(完整版)解三角形知识点归纳(附三角函数公式)

合集下载

高中数学知识点三角函数与解三角知识点

高中数学知识点三角函数与解三角知识点

高中数学知识点三角函数与解三角知识点在高中数学的学习中,三角函数与解三角是非常重要的一部分内容。

这部分知识不仅在数学学科中有着广泛的应用,对于物理等其他学科的学习也起着重要的基础作用。

接下来,让我们一起深入了解一下这部分知识。

一、三角函数的基本概念首先,我们要明白什么是角。

角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

按照旋转方向的不同,角可以分为正角、负角和零角。

三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

以正弦函数为例,对于一个角α,它的正弦值等于角α终边上一点的纵坐标与该点到原点距离的比值。

余弦函数则是横坐标与距离的比值,正切函数是纵坐标与横坐标的比值。

需要注意的是,三角函数的定义域和值域是有特定范围的。

例如,正弦函数和余弦函数的定义域是全体实数,值域是-1, 1;正切函数的定义域是{x |x ≠ kπ +π/2,k ∈ Z},值域是全体实数。

二、同角三角函数的基本关系同角三角函数之间存在着一些基本关系,这是解决很多三角函数问题的基础。

平方关系:sin²α +cos²α = 1。

商数关系:tanα =sinα /cosα。

这些关系在化简三角函数表达式、求解方程等问题中经常用到。

三、诱导公式诱导公式是用于将任意角的三角函数转化为锐角三角函数的一组公式。

例如,sin(π α) =sinα,cos(π +α) =cosα 等等。

掌握诱导公式可以大大简化三角函数的计算和化简。

四、三角函数的图像和性质1、正弦函数 y = sin x 的图像是一个周期为2π,振幅为 1 的波浪形曲线。

它在π/2, π/2上单调递增,在π/2, 3π/2上单调递减。

2、余弦函数 y = cos x 的图像也是一个周期为2π的曲线,振幅同样为 1。

它在0, π上单调递减,在π, 2π上单调递增。

3、正切函数 y = tan x 的图像周期为π,定义域为{x |x ≠ kπ +π/2,k ∈ Z},在每个周期内都是单调递增的。

三角函数与解三角形题型归纳及习题含详解

三角函数与解三角形题型归纳及习题含详解
2 简而言之即“奇变偶不变,符号看象限”. 题型归纳及思路提示
题型 53 终边相同的角的集合的表示与区别 思路提示
(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方 法解决.
(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也 可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标
4. 熟练运用同角三角函数函数关系式和诱导公式进行三角函数式的化简、求值
和简单恒等式的证明.
命题趋势探究
1.一般以选择题或填空题的形式进行考查.
2.角的概念考查多结合函数的基础知识.
3.利用同角三角函数关系式和诱导公式进行三角函数式的化简、求值是重要考点. 知识点精讲 一、基本概念
正角---逆时针旋转而成的角; (1)任意角 负角---顺时针旋转而成的角;
二、任意角的三角函数 1.定义 已 知 角 终 边 上 的 任 一 点 P(x, y) ( 非 原 点 O ), 则 P 到 原 点 O 的 距 离
r OP x2 y2 0 . sin y , cos x , tan y .
r
r
x
此定义是解直三角形内锐角三角函数的推广.类比,对 y ,邻 x ,斜 r , 如图 4-2 所示.
的终边逆时针旋转整数圈,终边位置不变.
注:弧度或 rad 可省略 (5)两制互化:一周角= 3600 2 r 2 (弧度),即 1800 .
r
1(弧度)
180
0
57.30
57018
故在进行两制互化时,只需记忆 1800 ,10 两个换算单位即可:如: 180
5 5 1800 1500 ; 360 36 .
C. 0, ,是第一、二象限角

(完整版)初中三角形知识点总结

(完整版)初中三角形知识点总结

图形的初步认识:三角形考点一、三角形1、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角平等边;等边平等角;大角对大边;大边对大角。

4、三角形的面积三角形的面积 = 1×底×高2考点二、全等三角形1、全等三角形的观点能够完整重合的两个三角形叫做全等三角形。

2、三角形全等的判断三角形全等的判断定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“ SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“ SSS”)。

(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“ AAS”)。

直角三角形全等的判断:关于特别的直角三角形,判断它们全等时,还有 HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“ HL”)3、全等变换只改变图形的地点,不改变其形状大小的图形变换叫做全等变换。

全等变换包含一下三种:(1)平移变换:把图形沿某条直线平行挪动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折 180°,这类变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转必定的角度到另一个地点,这类变换叫做旋转变换。

考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边平等角)推论 1:等腰三角形顶角均分线均分底边并且垂直于底边。

