薄膜电池简介

合集下载

薄膜电池简介介绍

薄膜电池简介介绍
特点
薄膜电池具有高能量密度、高功率密 度、长寿命、快速充放电等优点,同 时具有环保、安全、轻便等特性。
薄膜电池的类型
01
02
03
锂离子薄膜电池
以锂离子为电荷载体的薄 膜电池,具有高能量密度 和长寿命等优点。
锂硫薄膜电池
以硫为正极的薄膜电池, 具有高能量密度和环保等 优点。
钠离子薄膜电池
以钠离子为电荷载体的薄 膜电池,具有低成本和长 寿命等优点。
薄膜电池简介介绍
汇报人: 2023-12-17
目录
• 薄膜电池概述 • 薄膜电池的基本构造与原理 • 不同类型的薄膜电池介绍 • 薄膜电池的技术挑战与发展趋
势 • 薄膜电池的市场分析与应用领
域拓展 • 相关企业与人物介绍
01
薄膜电池概述
定义与特点
定义
薄膜电池是一种新型的电池技术,其 电解质和电极均采用薄膜结构。
提高能量密度
随着技术的不断进步,薄膜电池的能量密度将不断提高。 未来,薄膜电池将具有更高的能量密度,能够满足更多应 用场景的需求。
降低生产成本
随着技术的不断进步和规模化生产,薄膜电池的生产成本 将逐渐降低。未来,薄膜电池将更加普及,能够在更多领 域得到应用。
05
薄膜电池的市场分析与应用领 域拓展
薄膜电池的市场规模与增长趋势
薄膜电池的电解质材料通常为固态或凝胶态。其中,固态电解质具有较
高的离子电导率和良好的机械性能,是未来的发展趋势之一。
03
不同类型的薄膜电池介绍
染料敏化薄膜电池
结构
特点
染料敏化薄膜电池由透明导电基底、 染料光敏化剂、氧化还原电解质和光 阳极组成。
染料敏化薄膜电池具有较高的光电转 换效率和较低的生产成本,但寿命相 对较短。

CIGS薄膜太阳能电池简要介绍和发展现状

CIGS薄膜太阳能电池简要介绍和发展现状
CIGS薄膜太阳能电池简要介绍和 发展现状
汇报人:XX
目 录
• CIGS薄膜太阳能电池概述 • CIGS薄膜太阳能电池发展历程 • CIGS薄膜太阳能电池制备技术 • CIGS薄膜太阳能电池性能评价 • CIGS薄膜太阳能电池应用领域拓展 • CIGS薄膜太阳能电池产业发展现状及挑战 • 总结与展望
01
CIGS薄膜太阳能电池概述
定义与基本原理
CIGS薄膜太阳能电池定义
CIGS是铜铟镓硒(CuInGaSe2)的缩写,是一种基于多元化合物半导体的薄 膜太阳能电池。
工作原理
CIGS薄膜太阳能电池利用光电效应,将光能转换为电能。当太阳光照射到电池 表面时,光子被吸收并激发出电子-空穴对,在内建电场作用下分离并收集到电 极上,从而产生电流。
优点
工艺简单,成本低,适用于大面积生产。
缺点
薄膜质量受喷涂工艺和热处理条件等因素影响, 难以控制。
不同制备方法比较
真空蒸发法与电化学沉积法比较
真空蒸发法制备的薄膜质量较高,但设备成本高;电化学沉积法设备简单,成本 低,但沉积速率较慢。
喷涂热解法与前两者比较
喷涂热解法工艺简单,成本低,适用于大面积生产,但薄膜质量相对较难控制。 在实际应用中,可根据具体需求和条件选择合适的制备方法。
器件结构
初步构建CIGS薄膜太阳能电池的 器件结构,研究各层之间的相互 影响。
实验室规模制备
在实验室规模下,制备出小面积 的CIGS薄膜太阳能电池,并对其 性能进行评估。
技术突破与产业化进程
01
02
03
大面积制备技术
突破大面积均匀制备CIGS 薄膜的技术难题,为产业 化奠定基础。
转换效率提升
通过优化材料组成、改进 制备工艺等方式,不断提 高CIGS薄膜太阳能电池的 转换效率。

