平行线的判定(复习讲义)01(教师版)

合集下载

平行线的判定 教案

平行线的判定 教案

平行线的判定教案教案标题:平行线的判定教案目标:1. 理解平行线的定义和性质。

2. 学会使用不同方法判定平行线。

3. 运用所学知识解决与平行线相关的问题。

教学重点:1. 平行线的定义和性质。

2. 平行线的判定方法。

教学难点:1. 运用所学知识解决与平行线相关的问题。

教学准备:1. 平行线的定义和性质的课件或教材。

2. 平行线判定的示意图或实物。

教学过程:一、导入(5分钟)1. 引入平行线的概念,让学生回顾并复习平行线的定义。

2. 提问:如何判断两条线段是平行的?二、知识讲解(15分钟)1. 讲解平行线的性质:平行线在同一平面内,永不相交,且任意一条直线与平行线的交线与另一条平行线的交线平行。

2. 介绍平行线的判定方法:a. 判定法一:同位角相等法。

当两条直线被一条横截线所切割时,同位角相等,则这两条直线平行。

b. 判定法二:内错角相等法。

当两条直线被一条横截线所切割时,内错角相等,则这两条直线平行。

c. 判定法三:平行线定理。

若两条直线分别与第三条直线相交,且同侧内角或同侧外角相等,则这两条直线平行。

三、示例演练(20分钟)1. 通过示意图或实物展示不同判定方法的应用。

2. 以具体的例题进行练习,引导学生运用不同的判定方法判断线段是否平行。

四、巩固练习(15分钟)1. 分发练习题,让学生独立完成。

2. 针对练习题进行讲解和答疑。

五、拓展延伸(10分钟)1. 提出一些与平行线相关的拓展问题,让学生思考并解答。

2. 鼓励学生探索和发现更多关于平行线的性质和判定方法。

六、总结归纳(5分钟)1. 总结平行线的定义和性质。

2. 归纳不同的平行线判定方法。

教学反思:本节课通过引入平行线的概念,讲解平行线的性质和判定方法,以及示例演练和练习题的训练,使学生能够熟练运用不同的判定方法判断线段是否平行。

同时,通过拓展延伸和总结归纳,培养学生的思维能力和归纳总结能力。

在教学过程中,要注重引导学生思考和解决问题的能力,提高学生的学习兴趣和主动性。

《平行线的判定(一)》说课终稿

《平行线的判定(一)》说课终稿

《平行线的判定(一)》说课稿一、教材分析1、教材的地位和作用《平行线的判定(一)》是义务教育课程标准实验教科书湘教版初中数学七年级下册第四单元第四节第一课时的内容,属于图形与几何领域。

这部分内容是在学习平行线的性质的基础上进行教学的,也是后续学习平行线的判定2和判定3以及垂直、三角形、平行四边形等知识的基石。

同时,本节课的学习将加深“角与平行线”的认识,建立空间观念,发展思维,加强推理能力,让学生体会由未知向已知转化的数学思想。

2、学情分析从心理特征来说,七年级这一阶段的学生好动,注意力易分散,爱发表见解,所以在教学中应该抓住这些特点,引发学生的兴趣,激发学生的学习动机。

从知识状况来说,七年级的学生已经具备一定的生活经验和数学活动经验,并且对基本几何图形有一定的认识,具备简单的作图能力。

学生已经学习了平行的定义、平行的性质,具备了探究直线平行的条件基础。

但学生文字语言、符号语言、图形语言之间的转换能力较弱,在抽象思维能力和逻辑思维方面发展不够均衡。

二、教学目标分析基于以上对教材的理解,根据新课程标准知识、能力、德育目标的要求,结合本节课教学内容特点,及我们学生已有的认知结构及心理特征,我确定了以下三维目标及教学重难点:1、知识与技能目标:掌握平行线的判定方法(一)这一基本事实的推理过程;能灵活应用这一基本事实进行规范推理证明。