高三专题三角函数与解三角形总结归纳

高三专题三角函数与解三角形总结归纳

三角函数一. 任意角的概念与弧度制 (一)角的概念的推广 1.角概念的推广:在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角.按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角.习惯上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边.射线旋转停止时对应的边叫角的终边. 2.特殊命名的角的定义:(1)正角,负角,零角 :见上文.(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角、第三象限角、第四象限角. (3)轴线角:角的终边落在坐标轴上的角.终边在x 轴上的角的集合: {}|180,k k Z ββ=⨯︒∈ 终边在y 轴上的角的集合: {}|18090,k k Z ββ=⨯︒+︒∈终边在坐标轴上的角的集合:{}|90,k k Z ββ=⨯︒∈ (4)终边相同的角:与α终边相同的角:2,x k k Z απ=+∈ (5)与α终边反向的角:()21,x k k Z απ=++∈终边在y x =轴上的角的集合:{}|18045,k k Z ββ=⨯︒+︒∈ 终边在y x =-轴上的角的集合:{}|18045,k k Z ββ=⨯︒-︒∈(6)若角α与角β的终边在一条直线上,则角α与角β的关系:180,k k Z αβ=⨯︒+∈ (7)成特殊关系的两角若角α与角β的终边关于x 轴对称,则角α与角β的关系:360,k k Z αβ=⨯︒-∈ 若角α与角β的终边关于y 轴对称,则角α与角β的关系:360180,k k Z αβ=⨯︒+︒-∈ 若角α与角β的终边互相垂直,则角α与角β的关系:36090,k k Z αβ=⨯︒+±︒∈注意: (1)角的集合表示形式不唯一; (2)终边相同的角不一定相等,相等的角终边一定相同.(二)弧度制1.弧度制的定义:lRα=2.角度与弧度的换算公式:180π︒= 3602π︒= 10.01745︒= 157.305718'=︒=︒注意: (1)正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;(2)一个式子中不能角度、弧度混用.二. 任意角三角函数 (一)三角函数的定义 1.任意角的三角函数定义正弦r y =αsin ,余弦r x =αcos ,正切xy=αtan ,余切y x =αcot2.三角函数的定义域(二)单位圆与三角函数线 单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线;OM 表示α角的余弦值,叫做余弦线. 如图(2)AT 表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.(三)同角三角函数的基本关系式(1)sin csc 1,cos sec 1,tan cot 1αααααα⋅=⋅=⋅= (2)商数关系:ααααααcot sin cos ,tan cos sin == (3)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+=(四)诱导公式(奇变偶不变,符号看象限)()()()()sin sin cos cos tan tan cot cot πααπααπααπαα+=-+=-+=+= ()()()()s i n 2s i n c o s 2c o s t a n 2t a n c o t 2c o t πααπααπααπαα-=--=-=--=-()()()()s i n s i n c o s c o s t a n t a n c o t c o tπααπααπααπαα-=-=--=--=-sin cos 2cos sin 2tan cot 2πααπααπαα⎛⎫+= ⎪⎝⎭⎛⎫+=- ⎪⎝⎭⎛⎫+=- ⎪⎝⎭ s i n c o s 2c o s s i n 2t a n c o t 2πααπααπαα⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭三. 三角函数的图象与性质(一)基本图象1.正弦函数2.余弦函数3.正切函数(二)函数图象的性质正弦、余弦、正切、余切函数的图象的性质四. 和角公式 两角和与差的公式βαβαβαsin sin cos cos )cos(-=+βαβαβαsinsin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+()s i n s i n c o sc o s s i nαβαβαβ-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-五. 倍角公式和半角公式 (一)倍角与半角公式αααcos sin 22sin =2cos 12sin αα-±=ααααα2222sin211cos 2sin cos 2cos -=-=-= 2cos 12cos αα+±= ααα2tan 1tan 22tan -=s i n 1c o s t a n 21c o s s i n αααααα-==+(二)万能公式2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=六. 三角函数的积化和差与和差化积公式()()1s i n c o s s i n s i n 2αβαβαβ=++-⎡⎤⎣⎦ ()()1c o ss i n s i n s i n 2αβαβαβ=+--⎡⎤⎣⎦ ()()1c o s c o s c o s c o s 2αβαβαβ=++-⎡⎤⎣⎦ ()()1s i n s i n c o s c o s 2αβαβαβ=-+--⎡⎤⎣⎦ s i n s i n 2s i n c o s 22αβαβαβ+-+= 2c o s 2c o s 2c o s c o s βαβαβα-+=+s i n s i n 2c o s s i n 22αβαβαβ+--= co s c o s 2s i n s i n 22αβαβαβ+--=-sin15cos 754︒=︒=sin 75cos154︒=︒=tan15cot 752︒=︒=tan 75cot152︒=︒=+七. 辅助角公式(合一变形)()sin cos ,tan ,,22b a x b x x a ππϕϕϕ⎛⎫+=+=∈- ⎪⎝⎭一. 恒等变换 (一)基础题型1.(2015·福建)若5sin 13α=-,且α为第四象限角,则tan α=( ) A.125B.125- C.512D.512-2.已知α是第二象限的角,()4tan 23πα+=-,则tan α=________3.=________4.已知0θπ<<,1tan 47πθ⎛⎫+= ⎪⎝⎭,则sin cos θθ+=________5.方程()233102x ax a a +++=>两根tan ,tan αβ,且,,22ππαβ⎛⎫∈- ⎪⎝⎭,则αβ+=________6.已知()tan 4cos 2,22ππθπθθ⎛⎫-=-< ⎪⎝⎭,则tan2θ=( )A.C.(二)诱导公式1.已知奇函数()f x 在[]1,0-上为单调减函数,若,αβ为锐角三角形内角,则( )A.()()cos cos f f αβ>B.()()sin sin f f αβ>C.()()sin cos f f αβ<D.()()sin cos f f αβ>2.已知,,2παβπ⎛⎫∈ ⎪⎝⎭且cos sin 0αβ+>,则下列各式中成立的是( )A.αβπ+<B.32παβ+>C.32παβ+=D.32παβ+<(三)互余互补sin cos 2πθθ⎛⎫-= ⎪⎝⎭ c o s s i n 2πθθ⎛⎫-= ⎪⎝⎭ sin()sin πθθ-= c o s ()c o sπθθ-=-1.已知4cos 35πθ⎛⎫-= ⎪⎝⎭,则sin 6πθ⎛⎫+= ⎪⎝⎭________;2cos 3πθ⎛⎫+=⎪⎝⎭2.(2016·广州检测)已知1cos 123πθ⎛⎫-= ⎪⎝⎭, 则5sin 12πθ⎛⎫+=⎪⎝⎭( )A.13 B.3C.13-D.3-3.(2017·合肥模拟)已知1cos cos ,,63432ππππααα⎛⎫⎛⎫⎛⎫+⋅-=-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求sin 2α的值; (2)求1tan tan αα-的值.(四)配凑角(已知条件会给θ范围)1.