解三角形公式

合集下载

解三角形公式

解三角形公式

海伦-秦九韶公式假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:而公式里的p为半周长(周长的一半):注1:"Metrica"(《度量论》)手抄本中用s作为半周长,所以和两种写法都是可以的,但多用p作为半周长。

cosC = (a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]正弦定理a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。

变形公式(1)a=2RsinA,b=2RsinB,c=2RsinC(2)sinA:sinB:sinC=a:b:c(3)asinB=bsinA,asinC=csinA,bsinC=csinB(4)sinA=a/2R,sinB=b/2R,sinC=c/2R(5)S=1/2bcsinA=1/2acsinB=1/2absinC余弦定理a^2=b^2+c²-2bcco s Ab^2=a^2+c^2-2ac cos Bc^2=a^2+b^2-2ab cos C注:勾股定理其实是余弦定理的一种特殊情况。

解三角形公式汇总

解三角形公式汇总

解三角形解三角形公式汇总一、正弦定理正弦定理:公式推论1:(边化角)推论2:(角化边)题(1)已知sinB 求B:一题多解型判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。

型(2)asin B=2b:方法:边化角,推论1,a:b=sinA :sinB(3)3sin A=5sinB 或sinA:sinB:sinC=1:2:3方法:角化边,推论2,sinA :sinB=a:b二、余弦定理公余弦定理:(已知两边及夹角,求第三边)推论1:(已知三边,求角)推论2:(三边的平方关系)式2+b2-c2=2abcosC2+c2-a2=2bccosA2+c2-b2=2accosBaba题(1)已知a,b,角C,求c 2=a2+b2-2abcosC方法:已知两边及夹角,求第三边,余弦定理 c型(2)已知a:b:c=1:2:,求cosB方法:已知三边求角,余弦定理推论1,(3)已知,求cosA方法:已知三边平方关系,余弦定理推论2, b2+c2-a2=2bccosA1解三角形三、求三角形面积公式:题型1:已知a,b,c,A 求△ABC 的面积.方法:带公式题型2:已知A,a,b+c,求△ABC 的面积.方法:四、判断三角形形状题型: b cosC c cosB asin A ,判断三角形形状方法1:角化边公式:sinA:sinB:sinC=a:b:c 或结论:方法2:边化角公式:a:b:c = sinA:sinB:sinC将原式转化为sinBcosC+sinCcosB=sin 2A,用三角恒等变换公式求解。

注:三角形内常见角度转化:五、解三角形应用举例仰角:俯角:坡度:2。

解三角形公式

解三角形公式

1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB的外接圆的半径,则有2、正弦定理的变形公式:① a= b= c=② sinA= sinB= sinC=③ a:b:c=④ a sin B = b sin C = 3、三角形面积公式: .4、等边三角形面积公式: (a 为三角形的边长)5、余弦定理:在C ∆AB 中,有6、余弦定理的变形:7、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =为直角三角形;②若 ,则90C <;③若 ,则90C >为钝角三角形.8、同角α 的正弦,余弦,正切函数的关系式为 9、若α+β=π则sin α= ,cos α=若α+β=π2 则sin α= ,cos α=1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB的外接圆的半径,则有2、正弦定理的变形公式:① a= b= c=② sinA= sinB= sinC=③ a:b:c=④ a sin B = b sin C = 3、三角形面积公式: .4、等边三角形面积公式: (a 为三角形的边长)5、余弦定理:在C ∆AB 中,有6、余弦定理的变形:7、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =为直角三角形;②若 ,则90C <;③若 ,则90C >为钝角三角形.8、同角α 的正弦,余弦,正切函数的关系式为9、若α+β=π则sin α= ,cos α=若α+β=π2 则sin α= ,cos α=。

解三角形-公式汇总

解三角形-公式汇总
四、判断三角形形状
题型: b cosC c cos B a sin A ,判断三角形形状 方法 1:角化边 公式:sinA:sinB:sinC=a:b:c 或 结论:
方法 2:边化角 公式:a:b:c = sinA:sinB:sinC 将原式转化为 sinBcosC+sinCcosB=sin2A,用三角恒等变换公式求解。 注: 三角形内常见角度转化:
型 (2)已知 a:b:c=1:2: ,求 cosB
方法:已知三边求角,余弦定理推论 1,
(3)已知
,求 cosA
方法:已知三边平方关系,余弦定理推论 2,b2+c2-a2=2bccosA1三、求三角形面积
公式:
题型 1:已知 a,b,c,A 求△ABC 的面积. 方法:带公式 题型 2:已知 A,a,b+c,求△ABC 的面积. 方法:
一、正弦定理 公 正弦定理: 式
推论 1:(边化角)
解三角形 公式汇总
解三角形
推论 2:(角化边)
题 (1)已知 sinB 求 B:一题多解型 判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。
型 (2)asin B=2b: 方法:边化角,推论 1,a:b=sinA:sinB
(3)3sin A=5sinB 或 sinA:sinB:sinC=1:2:3 方法:角化边,推论 2,sinA:sinB=a:b
五、解三角形应用举例
仰角: 俯角: 坡度:
2
解三角形
二、余弦定理