薄膜太阳能电池介绍

薄膜太阳能电池介绍

薄膜太阳能电池介绍
薄膜太阳能电池是一种新型的光伏器件,其核心原材料包括硅材料、非晶硅材料、CIGS材料和CdTe材料等。

其中,非晶硅材料是太阳能电池的核心原材料之一,具有降低制造成本、易于实现大面积和大批量连续生产等优点,是降低成本和提高光子循环效率的理想材料。

薄膜太阳能电池除了具有平面结构外,还具有可挠性和可制成非平面构造等特性,使其在应用范围上非常广泛,可以与建筑物结合或变成建筑物的一部分。

薄膜太阳能电池的制造方法包括电子回旋共振法、光化学气相沉积法、直流辉光放电法、射频辉光放电法、溅射法和热丝法等。

其中,射频辉光放电法由于其低温过程、易于实现大面积和大批量连续生产,已成为国际公认的成熟技术。

薄膜太阳能电池在光伏建筑一体化、屋顶并网发电系统以及光伏电站等领域有着广泛的应用前景。

此外,非晶硅薄膜太阳电池在高气温条件下衰减微弱,适合高温、荒漠地区建设电站。

同时,薄膜太阳能电池的原材料来源广泛、生产成本低、便于大规模生产,具有广阔的市场前景。

薄膜电池技术的应用与发展

薄膜电池技术的应用与发展

薄膜电池技术的应用与发展薄膜电池技术是一种以薄膜材料作为电池的正负极材料,通过电极材料和电解质材料的选择,使得电子和离子在薄膜电池中进行交换,从而产生电能。

这种电池技术具有体积小、重量轻、灵活性强和安全性高等优点,因此在智能穿戴、移动设备、家居电器、医疗设备、无人机和电动汽车等领域得到广泛应用。

本文将对薄膜电池技术的应用和发展进行介绍和分析。

一、薄膜电池的种类和性能目前,常见的薄膜电池种类有聚合物电解质锂离子电池(PPEL)、柔性薄膜燃料电池(FFC)、有机无机杂化钙钛矿太阳能电池(PSC)、有机太阳能电池(OSC)等。

这些电池种类在电化学性能、能量密度、功率密度、电化学稳定性和安全性等方面都有所不同。

聚合物电解质锂离子电池是一种以聚合物为电解质的锂离子电池,具有体积小、重量轻、灵活性强和安全性高等特点,因此适用于智能穿戴、移动设备和家居电器等领域,但其能量密度相对较低,通常为100-200Wh/kg。

柔性薄膜燃料电池是一种以氢气或甲醇等为燃料的电池,具有能量密度高、长时间工作和环保等特点,因此适用于无人机、电动汽车等领域,但其成本和体积较大,不适用于小型设备。

钙钛矿太阳能电池是一种基于钙钛矿材料的太阳能电池,具有高效率、低成本和环保等特点,因此适用于太阳能电站等领域,但其稳定性和寿命有待提高。

有机太阳能电池是一种以有机半导体为光电转换材料的太阳能电池,具有制备简单、成本低、重量轻等特点,但其能量转换效率相对较低和稳定性较差,需要进一步研究和改进。

二、薄膜电池技术的应用1. 智能穿戴薄膜电池技术的体积小、重量轻和灵活性强,使其适用于智能穿戴领域。

例如,智能手表、智能眼镜、智能耳机等智能穿戴设备需要小巧轻便的电源支持其运行。

目前,聚合物电解质锂离子电池在智能穿戴设备中得到广泛应用,如苹果手表、华为手表等。

2. 移动设备薄膜电池技术的体积小、重量轻和灵活性强,也使其适用于移动设备领域。

例如,智能手机、平板电脑等小型移动设备需要可弯曲、可折叠的电池以适应不同的设计需求。

Cu(In Ga)Se2相关信息

Cu(In Ga)Se2相关信息

Cu (In Ga)Se2薄膜电池背景信息一、 CIGS薄膜电池的基本介绍(二)概要第一代太阳电池为单晶硅太阳能电池,第二代为多晶硅、非晶硅等太阳能电池,第三代太阳能电池就是铜铟镓硒CIGS(CIS中掺入Ga)等化合物薄膜太阳能电池及薄膜Si系太阳能电池。