2、过程与方法目标:通过经历探索直线平行的简单推理过程的学习,培养学生进行数学推理的习惯和方法,同时培养提高学生“观察-分析-推理-论证”的能力。

3、情感态度与价值观目标:通过文字语言、符号语言及图形语言的转换,提高学生对数形结合、转化及推理论证等数学思想的认识,养成严谨认真的学习本质。

4、教学重难点:由于本节课抽象思维、逻辑思维要求较高,所以本节课的教学重点是平行线判定方法1的推理过程及几何解题的基本格式。

教学难点在具体的情境中将平行线的判定问题转化为角的相等的问题,让学生学会对推理论证问题用符号语言进行规范化的表达。

第1讲 平行线的性质与判定

第1讲 平行线的性质与判定
C于D,EF⊥AC于F,DM∥BC,∠1=∠2,求证:
∠AMD=∠AGF. 证明:∵BD⊥AC,EF⊥AC(已知), ∴∠BDF=∠EFC=90°(垂直的性质)
∴BD∥EF(同位角相等,两直线平行),
∴∠2=∠CBD(两直线平行,同位角相等), ∵∠2=∠1(已知), ∴∠1=∠CBD(等量代换),
∴∠D=∠AHC(_两___直__线__平__行___,__同__位__角__相___等____) ∵∠A=∠D(已知) ∴∠AHC=∠A(__等__量__代__换____________________)
∴___A__B_∥__C__D___(__内__错__角__相__等___,__两__直__线___平__行_____).
★ 例题精讲
例题5 如图,已知∠ABC+∠BCD+∠CDE=360°,求证:AB∥ED.
解:连接BD, ∴∠DBC+∠BCD+∠CDB=180°, ∵∠ABC+∠BCD+∠EDC=360° ∴∠ABD+∠EDB=180°, ∴AB∥DE.
★ 例题精讲
练习5 如图,EF∥AD,∠1=∠2,∠BAC=75°。 (1)求证:AB∥DG;(2)求∠AGD.
4. 把下列命题写成“如果……那么……”的形式,并判断其真假: (1)等角的补角相等; (2)两个锐角的和是锐角; (3)负数之和仍为负数.
(1)如果两个角相等,那么这两个角的补角相等; 真命题 (2)如果两个角是锐角,那么这两个角的和也是锐角;假命题 (3)如果几个数是负数,那么它们的和也是负数. 真命题
∴ CE∥DF(同位角相等,两直线平行)
∴ ∠BCE=∠BDF(两直线平行,同位角相等) ∠EDF=∠CED(两直线平行,内错角相等)

平行线的判定(试讲案例)

平行线的判定(试讲案例)

平行线的判定(试讲案例)一、教学内容本节课的教学内容选自人教版初中数学八年级上册第四章“平行线的判定”部分。

具体包括:1. 了解平行线的概念,掌握平行线的性质;2. 学习判定两条直线平行的方法;3. 能够运用平行线的性质和判定方法解决实际问题。

二、教学目标1. 学生能够理解平行线的概念,掌握平行线的性质;2. 学生能够掌握判定两条直线平行的方法,并能够运用到实际问题中;3. 学生能够通过小组合作、探究学习,提高自己的合作能力和解决问题的能力。

三、教学难点与重点1. 教学难点:理解并掌握平行线的判定方法,能够灵活运用到实际问题中;2. 教学重点:平行线的性质和判定方法的运用。

四、教具与学具准备1. 教具:黑板、粉笔、直尺、三角板;2. 学具:每人一本教材、一份课堂练习册、一支笔、一把尺子。

五、教学过程1. 实践情景引入:让学生观察教室里的直线和线段,引导学生发现并描述出平行线的现象;2. 概念讲解:通过示例和讲解,让学生理解平行线的概念,掌握平行线的性质;4. 例题讲解:讲解几个判定平行线的例题,让学生通过随堂练习巩固所学知识;5. 课堂练习:让学生独立完成课堂练习册上的练习题,教师进行个别辅导;6. 板书设计:将判定平行线的方法和性质进行板书,方便学生理解和记忆;7. 作业设计:布置一道运用平行线性质和判定方法的课后作业题,要求学生独立完成并提交;8. 课后反思及拓展延伸:让学生在课后反思本节课的学习内容,对所学知识进行拓展延伸。

六、板书设计板书设计如下:平行线的性质:1. 同一平面内,不相交的两条直线叫做平行线;2. 平行线之间的距离相等;3. 平行线上的对应角相等。

平行线的判定方法:1. 同一平面内,两条直线都与第三条直线平行,则这两条直线平行;2. 同一平面内,一条直线与另外两条直线都相交,且交角相等,则这两条直线平行;3. 同一平面内,一条直线与另外两条直线都垂直,则这两条直线平行。