余弦定理:
推论 1:
(已知两边及夹角,求第三边) (已知三边,求角)

推论 2: (三边的平方关系)
a2+b2-c2=2abcosC b2+c2-a2=2bccosA a2+c2-b2=2accosB

三角形定理公式大全

三角形定理公式大全

三角形定理公式大全下面是一些常见的三角形定理和公式:角度定理:1. 三角形内角和定理:三角形内所有角的和为180度。

2. 直角三角形定理:直角三角形的两个锐角的和为90度。

边长定理:1. 已知两边夹角求第三边:根据余弦定理,设三角形的三个边长为a、b、c,夹角为C,则有:c² = a² + b² - 2ab · cos(C)2. 已知两边和夹角求第三边:根据余弦定理,设三角形的三个边长为a、b、c,夹角为C,则有:c² = a² + b² - 2ab · cos(C)3. 已知三角形的三边求角度:根据余弦定理,设三角形的三个边长为a、b、c,夹角分别为A、B、C,则有:cos(A) = (b² + c² - a²) / (2bc),cos(B) = (a² + c² - b²) / (2ac),cos(C) = (a² + b² - c²) / (2ab)4. 三角形中位线定理:三角形的三条中位线(从一个顶点到对边中点的线段)交于一点,且该点距离各顶点的距离等于1/2对边的长度。

面积定理:1. 海伦公式:设三角形的三边长为a、b、c,半周长为s,则三角形的面积为:面积= √(s(s-a)(s-b)(s-c))2. 三角形高公式:设三角形的底为b,对应的高为h,则三角形的面积为:面积 = 1/2 * b * h3. 直角三角形面积定理:设直角三角形的两条直角边长度为a和b,则三角形的面积为:面积= 1/2 * a * b这些定理和公式是解决三角形相关问题时常用的工具。

根据所给的已知条件,可以选取适合的定理和公式来进行计算。

三角形边长计算公式大全-求边长的公式

三角形边长计算公式大全-求边长的公式

各种三角形边长的计算公式解三角形解直角三角形(斜三角形特殊情况):勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

勾股弦数是指一组能使勾股定理关系成立的三个正整数。

比如:3,4,5。

他们分别是3,4和5的倍数。

常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等.解斜三角形:在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。

(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab斜三角形的解法:已知条件定理应用一般解法一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。

两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。

三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。

两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解。

勾股定理(毕达哥拉斯定理)内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。

几何语言:若△ABC满足∠ABC=90°,则AB²+BC²=AC²勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC 满足,则∠ABC=90°。

各种三角形边长的计算公式

各种三角形边长的计算公式

各种三角形边长的计算公式解三角形解直角三角形(斜三角形特殊情况):勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

勾股弦数是指一组能使勾股定理关系成立的三个正整数。

比如:3,4,5。

他们分别是3,4和5的倍数。

常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等.解斜三角形:在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。

(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab斜三角形的解法:已知条件定理应用一般解法一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。

两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。

三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。

两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解。

勾股定理(毕达哥拉斯定理)内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。

几何语言:若△ABC满足∠ABC=90°,则AB²+BC²=AC²勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC 满足,则∠ABC=90°。

解三角形知识点归纳(附三角函数公式)

解三角形知识点归纳(附三角函数公式)