(二)优缺点优点:1.光吸收能力强,可以涵盖波长700——1200nm之外的红外光区域2.相对于其他薄膜电池,光电转换率效率高,NREL最高20.3%,业界最高纪录17%,普遍标准12%3.电池稳定性好,性能基本无衰降4.弱光特性好5.能源回收周期短,为1—2年,晶硅电池需3—4年缺点:1.制造程序复杂,投资成本高2.关键原料供应不足,如3.相同的输出电量所需太阳能电池面积增加,与晶体硅电池相比,每瓦的电池面积会增加约一倍,在安装空间和光照面积有限的情况下限制了它的应用。

(三)制备技术对比二、市场情况(一)整体行业情况CIGS太阳能电池光电转换效率接近于晶体硅, 生产成本却只有其三分之一。

当前全球大环境恶劣,传统硅晶太阳能电池厂面临售价跌破成本压力。

在投资环境尚未明朗的情况下,各国风投逆市转投新型薄膜太阳能行业,在我国CIGS太阳能电池已成为光伏领域新的投资热点。

据预测,未来几年CIGS薄膜太阳能电池的销量将会迅速增长,预计到2015年,CIGS将占薄膜太阳能电池市场的43.3%,从地面阳光发电到空间微小卫星动力电源都将具有广阔的市场前景。

在晶体硅太阳能电池价格不断上涨的背景下,很多公司投入巨资推动CIGS产业化。

目前全球有超过30家公司置身CIGS产业,其中主要为德国的Wurth Solar,美国的Global Solar、日本本田、日本昭和壳牌、德国的Sulfurcell、美国的Daystar、美国Ascent 以及美国的Miasole 8家公司。

这些公司分别采用不同的吸收层沉积工艺,但是在所有技术路线中, 不论吸收层是采用共蒸发法还是两步法( 如溅射后硒化) 制备, 均采用溅射法制备Mo 底电极以及溅射或化学气相沉积法制备ZnO薄膜。

薄膜太阳能电池及制造工艺

薄膜太阳能电池及制造工艺

05
制造工艺的应用与发展趋势
在光伏产业中的应用
薄膜太阳能电 池的应用:在 光伏发电、建 筑一体化、便 携式电子设备 等领域的应用
制造工艺的发 展趋势:提高 转换效率、降 低成本、提高 稳定性和可靠

薄膜太阳能电 池的优势:轻 便、柔性、可 弯曲、易于安
装和维护
制造工艺的创 新:采用新型 材料、改进生 产工艺、提高 生产效率和降
封装材料:选择 耐高温、耐腐蚀 、密封性好的封 装材料
基底处理
清洗:去除基底表面的灰尘、油污等杂质 打磨:使基底表面平整,提高附着力 活化:增加基底表面的活性,提高薄膜太阳能电池的性能 镀膜:在基底表面沉积薄膜太阳能电池所需的功能层
薄膜制备
薄膜沉积:采用化学气相沉积、 物理气相沉积等方法,在基底
特点:轻便、柔性、可弯曲、 易于安装和携带
分类:硅基薄膜太阳能电池、 铜铟镓硒薄膜太阳能电池、钙 钛矿太阳能电池等
应用领域:建筑、汽车、电子 设备、航天等领域
工作原理
薄膜太阳能电池 主要由半导体材 料制成,如硅、 砷化镓等。
太阳光照射到半 导体材料上,产 生电子-空穴对。
电子-空穴对在半 导体材料内部运 动,形成电流。
电流通过外部电 路,产生电能。
优缺点
优点:轻便、可弯曲、可折叠、 可粘贴
优点:易于安装和维护
缺点:能量转换效率较低
缺点:对环境敏感,易受温度、 湿度等环境因素影响
03
制造工艺流程
原材料选择
硅片:选择高质 量的硅片,保证 电池性能
导电浆料:选择 导电性好、稳定 性高的导电浆料
背电极材料:选 择导电性好、耐 腐蚀的背电极材 料
所需的图案
薄膜钝化:采用化学气相沉积、 物理气相沉积等方法,在半导 体薄膜表面沉积钝化层,以提