七、作业设计作业题目:1. 判断题:(1) 如果两条直线在同一平面内不相交,那么它们一定是平行线。

平行线的判定和性质讲义

平行线的判定和性质讲义

在同一平面内,不相交的两条直线叫做平行线.角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、数量关系角等角的知识.当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用.与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1. 由角定角已知角的关系→(判定)两直线平行→(性质)确定其他角的关系.2.由线定线已知两直线平行→(性质)角的关系行→(判定)确定其他两直线平行..平行线判定方法:(1) 同位角 相等,两直线平行。

.(2) 内错角相等,两直线平行。

(3) 同旁内角互补,两直线平行。

(4) 垂直于同一直线的两直线平行(5) 如果两条直线都与第三条直线平行,那么这两条直线平行。

平行线的性质:(1)两直线平行,同位角相等。

(2) 两直线平行,内错角相等。

(3) 两直线平行, 同旁内角互补。

【基础训练】1.下列命题正确的有 (填序号 )(1)两条直线被第三条直线所截,一定有同位角,所以这两条直线一定平行.(2)两直线不平行,同旁内角不互补.(3)如图,若1l ∥2l ,则∠1+∠2=180°.(4)如图,AD ∥BC ,则∠B +∠C =180°.(5)平行线的同位角的平分线互相平行.2.下列说法正确的是( )A .经过一点有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有且只有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行3.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD ;④若a ∥b ,b ∥c ,则a 与c 不相交.⑤两条射线或线段互相垂直是指它们所在的直线互相垂直.A .1个B .2个C .3个D .4个N FE D C B A N M A CD B EB DC A 4.已知:如图,∠BAE +∠AED =180°,∠1=∠2.求证:∠M =∠N .证明:∵∠BAE +∠AED =180°( ),∴ ∥ ( ).∴∠BAE = .又∵∠1=∠2(已知 ),∴∠BAE -∠1= - ( ).即∠MAE = .∴ ∥ ( ).∴∠M =∠N ( ).5如图,一张长方形纸条ABCD 沿MN 折叠后形成的图形,∠DMN =80°,求∠BNC 的度数.6.已知:如图AB //CD ,BCD DAB ∠=∠,AE 、BE 分别平分DAB ∠、ABC ∠.请求出E ∠的度数.7.如下图,已知AD ⊥BC ,NE ⊥BC ,∠E =∠EFA ,求证:AD 平分∠BAC .8.如图,已知︒=∠+∠18021, B ∠=∠3.试判断AED ∠与C ∠的关系,并予以说明.G EB D 321FCA9.如图,︒=∠25B ,︒=∠45BCD ,︒=∠30CDE ,︒=∠10E .求证: AB ∥EF .【例1】如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB互余的角有个. (安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断. 注:平面几何的研究除了运用计算方法外,更多的要依靠时图形的观察(直觉能力),运用演绎推理的方法去完成,往往需要通过观察、实验操作进而猜想蛄论(性质),或由预设结论去猜想条件,再运用演绎推理方法加以证明.在学习完相交线、平行线内容后,平面几何的学习就由实验几何阶段进入论证几何阶段,顺利跨越推理论证阶段,需注意以下几点:(1)过好语言关;(2)学会识图;(3)善于分析.【例2】 如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .A .4对B .8对C .12对D .16对( “希望杯”邀请赛试题)思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解人手.【例3】如图,已知∠B =25°,∠BCD =45°,∠CDE=30°,∠E =10°求征:AB ∥EF .思路点拨 解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB 或CD 平行的直线.【例4】 如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)EC DF A MN思路点拨综合运用角平分线、垂直的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?思路点拨已知AB∥CD,连结AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.注:分析主要从以下两个方面进行:(1)由因导果(综合法),即从已知条件出发推出相应结论.(2)执果溯因(分析法),即要得到结论需具备什么条件.解题时,我们既要抓住条件,又要盯住目标,努力促使已知与来知的转化与沟通.探索性问题一般具有以下特点:(1)给出了条件,但没有明确的结论;(2)给出了结论,但没有给出或没有全部给出应具备的条件,(3)先提出特殊情况进行研究,再要求归纳、猜测和确定一般结论;(4)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论相应发生的变化,或改变结论时其条件相应发生的变化;(5)解题方法需要独立创新.“解题千万道,解后抛九霄”是难以达到提高解题能力,发展思维的目的的.善于作解题后小结,回顾解题过程,总结解题经验和体会,再进而作一题多解,一题多问,一题多变的思考,挖掘题目的深度和广度,扩大题目的辐射面,这对解题能力的提高是十分有益的.学力训练1.如图,已知AE∥CD,EF交AB于M,MN⊥EF于M,NN交CD于N,若∠BME=110°,则∠MND= .(湖北成宁市中者题)2.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2一∠3=90°,∠4=115°,那么∠3= .3.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α= .(内蒙古中考题)4.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.5.如图,下列条件中,不能判断直线l1∥l2的是( ).A.∠l=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°(南通市中考题)6..已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,符合条件l 的条数为( ).A.1 B.2 C.3 D.4(安徽省中考题)7.如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是( ).A.(1)、(3) B.(2)、(4) C.(1)、(3)、(4) D.(1)、(2)、(3)、(4)(江苏盐城市中考题)8.如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有( ).A.6个D.5个C.4个D.3个(湖北省荆门市中考题)9.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.10.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.15.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( ).A,4对B.5对 C .6对D.7对16.如图,若AB∥CD,则( ).A.∠1=∠2+∠3 B.∠1=∠3一∠2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°17.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于( ).A.180°B.270°C.360°D.450°18.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( ).A.β=α+γB.α+β+γ=180°C.α+β-γ=180°D.β+γ-α=180°19.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.20.如图,已知AB∥CD,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.。