已知0,2πα⎛⎫∈ ⎪⎝⎭,若3cos 65πα⎛⎫+= ⎪⎝⎭,则sin 12πα⎛⎫-= ⎪⎝⎭2.设()21tan ,tan 544παββ⎛⎫+=-= ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( )A.138B.322C.1318D.13223.(2017·成都模拟)若()sin 2,sin 510αβα=-=且3,,,42ππαπβπ⎡⎤⎡⎤∈∈⎢⎥⎢⎥⎣⎦⎣⎦,则αβ+=( ) A.74πB.94πC.54π或74πD.54π或94π4.若()111cos ,cos ,0,,,71422ππααβααβπ⎛⎫⎛⎫=+=-∈+∈ ⎪ ⎪⎝⎭⎝⎭,则β=( )A.3π- B.6πC.3πD.6π-5.若3335,,0,,cos ,sin 44445413πππππαβαβ⎛⎫⎛⎫⎛⎫⎛⎫∈∈-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()sin αβ+=________6.已知sin sin 3παα⎛⎫++= ⎪⎝⎭cos 3πα⎛⎫-= ⎪⎝⎭( )A.45-B.35-C.45D.35(五)升角(一倍角、二倍角转换) 解题思路:2cos 212sin θθ=- 2c o s 22c o s 1θθ=-一) 升角+诱导公式1.(2016·宿州模拟)若1sin 43πα⎛⎫+= ⎪⎝⎭,则cos 22πα⎛⎫-= ⎪⎝⎭( )A.9B.9-C.79D.79-2.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭=( )A.19-C. D.193.(2016·南昌三模)已知tan 24πα⎛⎫+= ⎪⎝⎭,则tan 2α=( )A.34B .35C.34-D.35-4.已知1sin 43x π⎛⎫+= ⎪⎝⎭,则sin 42cos3sin x x x -=( )A.79B.79-C.9D.9-二)升角+互余、互补1.已知1sin 33x π⎛⎫+= ⎪⎝⎭,则5sin cos 233x x ππ⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭________2.(2017·江西新余三校联考)已知7cos 238x π⎛⎫-=- ⎪⎝⎭,则sin 3x π⎛⎫+= ⎪⎝⎭( )A.14B.78C.14±D.78±三)升角+配凑1.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭的值为( )A.19-B.9C.9-D.192.已知33cos ,4522πππαα⎛⎫+=≤< ⎪⎝⎭,则cos 24πα⎛⎫+= ⎪⎝⎭________3.已知cos 0,4102ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭________ (六)平方一)sin cos c θθ+=解题思路:2(sin cos )1sin 2θθθ±=± 1.已知4sin cos 3αα-=,则sin 2α=________2.已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα+=,则cos α=________3.已知1sin cos 3αα+=,则2sin 4πα⎛⎫-= ⎪⎝⎭( )A.118B.1718C.89D.94.已知()1sin cos ,,05x x x π+=∈-.(1)求sin cos x x -的值;(2)求2sin 22sin 1tan x xx+-的值.5.已知4sin cos 034πθθθ⎛⎫+=<< ⎪⎝⎭,则sin cos θθ-=________6.若,2παπ⎛⎫∈ ⎪⎝⎭,且3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α=( )A.118B.118-C.1718D.1718-7.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值为( )A.12-+B.12+ C.18.若,22sin sin =+βα则βαcos cos +的取值范围________二)sin cos a b c θθ+=1.已知2sin cos 2αα+=,则tan 2α=________2.(2016·厦门质检)若2sin 21cos2αα=-,则tan α=________3.(2016·开封模拟)已知12sin 5cos 13αα-=,则tan α=( )A.512- B.125-C.125±D.712±4.已知sin αα+=tan α=( )A.2C.2-D.(七)12tan tan sin 2θθθ+= (2016·青岛模拟)化简:211tan sin 22cos tan 2αααα⎛⎫+⋅-= ⎪⎝⎭________(八)齐次式 1.若tan 2α=,则2sin 3cos 4sin 9cos αααα-=-________;224sin 3sin cos 5cos αααα--=________2.(2015·广东)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.3.(2016·天一大联考)已知函数()()log 24a f x x =-+(0a >且1a ≠),其图象过定点P ,角α的始边与x 轴的正半轴重合,顶点与坐标原点重合,终边过点P ,则sin 2cos sin cos αααα+=-________4.(广东省广州2017届高三下学期第一次模拟)已知tan 2θ=,且π0,2θ⎛⎫∈ ⎪⎝⎭,则co s 2θ=( ) A.45B.35C.35-D.45-5.已知3tan 5α=-,则sin 2α=( )A.1517B.1517- C.817-D.8176.若sin 3sin 02παα⎛⎫++= ⎪⎝⎭,则cos2α=( )A.35-B.35C.45-D.45二. 三角函数图象的变换 (一)图象平移和伸缩1.将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位,所得函数图象的一条对称轴的方程是( )A.12x π= B.6x π=C.3x π=D.12x π=-2.已知函数()()()sin cos 0,2f x x x πωϕωϕωϕ⎛⎫=+++>< ⎪⎝⎭的最小正周期为π,且()()f x f x -=,则( )A.()f x 在0,2π⎛⎫⎪⎝⎭上单调递减B.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递减C.()f x 在0,2π⎛⎫⎪⎝⎭上单调递增D.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递增3.将函数()()cos f x x x x R =∈的图象向左平移()0αα>个单位长度后,所得到的图象关于原点对称,则α的最小值为( )A.12πB.6πC.3πD.56π4.已知函数()()()sin 2cos 0y x x πϕπϕϕπ=+-+<<的图象关于直线1x =对称,则sin 2ϕ=______5.(2014·辽宁卷)将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( )A.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减B.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增C.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减D.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增6.(2017·渭南模拟)由()y f x =的图象向左平移3π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,得到2sin 36y x π⎛⎫=- ⎪⎝⎭的图象,则()f x 的解析式为( )A.()32sin 26f x x π⎛⎫=+ ⎪⎝⎭B.()2sin 66f x x π⎛⎫=- ⎪⎝⎭C.()32sin 23f x x π⎛⎫=+ ⎪⎝⎭D.()2sin 63f x x π⎛⎫=+ ⎪⎝⎭7.(2014·安徽)若将函数()sin 2cos2f x x x =+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值为( ) A.8πB.4πC.38πD.5π48.