薄膜太阳能电池的结构和性能分析

薄膜太阳能电池的结构和性能分析

薄膜太阳能电池的结构和性能分析薄膜太阳能电池是一种以薄膜材料为基底和吸收光线的薄膜材料为电池层的新型太阳能电池。

相比于传统的硅基太阳能电池,薄膜太阳能电池体积更小、重量更轻、制造成本更低、可弯曲、可透明、可定制化,并且在低光照条件下也有较高的功率输出。

本文将从薄膜太阳能电池的基本结构、工作原理和性能分析三个方面进行论述。

一、基本结构薄膜太阳能电池最常用的材料包括铜铟镓硒(CIGS)、硫化铜铟镉(CIS)、有机聚合物等。

作为太阳辐射的吸收层位于薄膜太阳能电池的最上层,以下是电池层、底电极(包括钢、铝、镀层等)、背电极(包括不导电和导电胶粘剂等)的排列顺序。

在实际生产过程中,会根据实际需要进行一定的调整,如使用透明导电电极、太阳能电池阵列等。

二、工作原理太阳能辐射照射到薄膜太阳能电池的吸收层上,电荷载体在吸收光子的过程中激发,移动到接触区域产生电流,从而形成了电池输出。

在电荷移动的过程中,必须保证吸收层的电导率高,电池层的吸光系数大,于是在电池层中通常使用薄膜法制成镀有金属的材料,从而增加光吸收和导电性。

通常,电子流经过底部电极,在当中遇到了电子中继印刷,应用正向电子控制(P/N结),电荷已经通过电池的输出输出。

因为这种类型的太阳能电池是以薄膜形式制成的,所以它们称为“薄膜太阳能电池”。

三、性能分析薄膜太阳能电池的最大特点是相较于传统太阳能电池,它可以更为轻盈和便携,适用于携带的灵活性不弱于笔记本或手机储物(grid-desktop)长方形太阳能电池板之类的应用。

除此之外,它们在低光照条件下也能有效运作,这在室内灯光、阴雨天等等情况下都非常有用,既可以提高能源利用,又可以减少电量浪费。

此外,薄膜太阳能电池可以根据具体需求进行定制,可用于建筑物幕墙、遮阳百叶、玻璃窗等。

相较于传统硅基太阳能电池,薄膜太阳能电池更加环保节约,由于用料量较少、加工风险低,生产过程中水、电、油耗较少,减少了能源消耗,降低了二氧化碳排放量。

主要薄膜光伏电池技术及制备工艺介绍

主要薄膜光伏电池技术及制备工艺介绍

主要薄膜光伏电池技术及制备工艺介绍技术及制备工艺介绍第一章薄膜光伏电池技术及进展概况简述一、全球要紧薄膜光伏电池技术简介图:薄膜光伏电池结构二、薄膜光伏电池进展概况(一)非晶硅薄膜电池的大规模应用堪忧中国有超过20 家非晶硅薄膜电池厂商,共约1.1GW 产能,其中800MW的转换效率为6%-7%,300MW 的转换效率高于8.5%,最高的转换效率能够达到9%-10%,生产成本为约0.8 美元/W。

假如非晶硅薄膜电池的转换效率为10%,组件的价格低于晶体硅电池的75%,才有竞争力。

随着今年晶硅电池成本的下降与转换效率的稳步提升,2010 年7月,美国应用材料公司(Applied Materials)宣布,停止向新客户销售其SunFab 系列整套非晶硅薄膜技术。

8 月,无锡尚德叫停旗下的非晶硅薄膜太阳能组件生产线的业务。

非晶硅薄膜电池要继续扩张市场份额,还需要突破其转换率低与衰减性等问题,建立市场信心。

另外,非晶硅薄膜电池在半透明BIPV 玻璃幕领域具有相对优势,但目前BIPV 仍面临透光度与转换效率的两难逆境,大规模应用尚未推行,非晶硅薄膜电池前景堪忧。

(二)CdTe薄膜电池难以成为国内企业的进展重点CdTd 薄膜电池方面,美国First Solar 一枝独秀。

First Solar 组件效率已达11%,成本降低到0.76 美元/W,在所有太阳电池中成本最低。

First Solar 今年产能约1.4GW,估计2011、2012 年分别达到2.1GW 、2.7GW。

在电池制造技术与装备制造,市场份额与规模效应方面,FirstSolar 已经占据了绝对优势,国内企业难以有较大进展,目前国内介入CdTe 电池的企业仅三家,且均未实现大规模量产。

