七年级上有理数的乘方教案
七年级数学《有理数的乘方》教案设计优秀5篇

教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。
2.已知一个数,会求出它的正整数指数幂,渗透转化思想。
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。
教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)其中一种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2某2个,1.5小时后分裂成2某2某2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an 中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。
说明:(1)举例94来说明概念及读法。
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。
(4)乘方是一种运算,幂是乘方运算的结果。
(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值。
(2)注意(-2)4与-24的区别。
根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)(3; (2)(-)3;(3)(-)4;(4)-;(5)-22某(-3)2;(6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。
人教版七年级数学上册第一章1.有理数的乘方教案

1.5.1《有理数的乘方》教案一、 教学目标(一)知识技能1、理解有理数乘方的意义, 能明确底数、指数、幂这几个概念的意义2、掌握有理数乘方的运算(二)过程与方法:通过经历探索有理数乘方意义的过程,鼓励学生积极主动发现问题并解决问题。
(三)情感态度与价值观:1.在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性。
2.培养学生勤于思考、认真仔细和勇于探索的精神.教学重、难点:教学重点:有理数乘方的概念及运算。
教学难点:有理数乘方运算的符号法则。
二、教学设计(一)有效导入,明确目标提出问题:(1)边长为2的正方形的面积怎么计算?(2)棱长为2的正方体的体积怎么计算?(3)把一张足够大的厚度为0.1毫米的纸对折一次的厚度怎样计算?那么连续对折2次的厚度又怎样计算呢?连续对折3次,4次,...,30次又怎样计算呢? 依次引导学生完成三个问题。
导入新课。
(二)自主学习,合作探究阅读教材41页,完成以下问题:1、什么叫做乘方?什么叫做幂?2、 所代表的意义是什么?请说出 的读法。
3、什么叫做底数?什么叫做指数?n a n a学生以组为单位,展开活动,讨论交流。
教师在学生活动时,深入学生的活动中去,了解学生的讨论情况,帮助各别有困难的小组分析问题,提出思考方向。
(三)大组汇报,教师点拨1、什么是乘方?什么叫做幂?求n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂。
对回答问题的小组进行评价,板书。
2、 所代表的意义是什么?请说出 的读法。
n 个相同的因数a 相乘,即 ,记作 ,读作“a 的n 次方”,也可读作“a 的n 次幂”。
对回答问题的小组进行评价,板书。
3、什么是底数?什么叫做指数?在 n a 中, a 叫做底数, n 叫做指数。
对回答问题的小组进行评价,板书。
教师补充提出问题:在教材,你还发现哪些其他的知识,请你提出来有同学们一起分享你的发现!教师鼓励学生发现知识,对发现知识的同学所在的小组进行评价。
初一数学教案:《有理数的乘法》9篇

初一数学教案:《有理数的乘法》优秀9篇初中数学《有理数的乘法》教学设计篇一一、知识与能力掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力二、过程与方法经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算三、情感、态度、价值观培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性四、教学重难点一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律五、教学过程一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________有理数的乘法数学教案篇二教材分析“数的运算”是“数与代数”学习领域的重要内容。