(2016·广东汕头模拟)将函数()sin 6y x x R π⎛⎫=+∈ ⎪⎝⎭的图象上所有点的纵坐标不变,横坐标缩小到原来的12倍,再把图象上各点向左平移4π个单位长度,则所得的图象的解析式为( ) A.5sin 26y x π⎛⎫=+⎪⎝⎭B.1sin 26y x π⎛⎫=+ ⎪⎝⎭C.2sin 23y x π⎛⎫=+ ⎪⎝⎭D.15sin 212y x π⎛⎫=+ ⎪⎝⎭9.当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=-⎪⎝⎭是( ) A.奇函数且图象关于点,02π⎛⎫⎪⎝⎭对称B.偶函数且图象关于点(),0π对称C.奇函数且图象关于直线2x π=对称D.偶函数且图象关于点,02π⎛⎫⎪⎝⎭对称10.(2016·长沙四校联考)将函数()()sin 0,22f x x ωϕωϕ⎛⎫=+>-≤< ⎪⎝⎭图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度得到sin y x =的图象,则函数()f x 的单调递增区间为( ) A.52,2,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B.52,2,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C.5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D.5,,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦11.为了得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,可将函数sin 2y x =的图象( )A.向左平移56π个单位长度 B.向右平移56π个单位长度 C.向左平移512π个单位长度D.向右平移512π个单位长度12.(2013·新课标全国卷Ⅱ)函数()()cos 2y x ϕπϕπ=+-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ=________二)图象求解析式1.若函数()f x 具有以下两个性质:①()f x 是偶函数;②对任意实数x ,都有44f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()f x 的解析式可以是( ) A.()cos f x x =B.()cos 22f x x π⎛⎫=+ ⎪⎝⎭C.()sin 42f x x π⎛⎫=+ ⎪⎝⎭D.()cos6f x x =2.已知()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<在同一周期内当12x =时取最大值,当12x =时取最小值,与y 轴的交点为(,则()f x =____________3.已知函数)0,()sin()(πϕϕ<<∈+=R x x x f ,若点1,62π⎛⎫ ⎪⎝⎭在函数26y f x π⎛⎫=+ ⎪⎝⎭的图象上,则ϕ=_________4.已知函数()()2sin f x x ωϕ=+,对于任意x 都有66f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则6f π⎛⎫= ⎪⎝⎭________5.(2017·安徽江南十校联考)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为4π,且对任意x R ∈,都有()3f x f π⎛⎫≤ ⎪⎝⎭成立,则()f x 图象的一个对称中心的坐标是( )A.2,03π⎛⎫- ⎪⎝⎭ B.,03π⎛⎫- ⎪⎝⎭C.2,03π⎛⎫⎪⎝⎭D.5,03π⎛⎫⎪⎝⎭6.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()3cos 2g x x ϕ=+的图象的对称中心完全相同,若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围________7.(2015·湖南)将函数()sin 2f x x =的图象向右平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的12,x x ,有12min 3x x π-=,则ϕ=( ) A.512πB.3πC.4πD.6π8.(2016·安徽芜湖一模)函数()()sin ,0,2f x x x R ωϕωϕ⎛⎫=+∈>< ⎪⎝⎭的部分图象如图所示,若122,,63x x ππ⎛⎫∈ ⎪⎝⎭,且()()12f x f x =,则()12f x x +=( )A.2-B.12-C.12D.29.(2017·石家庄模拟)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则1124f π⎛⎫= ⎪⎝⎭( )A.2- B.2-C.2-D.1-10.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则ϕ=( )A.6π- B .6πC.3π-D.3π11.已知函数()()sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则6y f x ⎛⎫=+ ⎪⎝⎭取得最小值时x 的集合为________12.已知函数()()cos f x A x ωϕ=+的图象如图所示,223f π⎛⎫=- ⎪⎝⎭,则6f π⎛⎫-= ⎪⎝⎭( ) A.23-B.12-C.23D.1213.(2016·泉州质检)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若tan 3α=,则8f πα⎛⎫+= ⎪⎝⎭( )A.35-B.45-C. D.三.特殊三角函数最值1.当06x π<≤时,函数()22cos cos sin sin xf x x x x=-的最小值为________2.求函数()2cos ,0,sin xy x xπ-=∈的最小值.3.(2016·全国Ⅱ)函数()cos 26cos 2f x x x π⎛⎫=+- ⎪⎝⎭的最大值为( )A.4B.5C.6D.74.函数273sin 2cos ,,66y x x x ππ⎡⎤=--∈⎢⎥⎣⎦的值域为________5.求函数2sin 12sin 1x y x +=-的值域.6.求函数sin 2cos xy x=-的最小值.7.求函数2cos y x=+的值域.8.若0,2πα⎛⎫∈ ⎪⎝⎭,则2214s in c o s αα+的最小值为________9.求函数()()1sin 3sin 2sin x x y x++=+的最值及对应的x 的集合.四.参数相关1.已知0ω>,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上是减函数,则ω的取值范围________2.(2016·全国乙卷)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5,1836ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( )A.11B.9C.7D.53.已知函数()()2sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭在区间,126ππ⎛⎤- ⎥⎝⎦则ϕ的取值范围( )A.0,3π⎡⎤⎢⎥⎣⎦B.,36ππ⎡⎤-⎢⎥⎣⎦C.,04π⎡⎫-⎪⎢⎣⎭D.,03π⎡⎤-⎢⎥⎣⎦4.若函数()()s i n 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=________5.已知0ω>, ()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围( )A.15,24⎡⎤⎢⎥⎣⎦B.13,24⎡⎤⎢⎥⎣⎦C.10,2⎛⎫⎪⎝⎭D.(]0,26.若已知0ω>,函数()cos 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递增,则ω的取值范围________7.已知()()sin 0,363f x x f f πππωω⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且()f x 在区间错误!未找到引用源。