另一方面,碲属于稀有元素,在地壳里仅占1x10-6 。

已探明储量14.9 万吨,该技术的未来进展空间受限。

估计CdTe 技术不可能成为我国企业进展薄膜电池的要紧方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多晶硅薄膜太阳电池1前言如果问人类在21世纪面临的最大挑战是什么,答案肯定是环境污染和能源私有制。

这两个问题已经变成高悬在人类头顶上的达摩克利斯利剑。

人类在努力寻找解决这两个问题方法时发现,太阳能的利用应是解决这两个问题的最好方案。

太阳能是地球上取之不尽的能源。

人类利用太阳能的想法由来已久,最早是将它转换为热能加以利用,后来光伏效应的发现使太阳能转化为电能成为可能,以致使太阳能利用领域更加广阔。

早在本世纪50年代,第一个实用性的硅太阳电池就在美国贝尔实验室内诞生了。

不久,它即被用于人造卫星的发电系统上。

迄今为止,太空中成千的飞行器都装备了太阳电池发电系统。

尽管如此,太阳电池在地面的应用却一直未得到广泛重视,直到70年代世界出现“石油危机”,地面大规模应用太阳电池发电才被列上许多国家的议事日程。

当时太阳能发电主要使用的是单晶硅太阳电池。

进入80年代中期,环境继能源之后,又成为国际社会普遍关注的焦点之一,全人类又都把目光集中到解决这两个问题的交叉点--太阳能光伏发电上,从而大大加速了开发利用的步伐。

此后,随着生产规模的不断扩大、技术的日益提高,单晶硅太阳电池的成本也逐渐下降,1997年每峰瓦单晶硅太阳电池的成本已经降到5美元以下。

单晶硅太阳电池虽然在现阶段的大规模应用和工业生产中占主导地位,但是也暴露了许多缺点,其主要问题是成本过高。

受单晶硅材料价格和单晶硅电池制备过程的影响,若要再大幅度地降低单晶硅太阳电池成本是非常困难的。

作为单晶硅电池的替代产品,现在发展了薄膜太阳电池,其中包括非晶硅薄膜太阳电池,硒铟铜和碲化镉薄膜电池,多晶硅薄膜太阳电池。

在这几种薄膜电池中,最成熟的产品当数非晶硅薄膜太阳电池,在世界上已经有多家公司在生产该种电池的产品,其主要优点是成本低,制备方便,但也存在严重的缺点,即非晶硅电池的不稳定性,其光电转换效率会随着光照时间的延续而衰减,另外非晶硅薄膜太阳电池的效率也较低。

一般在8%到10%,硒铟铜和碲化镉多晶薄膜电池的效率较非晶硅薄膜电池高,成本较单晶硅电池低,并且易于大规模生产,还没有效率衷减问题,似乎是非晶硅薄膜电池的一种较好的替代品,在美国已有一些公司开始建设这种电池的生产线。

但是这种电池的原材料之一镉对环境有较强的污染,与发展太阳电池的初衷相背离,而且硒、铟、碲等都是较稀有的金属,对这种电池的大规模生产会产生很大的制约。

多晶硅薄膜电池由于所使用的硅量远较单晶硅少,又无效率衷减问题,并用有可能在廉价底材上制备,其成本预期要远低于体单晶硅电池,实验室效率已达18%,远高于非晶硅薄膜电池的效率。