平行线的判定(第1课时)课件

平行线的判定(第1课时)课件
角相等两直线平行.
【教学难点】
运用平行线的判定方法进行简单的推理.
复习回顾
在前面的章节中我们学习过以下知识:
两直线平行,同位角相等;
两直线平行,内错角相等;
两直线平行,同旁内角互补.
情景导入
平行、相交
在同一平面内,两条直线的位置关系是_____________.
没有公共点的
在同一平面内,_____________两条直线的是平行线.
请你在下面的括号中填上理由:
因为 a∥b,b∥c,
所以∠1 =∠2, ∠2 =∠3,
因此∠1 =∠3.
从而 a∥c( 同位角相等,两直线平行.
).
A,B,C. 如
巩固练习
1. 从∠5 =∠ ABC ,可以推出 AB∥CD,
理由是 同位角相等,两直线平行 .
A
4
1
B
D
3
5
2
C
巩固练习
2. 如图,已知∠1=∠2, AB∥CD 吗?为什么?
行吗?为什么?
D
A
C
B
E
解析:根据 AB∥DC 及∠D=125°,可求出∠A 的度数,从而说明
∠A=∠CBE. 再根据“同位角相等,两直线平行”可得 AD∥BC.
典例精析
解:AD∥BC.
理由如下:因为 AB∥DC (已知),
所以∠A+∠D=180°(两直线平行,同旁内角互补).
因为∠D=125°(已知),
因为AE是∠DAC的平分线,
所以∠DAC=2∠1,
所以∠B=∠1,
所以 AE∥BC.
课堂小结
由同位角的关系判定两直线平行的三个步骤:
1. 判断两个同位角是否相等;

1平行线的判定课件(1)

1平行线的判定课件(1)
ቤተ መጻሕፍቲ ባይዱ
//
吗?为什么?
解:将∠1的邻补角记作∠3 ,则 ∠1 +∠3 = 180°( 邻补角的意义 )
因为∠1=110°( 已知 )
所以∠3 = 180°- ∠1 = 180°- 110°=70°(等式性质)
因为∠2=70°( 已知 )
得∠2 = ∠3 ( 等量代换 ) C
A
所以AB∥CD(
同位角相等, 两直线平行

70°2
E
110°

D
B
同位角相等,两直线平行
例2 如图,直线 与 且∠1=∠2=∠3 .
l直线
a、b、c分别相交,
l
⑴ 从∠1=∠2可以得出哪两
a
1
条直线平行?为什么?
2
b
3
c
解 ⑴因为 1 2( 已知),
a b 所以 //
同位角相等,两直线平行