第5章 三角函数与解三角形公式

第5章 三角函数与解三角形公式

三角函数与解三角形公式总结【预备知识点】一、任意角与弧度制(一)任意角1.任意角的概念:规定一条射线绕其端点任意方向旋转所形成的角。

2.任意角的分类:(1)正角:规定一条射线绕其端点逆时针方向旋转所形成的角。

(2)负角:规定一条射线绕其端点顺时针方向旋转所形成的角。

(3)零角:规定一条射线绕其端点无任意方向旋转所形成的角,始边与终边重合的角。

口诀:正逆负顺零重合3.相等角、相反角与角的运算(1)相等角:旋转方向相同且旋转量相等。

(2)相反角:旋转方向相反且旋转量相等。

(3)角的运算:线性加减运算与数乘运算。

4.常见误区:(1)锐角是第一象限角,但是第一象限角不一定是锐角,因为有周期。

例如420°。

(2)钝角是第二象限角,但是第二象限角不一定是钝角,因为有周期。

例如495°。

(3)直角不是任意象限角,属于y轴的特殊角。

(4)平角、周角属于轴线角,它不属于任何一个象限角。

(二)弧度制1.弧长公式及其意义(1)弧长公式:l=nπr180⟺lr=n∗π180=|α|⟺l=|α|r(2)弧长公式的意义:(i)圆心角α所对的弧长与半径r的比值,只与α大小有关。

