广东省深圳市普通高中学校2018届高三数学3月月考模拟试题04
广东省2024届高三第一次学业水平考试(小高考)数学模拟试题(三)(2)

一、单选题二、多选题1.已知数列的前项和为,若,则( )A .0B .1C .3D.2. 已知,都是复数,的共轭复数为,下列说法中,正确的是( )A .若,则B .若,则C .若,则D .若,则为实数3. 已知函数,则函数的零点个数为( )A .7B .8C .10D .114. 已知全集,集合,,则A.B.C.D.5.若椭圆的离心率为,、分别为椭圆的左、右焦点,为右顶点,过右焦点作垂直于轴的直线交椭圆于点,则A.B.C.D.6. 已知实数a ,b 满足,,则( )A .-2B .0C .1D .27.双曲线的右焦点到渐近线的距离为( )A .1B.C .2D.8.数列是等差数列,若,,则( )A.B .9C .10D .209. 已知函数,且对恒成立,则( )A.B.的图象关于点对称C .若方程在上有2个实数解,则D.的图象与直线恰有5个交点10.若函数(,,)的部分图象如图所示,则()A.B .函数的最小正周期为C .函数在上单调递增D .直线是函数图象的一条对称轴11. 下列说法正确的是( )A .设随机变量X 等可能取,…,n,如果,则广东省2024届高三第一次学业水平考试(小高考)数学模拟试题(三)(2)广东省2024届高三第一次学业水平考试(小高考)数学模拟试题(三)(2)三、填空题四、解答题B .设随机变量X 服从二项分布,则C.设离散型随机变量服从两点分布,若,则D .已知随机变量X 服从正态分布且,则12.已知函数,则下列结论正确的有( )A .为函数的一个周期B .函数的图象关于直线对称C .函数在上为减函数D .函数的值域为13. 党的十九大报告提出“乡村振兴战略”,要“推动城乡义务教育一体化发展,高度重视农村义务教育”.为了响应报告精神,某师范大学6名毕业生主动申请到某贫困山区的乡村小学工作,若将这6名毕业生分配到该山区的3所乡村小学,每所学校至少分配1人,则分配方案的总数为______.14.已知数列满足,,为数列的前n 项和,则____.15. 已知样本数据,,2,2,3,若该样本的方差为,极差为t,则______.16. 2021年“远大美乐杯”四川男子篮球联赛在绵阳进行,大赛分为常规赛和季后赛两种.常规赛分两个阶段进行,每个阶段采用循环赛,分主场和客场比赛,积分排名前8的球队进入季后赛.季后赛的总决赛采用五场三胜制(“五场三胜制”是指在五场比赛中先胜三场者获得比赛胜利,胜者成为本赛季的总冠军).假设下面是宜宾队在常规赛42场比赛中的比赛结果记录表:阶段比赛场数主场场数获胜场数主场获胜场数第一阶段2211148第二阶段2010148(1)根据表中信息,是否有85%的把握认为宜宾队在常规赛的“胜负”与“主客场”有关?(2)假设宜宾队与某队在季后赛的总决赛中相遇,且每场比赛结果相互独立,并假设宜宾队除第五场比赛获胜的概率为外,其他场次比赛获胜的概率等于其在常规赛42场比赛中获胜的频率.记X 为宜宾队在总决赛中获胜的场数①求X 的分布列;②求宜宾队获得本赛季的总冠军的概率.附:17. 已知平行四边形中,,点在上,且满足,将沿折起至的位置,得到四棱锥.(1)求证:平面平面;(2)若二面角的大小为,求直线与平面所成角的正弦值.18. 已知.(1)若函数在处取得极值,求实数的值;(2)若,存在正实数,使得成立,求的取值范围.19. 已知函数.(1)证明:;(2)证明当时,存在使.20. 如图,正三棱柱的底面边长为a,侧棱长为.(1)试建立适当的空间直角坐标系,并写出点A,B,,的坐标;(2)求与侧面所成的角.21. 已知袋中有大小相同的红球3个,黄球2个,从中任取两个,求下列事件的概率:(1)两个都是红球;(2)一个黄球一个红球;。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
2024年广东省深圳市外国语学校中考模拟数学试题(解析版)