解三⾓形知识点归纳(附三⾓函数公式)⾼中数学必修五第⼀章解三⾓形知识点归纳1 三⾓形三⾓关系: A+B+C=180 ; C=180°— (A+B);2、三⾓形三边关系: a+b>c; a-b,P( P a)( p b)( p c)10、如何判断三⾓形的形状:判定三⾓形形状时,可利⽤正余弦定理实现边⾓转化,统成边的形式或⾓的形式设 a 、b 、c 是C 的⾓、、C 的对边,则:①若 a 2 b 2 c 2,则 C 90o ;②若 a 2 b 2c 2,则 C 90o ;③若 a 2 b 2 c 2,则 C 90o ?11、三⾓形的四⼼:垂⼼三⾓形的三边上的⾼相交于⼀点重⼼⼀⼀三⾓形三条中线的相交于⼀点(重⼼到顶点距离与到对边距离之⽐为 2:1 )外⼼⼀⼀三⾓形三边垂直平分线相交于⼀点(外⼼到三顶点距离相等)内⼼⼀⼀三⾓形三内⾓的平分线相交于⼀点(内⼼到三边距离相等) 12同⾓的三⾓函数之间的关系 (1)平⽅关系:sin 2 a + cos 2 a=l (2)倒数关系: tana^cota = l (3)商的关系: tansin 丄 cos ,cotcossinB) si nC,cos(A B) cosC, tan (A B) tanC,.A B o 1 nC A B .C 」A BO 1 r cotCsin cos ,cos011 1, Idl 12 2 222 24、正弦定理 :在 C 中,a 、b 、c 分别为⾓、、接圆的半径,则有a b c 2R .sinsinsi nC5、正弦定理的变形公式:①化⾓为边:a 2Rsin , b2Rsi n ,c2RsinC ;②化边为⾓: sin a, sin b sin Cc ;C 的外2R④⼀sin sin2R c si nCa _b sin sin6、两类正弦定理解三⾓形的问题:①已知两⾓和任意⼀边,求其他的两边及⼀⾓②已知两⾓和其中⼀边的对⾓,求其他边⾓注意解的情况(⼀解、两解、三解) )③ a: b: csin :sin :sin C ; c si nC.(对于已知两边和其中⼀边所对的⾓的题型要 7、余弦定理:在 C 中,有a 2 b 22c 2bc cos 等,变形: cos.2 2 2b c a “等,2bcc 11 ⼩12 S Cbcs in abs inC acs in .=2Rsi nAsi nBsi nC=22 2abc =r(a b c) 4R 2 2R3、三⾓形中的基本关系:sin (AC 的对边,R 为 8、余弦定理主要解决的问题:①已知两边和夹⾓,求其余的量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形公式海伦-秦九韶公式假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:而公式里的p为半周长(周长的一半):注1:"Metrica"(《度量论》)手抄本中用s 作为半周长,所以和两种写法都是可以的,但多用p作为半周长。

cosC = (a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2b^2=a^2+c^2-2ac cos Bc^2=a^2+b^2-2ab cos C注:勾股定理其实是余弦定理的一种特殊情况。

变形公式cos C=(a^2+b^2-c^2)/2abcos B=(a^2+c^2-b^2)/2accos A=(c^2+b^2-a^2)/2bc海伦-秦九韶公式p=(a+b+c)/2(公式里的p为半周长)假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)] 高中数学基本不用。

已知三条中线求面积方法一:已知三条中线Ma,Mb,Mc,则S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb) *(Ma+Mb-Mc)]/3 ;方法二:已知三边a,b,c ;则S= √[p(p-a)(p-b)(p-c)];其中:p=(a+b+c)/2 ;b^2+c^2= a^2 cosA=0A=90°直角b^2+c^2< a^2 cosA<0A>90°钝角b^2+c^2> a^2 cosA>0A<90°锐角※a边必须是最大边3解三角形编辑正弦定理已知条件:一边和两角(如a、B、C,或a、A、B)一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。

余弦定理已知条件:两边和夹角(如a、b、C)一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。

已知条件:三边(如a、b、c)一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。

正弦定理(或余弦定理)已知条件:两边和其中一边的对角(如a、b、A)一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C 边,可有两解、一解或无解。

(或利用余弦定理求出c边,再求出其余两角B、C)①若a>b,则A>B有唯一解;②若b>a,且b>a>bsinA有两解;③若a<bsinA则无解。

同角三角函数间的基本关系式:·平方关系:sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α·积的关系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα·倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边,·[1]三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cos γ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sin γ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asi nα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中sint=B/(A²+B²)^(1/2)cost=A/(A²+B²)^(1/2)tant=B/AAsinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)tan(2α)=2tanα/[1-tan²(α)]·三倍角公式:sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(6 0-α)cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)c os(60-α)tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) ·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+co s α)=(1-cosα)/sinα·降幂公式sin²(α)=(1-cos(2α))/2=versin(2α)/2cos²(α)=(1+cos(2α))/2=covers(2α)/2tan²(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan²(α/2)]cosα=[1-tan²(α/2)]/[1+tan²(α/2)]tanα=2tan(α/2)/[1-tan²(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos²α1-cos2α=2sin²α1+sinα=(sinα/2+cosα/2)²·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π* 3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 cosx+cos2x+...+cosnx=[sin(n+1)x+sinnx-sinx]/2sinx证明:左边=2sinx(cosx+cos2x+...+cosnx)/2sinx =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)=[sin(n+1)x+sinnx-sinx]/2sinx=右边等式得证sinx+sin2x+...+sinnx= -[cos(n+1)x+cosnx-cosx-1]/2sinx证明:左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边等式得证[编辑本段]三角函数的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-ta nαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)[编辑本段]正余弦定理正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA 角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边斜边与邻边夹角asin=y/r无论y>x或y≤x无论a多大多小可以任意大小正弦的最大值为1 最小值为-1三角恒等式对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC证明:已知(A+B)=(π-C)所以tan(A+B)=tan(π-C)则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+ta nπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC类似地,我们同样也可以求证:当α+β+γ=nπ(n ∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ[编辑本段]部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。

相关文档
最新文档