(ii)弧长长度等于半径长的圆弧所对的圆心角叫做1弧度的角,用rad表示,读作弧度。

其中rad可省略。

(3)一般地,正角的弧度数是正数,零角的弧度数是0,负角的弧度数是一个负数。

2.角度制与弧度制的互换依据:180°=π rad{1°=π180rad≈0.01745 rad 1 rad=(180π)°≈57.30°=57°18′(三)常见的角度制与弧度制互换表示二、三角函数常用特殊值【大重点,熟练背诵】【必考知识点】一、三角函数概念(1)定义式【熟记理解】(2)同角三角函数的基本关系【大重点题型:化弦为切经常用到,结合诱导公式与恒等变换】(i)平方关系【重点记第一个】sin2x+cos2x=11+cot2x=csc2x1+tan2x=sec2x(ii)商数关系【重点记第一个】tanx=sinx cosxcotx=cosx sinx(iii)倒数关系tanx∗cotx=1sinx∗cscx=1cosx∗secx=1(3)三角函数在各象限的符号【大重点并背诵】二、诱导公式【大重点,以下表格全背】诱导公式的基本思路【以第1组~第4组为例】:(1)首先,任意负角的三角函数转化成任意正角的三角函数【用公式3或1】(2)其次,任意正角的三角函数转化成0∼2π的三角函数【用公式1】(3)最后,0∼2π的三角函数转化成锐角三角函数【用公式2或4】三、三角恒等变换【大重点,所有公式都要背】1.两角和与差的正弦、余弦、正切Cα−β:cos(α−β)=cosα∗cosβ+sinα∗sinβCα+β:cos(α+β)=cosα∗cosβ−sinα∗sinβSα−β:sin(α−β)=sinα∗cosβ−cosα∗sinβSα+β:sin(α+β)=sinα∗cosβ+cosα∗sinβTα−β:tan(α−β)=tanα−tanβ1+tanα∗tanβTα+β:tan(α+β)=tanα+tanβ1−tanα∗tanβ扩展:三角和公式Cα+β+γ:cos(α+β+γ)=cosα∗cosβ∗cosγ−cosα∗sinβ∗sinγ−sinα∗cosβ∗sinγ−sinα∗sinβ∗cosγSα+β+γ:sin(α+β+γ)=sinα∗cosβ∗cosγ+cosα∗sinβ∗cosγ+cosα∗cosβ∗sinγ−sinα∗sinβ∗sinγTα+β+γ:tan(α+β+γ)=tanα+tanβ+tanγ−tanα∗tanβ∗tanγ1−tanα∗tanβ−tanα∗tanγ−tanβ∗tanγ2.二倍角的正弦、余弦、正切C2α: cos2α=cos2α−sin2α=1−2sin2α=2cos2α−1; cos2α=1+cos2α2,sin2α=1−cos2α2S2α: sin2α=2sinα∗cosαT2α: tan2α=2tanα1−tan2α扩展1:半角公式Cα2: cosα2=±√1+cosα2Sα2: sinα2=±√1−cosα2Tα2: tanα2=sinα1+cosα=1−cosαsinα=±√1−cosα1+cosα注意:正负由α2所在的象限决定!其中Cα: cosα=cos2α2−sin2α2=1−2sin2α2=2cos2α2−1=1−tan2α21+tan2α2Sα: sinα=2sin α2∗cosα2=2∗tanα21+tan2α2Tα:tanα=2∗tanα2 1−tan2α2扩展2:三倍角公式S3α: sin3α=3sinα−4sin3α=4sinα∗sin(π3−α)∗sin(π3+α)C3α: cos3α=4cos3α−3cosα=4cosα∗cos(π3−α)∗cos(π3+α)T3α: tan3α=3tanα−tan3α1−3tan3α=tanα∗tan(π3−α)∗tan(π3+α)扩展3:四倍角公式S4α: sin4α=−4∗[cosα∗sinα∗(2sin2α−1)]C4α: cos4α=1−8∗cos2α∗sin2αT4α: tan4α=4tanα−4tan3α1−6tan2α+tan4α扩展4:五倍角公式S5α: sin5α=16sin5α−20sin3α+5sinαC5α: cos5α=16cos5α−20cos3α+5cosαT5α: tan5α=5−10tan2α+tan4α1−10tan2α+5tan4α3.和差化积公式sin α+sin β=2sin α+β2∗cosα−β2sin α−sin β=2cos α+β2∗sinα−β2cos α+cos β=2cos α+β2∗cosα−β2cos α−cos β=−2sin α+β2∗sinα−β2tan α+tan β=sin(α+β) cosα∗cosβtan α−tan β=sin(α−β) cosα∗cosβcot α+cot β=sin(α+β) sinα∗sinβcot α−cot β=−sin(α−β) sinα∗sinβtan α+cot β=cos(α−β) cosα∗sinβtan α−cot β=−cos(α+β) cosα∗sinβsin2α−sin2β=sin(α+β)∗sin(α−β)cos2α−cos2β=−sin(α+β)∗sin(α−β)sin2α−cos2β=−cos(α+β)∗cos(α−β)cos2α−sin2β=cos(α+β)∗cos(α−β)记忆口诀:同名和差三角积,(sin α±sin β或cos α±cos β:等式左边只有同是正弦或同是余弦才可以相加减。

高中三角函数及解三角形知识点总结(高考复习)

高中三角函数及解三角形知识点总结(高考复习)
3、三角形面积公式:
= 2 cos 2 α − 1 = 1 − 2 sin 2 α .
变形如下:
1 + cos 2α = 2 cos 2 α 升幂公式: 2 1 − cos 2α = 2sin α cos 2 α = 1 (1 + cos 2α ) 2 降幂公式: sin 2 α = 1 (1 − cos 2α ) 2
y = sin x 在 x ∈ [0, 2π ] 上的五个关键点为:
π 3π (0, 0) ( , , 1 ) ( , π, 0) ( , ,) -1( , 2π , 0) . 2 2
-1-
§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:
y
2、记住余切函数的图象:
y
y=tanx
y=cotx
y = A sin ω x
横坐标变为原来的 | 平 移
ϕ ω
2− 3
§ 3.1.2 、两角和与差的正弦、余弦、正切公式
1 ω
|倍
个 单 位
1、 sin (α + β ) = sin α cos β + cos α sin β 2、 sin (α − β ) = sin α cos β − cos α sin β
r = x2 + y 2 ) sin α = x y x y , cos α = , tan α = , cot α = y r r x
π sin + α = cos α , 2 π cos + α = − sin α . 2
§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:
ymax + ymin . 2
ymax − ymin , 2

(完整版)三角函数及解三角形知识点总结

(完整版)三角函数及解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==,()tan ,0yx xα=≠三角函数值只与角的大小有关,而与终边上点P 的位置无关。

2.三角函数在各象限的符号:(一全二正弦,三切四余弦)+ + - + - + - - - + + -sin α cos α tan α3. 同角三角函数的基本关系式:(1)平方关系:22221sincos 1,1tan cos αααα+=+=(2)商数关系:sin tan cos ααα=(用于切化弦) ※平方关系一般为隐含条件,直接运用。