广东省深圳市外国语学校2023-2024学年九年级下学期数学3月月考模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.2022的绝对值是()A.2022B.2022-C.12022D.12022-【答案】A【解析】【分析】根据绝对值的含义可得答案.【详解】解:2022的绝对值是2022;故选A【点睛】本题考查的是绝对值的含义,熟练的求解一个数的绝对值是解本题的关键.2.如图是一个正方体的展开图,则与“学”字相对的是()A.核B.心C.数D.养【答案】B【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,据此解答即可.【详解】解:解:根据正方体展开图的特征,可知“数”与“养”是相对面,“素”与“核”是相对面,因此与“学”字相对的是“心”字.故选B .【点睛】本题考查了正方体的表面展开图,掌握正方体表面展开图的特点是解题的关键.3.“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的60mate 系列低调开售.据统计,截至2023年10月21日,华为60mate 系列手机共售出约160万台,将数据1600000用科学记数法表示应为()A.70.1610⨯ B.61.610⨯ C.71.610⨯ D.61610⨯【答案】B【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.【详解】解:1600000用科学记数法表示为61.610⨯.故选:B .4.“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取7株水稻苗,测得苗高(单位:cm )分别是23,24,23,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,24【答案】C【解析】【分析】本题考查众数、中位数,掌握众数、中位数的定义是正确解答的关键.根据众数、中位数的定义进行解答即可.【详解】这组数据中,出现次数最多的是23,因此众数是23,将这组数据从小到大排列,处在中间位置的一个数是24,由此中位数是24.故选C .5.下列运算中,正确的是()A.()232(3)6x x x -⋅-=- B.624x x x ÷=C.()32628x x -= D.222()x y x y -=+【答案】B【解析】【分析】本题考查了单形式乘以单项式,幂的运算,完全平方公式.根据单项式的乘法,同底数幂的除法,积的乘方,完全平方公式计算即可判定.【详解】解:A 、()2332(3)66x x x x -≠⋅-=-,本选项不符合题意;B 、624x x x ÷=,本选项符合题意;C 、()3266288x x x -=-≠,本选项不符合题意;D 、22222()2x y x xy y x y -=-+≠+,本选项不符合题意;故选:B .6.一把直尺和一个含30︒角的三角板按如图方式叠合在一起(三角板的直角顶点在直尺的边上),若128∠=︒,则2∠的度数是()A.62︒B.56︒C.45︒D.28︒【答案】A【解析】【分析】本题主要考查了平行线的性质,角的和差关系,熟练掌握平行线的性质是解题的关键.根据平行线的性质和角的和差关系可得答案.【详解】解:如图,由题意得:a b ,∴23∠∠=,128∠=︒,90ACB ∠=︒,∴3180162ACB ∠=︒-∠-∠=︒,∴2362∠=∠=︒,故选:A .7.下列命题是真命题的是()A.等边三角形是中心对称图形B.对角线相等的四边形是平行四边形C.三角形的内心到三角形三个顶点的距离相等D.圆的切线垂直于过切点的直径【答案】D【解析】【分析】本题考查了命题与定理的知识.利用中心对称图形、平行四边形的判定、切线的性质及三角形的内心的定义分别判断后即可确定正确的选项.【详解】解:A 、等边三角形不是中心对称图形,原说法错误,是假命题,不符合题意;B 、对角线互相平分的四边形是平行四边形,原说法错误,是假命题,不符合题意;C 、三角形的外心到三角形三个顶点的距离相等,原说法错误,是假命题,不符合题意;D 、圆的切线垂直于过切点的直径,故正确,是真命题,符合题意.故选:D .8.