因此,多晶硅薄膜电池被认为是最有可能替代单晶硅电池和非晶硅薄膜电池的下一代太阳电池,现在已经成为国际太阳能领域的研究热点。

2、多晶硅薄膜太阳电池的研究概况多晶硅薄膜太阳电池的研究重点有两个方面,其一是电池衬底的选择,其二是制备电池的工艺和方法,但无论是哪一方面的研究都应满足制备多晶硅薄膜电池的一些基本要求:(1)低成本(材料和工艺)(2)高效率(3)易于产业化对于衬底的选择必须满足以下一些条件:(1)低成本(2)导电(或绝缘,依结构设计而定)(3)热膨胀系数与硅匹配(4)非毒性(5)有一定机械强度比较合适的衬底材料为一些硅或铝的的化合物,如SiC,Si3N4,SiO2,Si,Al2O3,SiAlON,Al等,从目前的文献看有以下一些衬底:(1)单晶硅(2)多晶硅(3)石墨包SiC(4)SiSiC(5)玻璃碳(6)SiO2膜目前,制备多晶硅薄膜的工艺方法主要有以下几种:(1)化学气相乘积法(CVD法)(2)等离子体增强化学气相沉积法(PECVD法)(3)液相外延法(LPE)(4)等离子体溅射沉积法化学气相沉积(CVD)法就是将衬底加热到适当的温度,然后通以反应气体(如SIH2CL2、DIHCL3、SICL4、SIH4等),在一定的保护气氛下反应生成硅原子并沉积在衬底表面。

这些反应的温度通常较高,在800~1200℃之间。

人们发现,如果直接在非硅底材上用CVD法沉积多晶硅,较难形成较大的晶粒,并且容蝗在晶粒之间形成孔隙,对制备较高效率的电池不利。

因此发展了再结晶技术,以提高晶粒尺寸,其具体方法是:先用低压化学气相沉积(LPCVD)法在衬底表面形成一层较薄的、重掺杂的非晶硅层,再用高温将这层非晶硅层退火,得到较大的晶粒,用这层较薄的大尽寸多晶硅层作为籽晶层,在其上面用CVD法生长厚的多晶硅膜。

可以看出,这种CVD法制备多晶硅薄膜太阳电池的关键是寻找一种较好的再结晶技术。

到目前为止,再结晶技术主要有以下几种:(1)固相晶化(LAR)法(2)区熔再结晶(ZMR)法(3)激光再结晶(LMC)法固相晶化法需对非晶硅薄膜进行整体加热,温度要求达到1414℃的硅的熔化点。

该法的缺点是整体温度较高,晶粒取向散乱,不易形成柱状结晶。

区熔再结晶法需将非晶硅整体加热至一定温度,通常是1100℃,再用一个加热条加热局部使其达到熔化状态。

加热条在加热过程中需在非晶硅表面移动。

区熔再结晶法可以得到厘米量级的晶粒,并且在一定的技术处理和工艺条件的配合下可以得到比较一致的晶粒聚向。

激光退火法采用激光束的高温将非晶硅薄膜熔化结晶,以得到多晶硅薄膜。

在这三种方法中以ZMR法最成功,日本三菱公司用该法制备的电池,效率已达16.42%,德国的FRONHAUFER研究所在这方面的研究处于领先水平。

等离子增强化学气相沉积(PECVD)法是利用PECVD技术在非硅衬底上制备晶粒较小的多晶硅薄膜的一种方法。

该薄膜是一种P-I-N结构,主要特点是在P层和N层之间有一层较厚的多晶硅的本征层(I层)。

其制备温度很底(100-200℃),晶粒很小(~10-7M量级),但已属于多晶硅薄膜,几乎没有效率衷减问题。

日本科尼卡公司在1994年提出这一方法,目前用这一方法制备的电池,最高效率已达10.7%。

但是,该方法也存在生长速度太慢以及薄膜极易受损等问题,有待今后研究改进。

液相外延(LPE)法就是通过将硅熔融在母液里,降低温度使硅析出成膜的一种方法,美国ASTRO POWER公司和德国MAX-PLANK研究所对这一技术进行了深入的研究。

前者用LPE法制备的电池,效率已达12.2%,但技术细节十分保密。

等离子体溅射法是一种物理制备法,还很不成熟。

其主要问题也是晶粒的致密度问题。

除了上述制备薄膜的方法外,在用多晶硅薄膜制备太阳电池器件方面人们也采取了一系列工艺步聚,以提高效率。

这些工艺步聚包括:(1)衬底的制备和选择(2)隔离层的制备(3)籽晶层或匹配层的制备(4)晶粒的增大(5)沉积多晶硅薄膜(6)制备P-N结(7)光学限制:上下表面结构化,上下表面减反射(8)电学限制:制备背场(BSF)和前后电极的欧姆接触(9)制备电极(10)钝化:晶粒间界的钝化和表面钝化目前,几乎所有制备体单晶硅高效电池的实验室技术均已用在制备多晶硅薄膜太阳电池的工艺上,甚至还包括一些制备集成电路的方法和工艺。