注意“1”的代换4.三角函数的诱导公式诱导公式(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限)Ⅰ)⎪⎩⎪⎨⎧=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)⎪⎩⎪⎨⎧-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ⎪⎩⎪⎨⎧=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)⎪⎩⎪⎨⎧-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)⎪⎪⎩⎪⎪⎨⎧=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)⎪⎪⎩⎪⎪⎨⎧-=+=+ααπααπsin )2cos(cos )2sin(5.特殊角的三角函数值6.三角函数的图像及性质 sin y x =cos y x = tan y x =图像定义域 R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k Z ∈时,max 1y =;当22x k ππ=-()k Z ∈时,当()2x k k Z π=∈时,max 1y =;当2x k ππ=+()k Z ∈时,min 1y =-.既无最大值也无最小值度0 30 45 60 90 120 135 150 180︒270360弧度6π 4π 3π 2π 23π 34π 56π π32π 2πsin α122232132 22121cos α132 2212 012- 22- 32- 1- 0 1tan α 0 3313无3-1-33-无函数 性 质7.函数sin()y A x ωϕ=+图象的画法: ①“五点法”――设X x ωϕ=+,令X =0,3,,,222ππππ求出相应的x 值,计算得出五点的坐标,描点后得出图象; ②图象变换法:这是作函数简图常用方法。

三角函数和解三角形知识点汇总

三角函数和解三角形知识点汇总

三角函数和解三角形知识点汇总知识点一三角函数(一)、角的概念的推广1.定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.分类:按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.3.终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.(二)、弧度制的定义和公式1.定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.公式(三)、任意角的三角函数(四)、同角三角函数的基本关系 1.平方关系:sin 2α+cos 2α=1. 2.商数关系:sin αcos α=tan α.(五)、三角函数的诱导公式知识点二 三角函数的图像与性质(一)、用五点法作正弦函数和余弦函数的简图1.正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).2.余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).(二)、正弦、余弦、正切函数的图象与性质(下表中k ∈Z )知识点三函数y=A sin(ωx+φ)的图像及应用(一)、“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:1.定点:如下表所示.2.作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.3.扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.(二)、函数y=A sin(ωx+φ)中各量的物理意义当函数y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞) 表示一个振动量时,几个相关的概念如下表:(三)、函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径知识点四 三角恒等变换(一)、两角和与差的正弦、余弦和正切公式sin(α±β)=sin αcos β±cos αsin β. cos(α∓β)=cos αcos β±sin αsin β. tan(α±β)=tan α±tan β1∓tan αtan β.(二)、二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.(三)、有关公式的逆用、变形等 1.tan α±tan β=tan(α±β)(1∓tan αtan β). 2.cos 2α=1+cos 2α2, sin 2α=1-cos 2α2. 3.1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.(四)、函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=a 2+b 2cos(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=a b .知识点五 解三角形(一)、正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则(二)、S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.(三)、实际问题中的常用角1.仰角和俯角:在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角:从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫作方位角.如B点的方位角为α(如图2).3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五 第一章解三角形知识点归纳1 三角形三角关系:A+B+C=180 ; C=180°— (A+B);2、三角形三边关系: a+b>c; a-b<c 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.2 2 2 h c a7、余弦定理:在 C 中,有a 2 b 2 c 2 2bc cos 等,变形:cos等,2bc,P( P a)(p b)( p c)10、 如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一 成边的形式或角的形式设 a 、b 、c 是 C 的角、 、C 的对边,则: ①若 a 2b 2c 2,则 C 90o ;②若 a 2 b 2 c 2,则 C 90°;③若 a 2 b 2 c 2,则 C 90° •11、 三角形的四心:垂心 -- 三角形的三边上的高相交于一点重心一一三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为 2:1 )外心一一三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心一一三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系(1)平方关系: sin 2 a + cos 2 a=l (2)倒数关系: tana^cota = lsin(3)商的关系:tan ------------ ,cotcosB) si nC,cos(A B) cosC, tan (A B) tanC,.A B o 1n C A B .C + A B cotCsin cos ,cossin - tan2 2 22 224、正弦定理 :在 C 中,a 、b 、c 分别为角 、 、接圆的半径,则有ab c 2R .sinsinsi nC5、正弦定理的变形公式:①化角为边: a 2Rsin , b2Rsi n ,c2RsinC ; ②化边为角:sina, sinbsin C c ;C 的外③ a: b: c sin :sin :sin C ; ④一sin sincsi nCa_bsinsinc si nC②已知两角和其中一边的对角,求其他边角 注意解的情况(一解、两解、三解) ).(对于已知两边和其中一边所对的角的题型要c 1 1 小1 2S Cbcs in abs inC acs in .=2Rsi nAsi nBsi2 2 2abc =r(a b c) 4R2sin2R2R 2R C 的对边,R 为 3、三角形中的基本关系:sin (A8、 余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

②已知三边求角)9、 三角形面积公式:特殊角的三角函数值三角、\ 函数值\30 456090sin 0 12422価2icos 1 鱼2至2120 tan 0 旦31<3不存在k三角函数诱导公式:“()”记忆口诀:“奇变偶不变,符号看象限”,是指2k(—),k € Z的三角函数值,当k为奇数时,正弦变余弦,余弦变正弦(正切,余切;正2割、余割也同样);当k为偶数时,函数名不变。