如图,无人机在空中A 处测得某校旗杆顶部B 的仰角为30︒,底部C 的俯角为60︒,无人机与旗杆的水平距离AD 为6m ,则旗杆BC 的高为()A.(3m +B.12m C. D.(6m+【答案】C【解析】【分析】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.根据题意可得:AD BC ⊥,然后分别在Rt △ABD 和Rt ACD △中,利用锐角三角函数的定义求出BD 和CD 的长,进而求出该旗杆的高度即可.【详解】解:根据题意可得:AD BC ⊥,在Rt △ABD 中,30BAD ∠=︒,6m AD =,∴3tan3063BD AD =⋅︒=⨯,在Rt ACD △中,60DAC ∠=︒,∴tan60CD AD =⋅︒=,∴BC BD CD =+==,故选:C .9.《四元玉鉴》是一部成就辉煌的数学名著,在中国古代数学史上有着重要地位.其中有一个“酒分醇醨”问题:务中听得语吟吟,亩道醇醨酒二盆.醇酒一升醉三客,醨酒三升醉一人.共通饮了一斗七,一十九客醉醺醺.欲问高明能算士,几何醨酒几多醇?其大意为:有好酒和薄酒分别装在瓶中,好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,试问好酒、薄酒各有多少升?若设好酒有x 升,薄酒有y 升,根据题意列方程组为()A.1713193x y x y +=⎧⎪⎨+=⎪⎩ B.1913173x y x y +=⎧⎪⎨+=⎪⎩ C.1913173x y x y +=⎧⎪⎨+=⎪⎩ D.1713193x y x y +=⎧⎪⎨+=⎪⎩【答案】A【解析】【分析】本题主要考查了二元一次方程组的应用,解题的关键是找准等量关系,列出二元一次方程组.根据好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,列出方程组即可.【详解】解:根据好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,列出方程组得:1713193x y x y +=⎧⎪⎨+=⎪⎩故选:A .10.如图,将ABC 绕点A 顺时针旋转一定的角度得到AB C ''△,此时点B 恰在边AC 上,若2AB =,5AC =,则B C '的长为()A.2B.3C.4D.5【答案】B【解析】【分析】本题考查了旋转的性质,掌握旋转的性质是解题的关键.由旋转的性质可得2AB AB '==,即可求解.【详解】解:∵将ABC 绕点A 顺时针旋转一定的角度得到AB C ''△,2AB AB '∴==,∴==52=3B C AC AB''--.故选:B .二.填空题(共5小题,满分15分,每小题3分)11.分解因式:2233x y -=____.【答案】3()()x y x y +-【解析】【分析】先提公因式,再利用平方差公式因式分解即可得解.【详解】解:()()()2222333=3x y x yx y x y -=-+-,故答案为:3()()x y x y +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先要提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.在一个不透明的空袋子里,放入分别标有数字1,2,3,5的四个小球(除数字外其他完全相间),从中随机摸出2个小球,摸到的2个小球的数字之和恰为偶数的概率是_______________.【答案】12【解析】【分析】列出表格找出所有可能的情况,再找出其中符合题意的情况,最后利用概率公式计算即可.【详解】列表格如下:123511+2=31+3=41+5=622+1=32+3=52+5=733+1=43+2=53+5=855+1=65+2=75+3=8由表可知共有12种情况,其中摸到的2个小球的数字之和恰为偶数的有6种情况,故摸到的2个小球的数字之和恰为偶数的概率为61122P ==.【点睛】本题考查列表法或画树状图法求概率,正确的列出表格或画出树状图是解答本题的关键.13.已知关于x 的一元二次方程()21410m x x --+=有两个不相等的实数根,则m 的取值范围是_______.