表1总结了多晶硅薄膜太阳电池的进展情况。

3、北京市太阳能研究所的工作北京市太阳能研究所从1995年开始研究多晶硅薄膜太阳电池,其目标是跟踪该领域世界发展情况,为今后产业化和降低成本打下坚实的基础,进而赶超世界先进水平。

我们在薄膜太阳电池研究方面主要进行CVD法和PECVD法研究。

在CVD方法的研究方面,我们自行设计加工了一台CVD设备,并开展了生长单晶硅和多晶硅薄膜的研究。

在重掺单晶硅衬底上用CVD法外延生长得到20UM的硅薄膜,在生长的同时掺入硼,使得硅薄膜成P型。

再通过磷扩散在薄膜上形成P-N。

在电池的正表面生长一层110NM的SIO2膜,该膜具有减反射和表面钝化的双重作用。

前电极采用光刻栅线的方法在SIO2膜上开出电极栅线条,再用热蒸发法制备TI/PD/AG电极。

在衬底的背面蒸镀AL或TI/PD/AG,得到背电极。

用这种方法得到的硅薄膜电池的效率已达到12.11%。

在非硅底材上生长多晶硅薄膜的太阳电池的研究方面,我们主要研究在SIO2和SI3N4膜底材上生长多晶硅薄膜电池。

SIO2膜与硅的晶格匹配较好,热膨胀系数也较相近,用SIO2作衬底较佳。

首先在SIO2膜上直接用CVD法沉积薄膜,得到晶粒尽寸为几十微米的多晶硅薄膜,但发现薄膜中晶粒之间有较大的孔隙,这些孔隙导致晶粒之间的电传导减弱,使得下下电极之间极易短路,以致电池效率很低。

我们进一步采用LPCVD法先在SIO2膜生长一层晶粒很小、很薄的多晶硅薄膜,由于采用SIH4热分解方法,使得在SIO2膜上的选择性生长较弱,晶粒很致密。

以这样一层微晶硅膜作为衬底,用CVD法生长多晶硅厚膜,便得到了晶粒较致密的多晶硅薄膜。

但由于作为籽晶层的微晶层中晶粒较小,其上生长的多晶硅薄膜中的晶粒也不大,影响了电池的效率,目前我们正在研制ZMP设备,以增大晶粒尽寸。

采用CVD法必须有再结晶步聚,而再结晶一般均需很高温度,这样便大大提高了电池生产成本。

我们正在研究能避免再结晶过程的薄膜电池制备方法。

我们发现,在SI3N4膜上有CVD法直接沉积可以得到很致密的多晶硅膜。

熔融硅对SIO2和SI3N4的浸润角不同,在SIO2上的浸润角为87度角,而在SI3N4膜上为25度角,这样在生长时就会表现出不同的动力学过程。

在SIO2上生长时晶粒趋于收缩,使得晶粒间孔隙较大;而在SI3N4膜上生长时,晶粒趋于铺展,使得晶粒间孔隙较小。

我们通过比较这两种衬底上生长的多晶硅膜的扫描电镜图象和X射线分析,发现这两种薄膜存在较大差异,我们正在研究在这种薄膜上制备电池。

在PECVD法制备多晶硅薄膜电池方面,我们自行研制了一台加热温度可达700℃的PECVD系统。

通过改变衬底温度和SIH4与H2的比例,得以在PECVD设备上得到多晶硅薄膜。

用这种方法制备的P-I-N结构多晶硅电池,其开路电压达430MV,目前正在优化工艺条件,以得到更好的电池。

总之,多晶硅薄膜太阳电池已成为目前世界上光伏领域中最活跃的研究方向,人们期待研究工作获得突破,以大大降低太阳电池的成本,为解决能源和环境问题作出贡献。

相关文档
最新文档