然后符号与’将a看成锐角时原三角函数值的正负号’一致。

三角函数的图像与性质:2 7有关函数y Asin( x ) B (其中A 0, 0)2最大值是A B ,最小值是B A ,周期是T ,频率是f ,相位是x .2初相是;其图象的对称轴是直线x k -(k Z),凡是该图象与直线y B的交点都2是该图象的对称中心。

函数y = sin(3x + )的图象与函数y = sin x的图象的关系:由y = sin x的图象变换出y = sin(3 x+ )的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

途径一:先平移变换再周期变换(伸缩变换)先将y= sin x的图象向左(>0)或向右(v0 =平移丨丨个单位,再将图象上各点的横坐标变为原来的丄倍(3 >0),便得y= sin(w x+ )的图象。

(先相位变换,再周期变换)途径二:先周期变换(伸缩变换)再平移变换。

1先将y = sin x的图象上各点的横坐标变为原来的倍(3 >0),再沿x轴向左(>0)或向右(v 0=平移1一1个单位,便得y = sin(3 x + )的图象。

(先周期变换,再相位变换)对称轴与对称中心:y sin x的对称轴为x k 三,对称中心为(k ,0) k Z ;~,0);y cosx的对称轴为x k ,对称中心为(kky=tan x 图像的对称中心是(——,0),无对称轴。

2★诱导公式★(以下k € Z)公式一:设 a 为任意角,终边相同的角的同一三角函数 的值相等:sin ( 2k n + a) = sin a cos ( 2k n + a) = cos a tan ( 2k n+ a) = tan a 公式二:设 a 为任意角,n + a 的三角函数值与a 的三角函数值之间的关系:sin ( n + a)=— sin a cos ( n + a)=— cos a tan ( n + a) = tan a 公式三:任意角 a 与-a 的三角函数值之间的关系: sin (—a )=— sin a cos (—a )= cos a tan (—a )=— tan a公式四:利用公式二和公式三可以得到n - a 与a 的三角函数值之间的关系:sin ( n — a ) = sin a cos ( n — a) =— cos a tan ( n — a ) =— tan a 公式五:利用公式一和公式三可以得到 2n - a 与a的三角函数值之间的关系:同角三角函数的基本关系式商的关系: sin a /cos a=tan a 平方关系:sin 2a +cos 2a=1两角和差公式 两角和与差的 三角函数公式sin ( a+ 3 ) = sin a cos 升 cos a sin 3 sin ( a — 3) = sin a cos 3— cos a sin 3cos ( a+ 3) = cos a cos 3 — sin a sin 3 cos ( a — 3 ) = cos a cos 3 + sin a sin 3 tan (a +3 = (tan a +tan 3/)(1- tana tan 3)tan ( a — 3) = (tan a — tan 3 ) (1 + tan a ・ tan 3 )二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式sin2 a=2sin a cos acos2 a = cos A 2( a)— sin A 2( a = 2cos A 2( a)— 1 = 1 — 2sin^2( a) tan2 a= 2tan a /[1— tan 人2( a )]半角公式 半角的正弦、余弦和正切公式( 降幂扩角公式sin 2(a /2)=(1—cos a)/2 cos 2(a /2)=(1+cos a)/2 tan 2(a /2=) (1—cos a)/(1+cos a) 另也有 tan( a /2)=(1—cos a )/sin a =sin a /(1+cos a )万能公式万能公式sin ( (2n — a =— sin acos (2 n — a ) = cos a tan (2 n — a )= — tan a公式六: n /2 土及 3n /2 ± a ■与 a 的三角函数值之间的关系:sin ( (n /2+ a = cos a cos ( (n /2+ a) =— sin a tan ( n /2+ a ) =— cot a cot (n /2+ a = — tan asin ( n /2— a ) = cos a cos ( n /2— a)=sin atan (n/2—a =cot acot ( n /2— a ) = tan a sin ( 3 n /2+ a ) =— cos a cos (3 n /2 +a = sin atan (3 n /2 + a) =— cot acot(3n /2 + a =— tansin ( (3 n /2 - a = — cos aco s ( 3 n /2— a ) = — sin a tan (3n /2 — a = cot acot(3 n /2 — a ) = tan a同角三角函数基本关系sin a =2tan( a /2)/[1+tan 2( a /2)]cos a =[1 -tan 2( a /2)]/[1+tan 2( a /2)] tan a=2tan( a /2)/[1 -tan 2(a/2)] 三倍角公式三倍角的正弦、余弦和正切公式sin3 a= 3sin a —4sin 3a cos3 a = 4cos 3a—3cos atan3 a=( 3tan a—tan 3a) /( 1 —3tan 2a)和差化积公式三角函数的和差化积公式sin a+ sin 3= 2sin[( 处3 )/2] • cos[— a )/2]sin a—sin 3= 2cos[( a+ 3 )/2] • sin[— a )/2]cos a + cos 3 = 2cos[( a+ 3 )/2] • COS[— 3 )/2] cos a —cos 3 = —2sin[( 氏 3 )/2] • sin[—妝)/2]积化和差公式三角函数的积化和差公式sin a • cos = [sin( 卅 3 ) sin( a— 3)]/2cos a • sin 书[sin( d- 3 ) sin( a— 3)]/2cos a • cos = [cos( a+ 3 —COS(a— 3 )/2sin a • sin =—[cos( a— 3 ) cos( a— 3 )/2。

相关文档
最新文档