有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。
因此本节内容具有承前启后的重要作用。
学情分析1、让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。
七年级上册数学教案《有理数的乘方》

七年级上册数学教案《有理数的乘方》教学目标1、理解并掌握有理数的乘方、幂、底数、指数的概念及含义。
2、能够正确进行有理数的乘方运算。
教学重点理解并掌握有理数乘方的意义及运算。
教学难点有理数乘方中幂、指数、底数的概念及其相互关系的理解。
教学过程一、情境导入1、列式求边长为3的正方形面积。
3 × 3 = 3² = 9读作3的平方(或3的二次方)2、列式求边长为5的正方体体积。
5×5×5= 5³= 125读作5的立方(或5的三次方)二、讲授新知1、仿照上述算式,写出这些算式的简便写法或读法。
(-2)×(-2)×(-2)×(-2)记作:(-2)^4 读作:-2的四次方(-2/5)×(-2/5)×(-2/5)×(-2/5)记作:(-2/5)^5 读作:-2/5的五次方3×3…3×3(n个3相乘)记作:3^n 读作:3的n次方a×a×a×…a(n个a相乘)记作:a^n 读作:a的n次方思考:这4个式子有什么共同特征,表示什么运算?因数有什么特征?2、下定义乘方:n个相同因数的积的运算。
记作:读作:a的n次方幂举例:在9^4中,底数是9,指数是4,9^4读作“9的4次方”或“9的4次幂”。
乘方定义理解需注意:①指数n取正整数。
②底数a可代表所有数,可以是正数、负数、0。
③一个数可看作这个数本身的一次方,如 5 = 5^1,指数1通常省略不写。
④书写需注意,当底数为负数、分数时,要用括号把整个底数括起来。
3、计算(1)(-4)^3=(-4)×(-4)×(-4)= 16 ×(-4)= -64(2)(-2)^4= (-2)×(-2)×(-2)= 4 ×(-2)= -8(3)(-2/3)^3= (-2/3)×(-2/3)×(-2/3)= 4/9 × (-2/3)= -8/274、观察上面式子的结果,你发现负数的幂的符号和指数有什么关系?当指数是奇数时,负数的幂是负数;当指数是偶数时,负数的幂是偶数。
2.9有理数的乘方(教案)

此外,课堂上的小组讨论和实践活动也让我看到了学生们的积极性。他们在讨论中互相启发,共同解决问题,这有助于提高他们的合作能力和解决问题的能力。在今后的教学中,我应该更多地安排这样的环节,让学生在互动交流中深化对知识点的理解。
1.教学重点
本节课的教学重点主要包括以下两个方面:
(1)有理数乘方的定义:理解有理数乘方的概念,掌握底数、指数及其关系,能正确表示有理数的乘方。
举例:a^2表示a×a,a^3表示a×a×a,依此类推。
(2)有理数乘方的性质与运算法则:熟练掌握并运用有理数乘方的性质与运算法则进行计算。
举例:
-正数的任何次幂都是正数:2^4 = 16;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调有理数乘方的定义和性质与运算法则这两个重点。对于难点部分,如负数的乘方和乘方的实际应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如计算不同底数的乘方,观察其规律。
有理数的乘法数学教案(优秀9篇)

有理数的乘法数学教案(优秀9篇)七年级数学有理数的乘法教案及教学设计篇一一、教材分析有理数的乘法是继有理数的加减法之后的又一种基本运算。
它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。
对后续知识的学习也是至关重要的。
二、学情分析对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。
三、教学目标(核心素养立意)1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2.初步培养学生发现问题、分析问题、和解决问题的能力。
3.通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣,(4)传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。
四、教学重、难点重点:有理数的乘法法则。
难点:有理数乘法的符号法则五、教学策略我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。