).
同位角相等,两直线平行
⑵ 从∠1=∠3可以得出那两条直线 平行?为什么?
又 ∵∠2=40°,
l2
∴∠ABC=50°,
∵∠1= 50°
∴∠1=∠ABC
∴l1∥l2(同位角相等,两直线平行)
知识回顾
(1)同一平面内两条直线(不重合)的位置关系: 相交或平行
(2)什么是平行线:
同一平面,不相交
(3)平行线的表示方法:
如AB//CD
(4)平行线的画法: (5)平行线的性质:
一放,二靠,三推,四画
过直线外一点,有且只有 一条直线与已知直线平行。
平行线的画法:
一、放 二、靠 三、推 四、画
F
D5 1
C
(2)3 A;

复习课平行线的判定和性质课件

复习课平行线的判定和性质课件

通过直线与平面的关系判定
总结词
如果一条直线与一个平面平行,那么这条直线上所有点与平面上相应点的连线都 与该平面平行。
详细描述
这是利用直线与平面的关系来判定平行线的方法。如果一条直线与一个平面平行 ,那么这条直线上所有点与平面上相应点的连线都与该平面平行,因此这些连线 也互相平行。
02
平行线的性质
THANKS
感谢观看
通过内错角判定
总结词
当两直线被第三条直线所截,如果内 错角相等,则两直线平行。
详细描述
这也是平行线判定的常用方法之一。 当两直线被第三条直线所截,如果内 错角相等,则说明这两条直线是平行 的。
通过同旁内角判定
总结词
当两直线被第三条直线所截,如果同旁内角互补,则两直线平行。
详细描述
这是平行线判定的另一种方法。当两直线被第三条直线所截,如果同旁内角互 补(即它们的角度和为180度),则说明这两条直线是平行的。
详细描述
这是平行线的另一个重要性质。如果 两条直线平行,那么它们的对应边长 之间的比例是恒定的。这个性质可以 用来证明两条直线是否平行。
平行线间的距离相等
总结词
任意两条平行线之间的距离都是相等的。
详细描述
这是平行线的另一个重要性质。任意两条平行线之间的距离都是相等的,这个性质可以用来计算两条平行线之间 的距离。
建筑设计中,平行线被广泛应 用,如窗户、门、墙面的排列 等。
在道路和桥梁的设计中,平行 线也是重要的参考元素,以确 保道路的平直和桥梁的稳定性。
在家居装修中,平行线也是不 可缺少的元素,如地板、墙面 的铺设等。
在数学解题中的应用
在代数解题中,平行线常常被用 来解决与一次函数、二次函数等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的判定(复习讲义)01
【知识点讲解】
一、知识点:平行线的判定
1、判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平
行,即同位角相等,两直线平行。

如图:如果∠1=∠2,那么AB∥CD。

2、判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平
行,即内错角相等,两直线平行。

如图:如果∠2=∠3,那么AB∥CD。

3、判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线
平行,即同旁内角互补,两直线平行。

如图:如果∠2+∠4=180°,那么AB∥CD。

4、在同一平面内,如果两直线都垂直于同一条直线,那么这两条直线平行,即:若a、b、c为同一平面内三
条直线,且a⊥b,a⊥c,则b∥c。

例:如图,直线AB、CD被直线EF所截。

1)若∠1=80°,∠2=100°,由此你可以判定AB和CD平行吗?说明理由;
2)若∠2=100°,∠3=100°,由此你可以判定AB和CD平行吗?说明理由。

解:
1)可以;
2)可以。

【知识点复习】
一、 知识点:平行线的判定
1、如图,下列条件中能判定直线1l ∥2l 的是( C )
A.
∠1=∠2 B. ∠1=∠5 C. ∠1+∠3=180° D. ∠3=∠5
2、如图,已知直线c 与a 、b 分别交于点A 、B ,且∠1=120°,则当∠2= 时,直线a ∥b( B )
A. 60°
B. 120°
C. 30°
D. 150°
3、如图所示,直线a 与直线b 被直线c 所截,b ⊥c ,垂足为点A ,∠1=70°。

