)()J xy N X ()()log ()h h J =−N N xY X y N X N Y α=+y Ax A N N ×α11()det()[det()]J −−==x A A y det()A ()()log det()h h =+N N Y X A N R 1log |[det()]|log |det()|−−=+A A 4.1.5 连续随机变量集合差熵的性质(续)——连续信源变换的熵可以写成如下更明显的形式:(4.1.21a)如果变换为平移和旋转,即,则(4.1.21b)即经过平移和旋转变换后的连续信源的差熵不变。

()()log det()h A h +=+N N X αX A det()1=A ()()h h +=N N AX αX4.1.6 连续随机变量集合的信息散度与离散情况类似,我们可以定义连续随机变量的信息散度。

设和为定义在同一概率空间的两个概率密度,定义相对于的散度为:(4.1.22)同样,在(4.1.22) 中,概率密度的维数不限,可以是一维,也可以是多维。

相关文档
最新文档