六、教学过程(设计为七个环节)(一)复习导入创设情境我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。
进而引入本节课题,以问题引领来激发学生求知欲。
(二)师生互动探究新知要求学生自主学习课本内容,完成课文中的填空。
我给与学生充足的时间和空间。
通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。
有理数的乘方教学设计教案
有理数的乘方教学设计-教案一、教学目标1. 理解有理数乘方的概念,掌握有理数乘方的运算规则。
2. 能够正确计算有理数的乘方运算。
3. 能够应用有理数乘方的知识解决实际问题。
二、教学内容1. 有理数乘方的概念:介绍有理数乘方的定义,即一个有理数自乘若干次的结果。
2. 有理数乘方的运算规则:讲解有理数乘方的运算规则,包括正数乘方、负数乘方和零的乘方。
3. 有理数乘方的计算方法:介绍有理数乘方的计算方法,包括同底数乘方、幂的乘方和积的乘方。
4. 有理数乘方的应用:举例讲解有理数乘方在实际问题中的应用,如计算利息、折扣等。
三、教学重点与难点1. 教学重点:掌握有理数乘方的概念和运算规则,能够正确计算有理数的乘方。
2. 教学难点:理解有理数乘方的计算方法,特别是幂的乘方和积的乘方。
四、教学方法1. 讲授法:讲解有理数乘方的概念和运算规则,引导学生理解和掌握。
2. 示例法:给出具体的例题,引导学生跟随解答,培养学生的计算能力。
3. 练习法:设计相关的练习题,让学生独立完成,巩固所学知识。
五、教学准备1. 教学PPT:制作相关的PPT,展示有理数乘方的概念和运算规则。
2. 练习题:准备一些有关有理数乘方的练习题,用于课堂练习和学生课后巩固。
六、教学过程1. 导入新课:通过复习幂的概念,引导学生过渡到有理数的乘方。
2. 讲解概念:讲解有理数乘方的定义,强调乘方的意义。
3. 运算规则:讲解有理数乘方的运算规则,包括正数乘方、负数乘方和零的乘方。
4. 计算方法:介绍有理数乘方的计算方法,包括同底数乘方、幂的乘方和积的乘方。
5. 应用实例:举例讲解有理数乘方在实际问题中的应用。
七、课堂练习1. 设计一些有关有理数乘方的练习题,让学生独立完成。
2. 引导学生互相交流解题方法,讨论遇到的困难和问题。
3. 教师对学生的练习进行点评,指出错误和不足之处,并进行讲解。
八、巩固与拓展1. 对本节课的内容进行总结,强调有理数乘方的概念和运算规则。
七年级数学上册《有理数的乘方》教案、教学设计
3.注重培养学生的观察、分析、总结能力,引导学生发现乘方的性质和规律,提高学生的数学思维能力。
4.考虑到学生的年龄特点,采用生动、有趣的教学方法,激发学生的学习兴趣,营造轻松愉快的学习氛围。
5.关注学生的学习情感,鼓励学生积极参与课堂讨论,培养合作精神,提高学生的自信心和自主学习能力。
(三)教学设想
1.创设情境,引入乘方概念
利用生活中的实例,如平方土地面积、立方体体积等,引导学生理解乘方的意义。通过实际操作,让学生感受乘方的产生过程,从而加深对乘方概念的理解。
2.分层教学,突破难点
针对学生的认知差异,设计不同层次的例题和练习题。对基础薄弱的学生,重点辅导乘方的基本运算;对中等程度的学生,引导他们发现乘方的性质,提高解题能力;对优秀学生,设置拓展题,培养他们的数学思维能力。
(2)学生回答:“边长乘以边长,即a×a。”
(3)教师继续提问:“如果这个正方体的体积怎么计算呢?如果边长为a,那么它的体积是多少呢?”
(4)学生回答:“边长的三次方,即a×a×a。”
通过这个实例,引出乘方的概念,让学生明白乘方是表示几个相同因数相乘的运算。( Nhomakorabea)讲授新知
1.教学内容:讲解有理数乘方的定义、运算方法以及乘方的性质。
教学过程:
(1)教师讲解有理数乘方的定义,让学生明白乘方是指数运算的一种形式,表示几个相同因数相乘。
(2)教师举例说明有理数乘方的运算方法,如:2^3=2×2×2,(-3)^2=(-3)×(-3)。
(3)引导学生发现乘方的性质,如:负数的奇数次幂是负数,偶数次幂是正数;零的任何正整数次幂都是零。
(4)教师通过例题,演示乘方运算的步骤和注意事项,如符号的处理、计算的准确性等。
人教版数学七年级上册1.5有理数的乘方教案
-掌握乘方的运算规则,提高运算速度
-解决实际问题,增强学生对有理数乘方运算的应用意识
3.培养学生的数学建模能力,使其能够运用乘方知识解决现实生活中的问题,增强数学与现实生活的联系。
-通过实际问题的引入,让学生体验乘方在实际生活中的应用
-零的乘方:a^0 = 1(a≠0)