若使
直线b 与直线a 平行,则可将直线b 绕着点A 顺时针旋转( D )
A. 70°
B. 50°
C. 30°
D. 20°
4、如图,小明在两块含30°角的直角三角板的边缘画直线AB 和CD ,得到AB ∥CD ,这是根据 内错角相等 ,两直线平行。

三、题型分析
题型一:平行线判定方法的综合运用
例1:如图所示,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( A )
A. ∠3=∠4
B. ∠1=∠2
C. ∠B =∠DCE
D. ∠D +∠DAB =180°
题型二:平行线的判定在实际问题中的应用
例2:一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能是( D )
A. 先右转50°,后右转40°
B. 先右转50°,后左转40°
C. 先右转50°,后左转130°
D. 先右转50°,后左转50°
四:习题
(一):选择题
1、如图,下列①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5。

能判定AB∥EF的条件有( C )
A. 1个
B. 2个
C. 3个
D. 4个
2、如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②
∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°。

其中能判定a∥
b的条件是( D )
A. ①③
B. ②④
C. ①③④
D. ①②③④
3、如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;
④∠B=∠5。

能判定AB∥CD的条件个数为( C )
A. 1
B. 2
C. 3
D. 4
4、如图,能判定EB∥AC的条件是( A )
A. ∠A=∠ABE
B. ∠A=∠EBD
C. ∠C=∠ABC
D. ∠C=∠ABE
5、如图,直线a 、b 被直线c 所截,给出下列条件:①∠1=∠2;②∠2=∠3;
③∠3+∠4=180°;④∠3=∠4。

其中不能判定a ∥b 的条件是( D )
A. ①
B. ②
C. ③
D. ④
6、如图,直线a 、b 被直线c 所截,下列条件中,不能判定a ∥b 的是( D )
A. ∠2=∠4
B. ∠1+∠4=180°
C. ∠5=∠4
D. ∠1=∠3
7、如图,下列选项中,哪个不可以得到1l ∥2l ( C )
A. ∠1=∠2
B. ∠2=∠3
C. ∠3=∠5
D. ∠3+∠4=180°
8、如图,直线a 、b 被直线c 所截,下列条件使a ∥b 的是( B )
A. ∠1=∠6
B. ∠2=∠6
C. ∠1=∠3
D. ∠5=∠7
9、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD ,使
其拐角∠ABC =150°,∠BCD =30°,则( C )
A. AB ∥BC
B. BC ∥CD
C. AB ∥DC
D. AB 与CD 相

(二):填空题
10、如图所示,∠1=65°,∠2=65°,∠3=115°,是说明DE∥BC,DF∥AB。

根据图形,完成下列推理:
因为∠1=65°,∠2=65°,所以∠1=∠2。

所以 DE ∥ BC (同位角相等,两直线平行)。

因为AB、DE相交,所以∠1=∠4(对顶角相等)。

所以∠4=65°。

因为∠3=115°。

所以∠3+∠4=180°。

所以 DF ∥ AB (同旁内角互补,两直线平行)。

11、如图,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合
要求的一个条件:∠BEC=80°或∠AEC=100°或∠FEB=
100°。

12、图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其
理由是同位角相等,两直线平行。

(三):解答题
13、已知,如图,直线AB、CD被直线EF所截,H为CD与EF的交点,GH⊥CD
于点H,∠2=30°,∠1=60°。

求证:AB∥CD。

解:略。

14、如图,四边形ABCD中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线。

求证:
(1)∠1+∠2=90°;
(2)BE∥DF。

解:略。

15、如图,已知∠1=∠2,∠3+∠4=180°,求证:AB∥EF。

解:略。

16、如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°。

试说明AB
∥EF。

解:略。

17、如图,直线AB和CD被直线MN所截。

(1)如图①所示,EG平分∠BEF,FH平分∠DFE(平分的是一对同旁内角),则∠1与∠2满足∠1+∠2=90°时,AB∥CD;
(2)如图②所示,EG平分∠MEB,FH平分∠DFE(平分的是一对同位角),则∠1与∠2满足∠1=∠2 时,AB∥CD;
(3)如图③所示,EG平分∠AEF,FH平分∠DFE(平分的是一对内错角),则∠1与∠2满足什么条件时,AB∥CD?为什么?
解:
(3)∠1=∠2。

相关文档
最新文档