-负整数乘方:a^(-n) = 1 / a^n(a≠0)
(3)乘方的运算性质
-乘方的分配律:(a × b)^n = a^n × b^n
-乘方的结合律:(a^n)^m = a^(n×m)
-乘方的逆运算:a^(n/m) = (a^m)^n(a>0,m、n为整数,m≠0)
人教版数学七年级上册1.5有理数的乘方教案
一、教学内容
本节课选自人教版数学七年级上册第1章《有理数》第5节“有理数的乘方”。教学内容主要包括以下两个方面:
1.掌握有理数乘方的概念,理解乘方的意义,并能够熟练运用乘方的性质进行计算。
-乘方的定义及表示方法
-正整数乘方的运算规则
-零的乘方和负整数乘方的运算规则
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数乘方的基本概念。有理数乘方是指以相同的因数为基础,进行重复乘法运算的过程。它是对乘法运算的一种扩展,具有重要的数学意义和实际应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了有理数乘方在科学计算和实际问题中的应用,以及如何帮助我们解决问题。
其次,在新课讲授过程中,我发现同学们对乘方的实际应用还不是很了解。在实践活动和小组讨论中,虽然大家积极参与,但有些同学在将乘方知识应用于实际问题方面仍显得有些吃力。为此,我将在后续的教学中,更多地引入生活中的实际案例,让大家认识到乘方在现实生活中的重要作用。
有理数的乘方教案
有理数的乘方教案一、教学目标:1. 让学生理解有理数的乘方概念,掌握有理数乘方的运算方法。
2. 培养学生运用有理数乘方解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学重点:1. 有理数的乘方概念。
2. 有理数乘方的运算方法。
三、教学难点:1. 有理数乘方的运算规律。
2. 运用有理数乘方解决实际问题。
四、教学准备:1. 教师准备PPT、教案、例题及练习题。
2. 学生准备笔记本、文具。
五、教学过程:1. 导入新课:教师通过复习幂的定义,引导学生思考有理数乘方的概念。
2. 知识讲解:教师讲解有理数的乘方,包括乘方的定义、乘方的运算方法及乘方的运算规律。
3. 例题解析:教师展示例题,引导学生跟随步骤,共同解答,巩固有理数乘方的运算方法。
4. 课堂练习:教师布置练习题,学生独立完成,检测自己对有理数乘方的掌握程度。
5. 小组讨论:教师组织学生分组讨论,分享各自解决问题的方法,总结有理数乘方的运算规律。
6. 课堂小结:教师引导学生总结本节课所学内容,强化记忆。
7. 课后作业:教师布置课后作业,巩固所学知识。
8. 课后反思:教师反思课堂教学效果,针对学生掌握情况,调整教学策略。
六、教学拓展:1. 教师引导学生思考有理数乘方在实际生活中的应用,如计算利息、折扣等。
2. 教师展示拓展例题,引导学生运用有理数乘方解决实际问题。
七、课堂互动:1. 教师组织课堂互动游戏,让学生在游戏中运用有理数乘方知识。
2. 学生分享自己在生活中遇到的有理数乘方问题,互相交流解决方法。
八、教学评价:1. 教师对学生的课堂表现、练习完成情况进行评价,鼓励优秀学生。
2. 学生自我评价,反思自己在学习有理数乘方过程中的优点和不足。
九、教学延伸:1. 教师引导学生思考有理数乘方在数学其他领域的应用,如代数、几何等。
2. 学生自主探究有理数乘方在其他领域的应用,分享研究成果。
十、课后反思:1. 教师总结本节课的教学效果,反思教学过程中的不足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5有理数的乘方2
第二课时科学记数法
虹桥实验中学臧国志
教学分析:课本通过中国首次载人航天飞行的行程与城市用水量所表示的数,进一步使学生体会生活中经常会遇到大数,并通过“有简单的表示方法吗?”这个问题,引起学生兴趣,引入科学记数法,并在教学中参透爱国主义教育与学生“节约”思想的培养。
教学目标:
[知识与技能]
1.借助身边熟悉的事物进一步体会大数,并会利用科学记数法表示大于10的数。
2.使学生了解什么是科学记数法,并会用科学记数法表示大于10的数。
[情感态度与价值观]
利用生活中的对一些大数的表示让学生体会到引入科学记数法的必要性,通过例题和练习感受到能利用科学记数法对一些大数进行描述。
教学重点:借助身边熟悉的事物进一步体会大数,并会利用科学记数法表示大于10的数。
教学难点:10的幂指数的特征。
教学活动过程设计:
一、材料引入:
问题:2003年10月15日,中国首次进行载人航天飞行,飞船绕地球飞行了14圈,行程约60万km,已知赤道长度约40000km,飞船行程相当于多少个赤道长?
问题:如果某市每人每天节约用水0.5kg,该市约有1千3百万人口,那么该市每天节约用水多少kg?
[师]我们经常遇到一些较大的数,怎样使较大的数读写方便呢?
我们先来探索10n的数的特征。
(生回答)
101=10 (10的1次幂等于1后面带1个0)
102=100 (10的2次幂等于1后面带2个0)
103=1000 (10的3次幂等于1后面带3个0)
104=10000 (10的4次幂等于1后面带4个0)
105=100000 (10的5次幂等于1后面带5个0)
……
109=1000000000 (10的9次幂等于1后面带9个0)
10n呢?(10的n次幂等于1后面带n个0)
引导学生总结规律:10的几次幂就等于10的后面带几个0。
即10的n次幂等于1后面带n个0的(n+1)位的数。
反之,若把等式右边的整数写成10的幂的形式;(1)幂指数等于0的个数。
(2)幂的指数比整数的位数少1。
二、感知新知:
老师提问:怎样借用10的乘方的方法来表示较大的数呢?
600 000=6×105。
20 000 000=2×10 000 000=2×107;
570 000 000=5.7×100 000 000=5.7×108;
这种把一个数表示成a(1≤a<10)与10的幂相乘的形式,叫做科学记数法(scientific notation)。
注意:(1)科学记数法中与10的幂相乘的数a,必须是整数数位只有一位的数,即1≤a<10,这是科学记数法的规定。
如
600记为6×102
6500000记为6.5×106
696000记为6.96×105
(2)10的幂指数n比原数整数数位少1。
所以,用科学记数法表示的数,一个突出的特点就是这个数的整数数位一目了然,这对于判断一个数的大小是非常方便的。
三、例题指导:
例3:(1)用科学记数法表示下列各数:
23 000; 15800…0;
31个0
(2)下列用科学记数法表示的数,原来(指和一般10进制记数法表示的结果)各是什么数?
4.315×103; 1.02×106;
(3)计算:(8.1×108)÷(9×105)
解:(1)230 000=2.3×105;15800…0=1.58×1033
31个0
(2)4.315×103=4315; 1.02×106=1 020 000
(3)(8.1×108)÷(9×105) =8.1×108
9×105
=
810 000 000
900 000
=900
例4:如果平均每人每天需要粮食0.5kg,那么全国每天大约需要粮食多少kg?1年呢(全国人口约1.3×109人,结果用科学记数法表示)?
解0.5×1.3×109=0.65×1 000 000 000=650 000 000=6.5×108(kg)
按一年为365天计算
6.5×108×365=6.5×365×100 000 000=237 250 000 000
≈2.4×1011(kg)
答:全国一天大约需要粮食6.5×108kg,一年大约需要粮食2.4×1011kg。
四、课内练习:课本第51页第1、2题
五、小组探究:课本第51页
六、小结:
1、什么是科学记数法,以及为什么要学习科学记数法。
2、强调科学记数法中字母a的规定及10幂指数与原数整数位数的关系。
七、作业:课本第51页,作业题。
课学反思:本课让学生观察回答10n的数的特征入手,使学生认识到10n就是1后面有n个0,为科学记数法打下了基础。
教学中一个大于10的数表示成a×
10n的形式时,其中1≤a<10,a学生容易做错,教学中应于注意。
(设计者:虹桥实验中学臧国志)。