【答案】5m <且1m ≠【解析】【分析】由一元二次方程根的情况,根据根的判别式可得到关于m 的不等式,则可求得m 的取值范围.【详解】解:根据题意得:2416412040()=b ac m m ∆=-=--->,且10m -≠,解得:5m <且1m ≠.故答案为:5m <且1m ≠.【点睛】本题主要考查根的判别式,掌握一元二次方程根的个数与根的判别式的关系是解题的关键.14.如图,已知正方形ABCD 的面积为4,它的两个顶点B ,D 是反比例函数()0,0k y k x x=>>的图象上两点,若点D 的坐标是(),a b ,则a b -的值为______.【答案】2-【解析】【分析】利用正方形的性质求得点B 坐标是(a +2,b -2),根据点D 、点B 在反比例函数k y x =上,列式计算即可求解.【详解】解:∵正方形ABCD 的面积等于4,∴AB =BC =CD =DA =2,∵AD ∥BC ∥y 轴,CD ∥AB ∥x 轴,又点D 坐标是(a ,b ),∴点A 坐标是(a ,a -2),点B 坐标是(a +2,b -2),∵点D 、点B 在反比例函数k y x=上,∴()()22k ab k a b =⎧⎨=+-⎩,∴()()22ab a b =+-,∴2a b -=-.故答案为:2-.【点睛】本题考查了反比例函数的图象和性质,正方形的性质,解题的关键是灵活运用所学知识解决问题.15.如图,在Rt ABC 中,90ABC ∠=︒,边AC 的垂直平分线DE 交BC 于点D ,交AC 于点E ,BF AC ⊥于点F ,连接AD 交BF 于点G ,若6BC =,18GF BG =,则DE 的长为_______.【答案】103【解析】【分析】本题考查了相似三角形的判定与性质,角平分线的性质,等腰三角形的性质,解题的关键是掌握相似三角形的性质.证明AFG CFB ∽,得出19AG FG BC BF ==,AGF CBF ∠=∠,求出AG ,AD 的长,证明CDE CBF V V ∽,得出DE CD BF BC=,则可得答案.【详解】解: 18GF BG =,∴19GF BF =, DE 是的AC 垂直平分线,∴AD CD =,∴C DAC ∠=∠,BF AC ⊥,∴90BFC AFG ∠=∠=︒,∴AFG CFB ∽,∴19AG FG BC BF ==,AGF CBF ∠=∠,∴23AG =, AGFBGD ∠=∠,∴BGD DBG ∠=∠,∴GD BD =,设GD BD x ==,∴263x x -=+,∴83x =,∴83GD BD ==,∴103AD CD ==,∴2AB ===,∴AC ===, 1122ABC S AB BC AC BF == ,∴AB BC BF AC === , BF AC ⊥,DE AC ⊥,∴DE BF ∥,∴CDE CBF V V ∽,∴DE CD BF BC=,∴10336DE =,∴3DE =,故答案为:103.三.解答题(共7小题,满分55分)16.2146tan303-⎛⎫-+︒- ⎪⎝⎭.【答案】5-【解析】【分析】本题考查特殊角的锐角三角函数值、负整数指数幂、实数的混合运算,掌握相关运算法则,即可解题.2146tan303-⎛⎫-+︒- ⎪⎝⎭34693=-⨯-49=-=5-.17.先化简再求值2344111x xxx x⎛⎫-++-÷⎪--⎝⎭,再从1,2,3中选取一个适当的数代入求值.【答案】22xx+-,5【解析】【分析】先因式分解,通分,去括号化简,再选值计算即可.【详解】2344111x xxx x⎛⎫-++-÷⎪--⎝⎭()224112x xx x⎛⎫--=⨯⎪--⎝⎭()()()222112x x xx x+--=⨯--x2x2+=-,当1x=,2x=时,分母为0,分式无意义,故不能取;当3x=时,2325232xx++==--.【点睛】本题考查了分式的化简求值,熟练掌握因式分解,约分,通分是解题的关键.18.为了解落实《陕西省大中小学劳动教育实践基地建设指导意见》的实施情况,某中学从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),按劳动时间分为五组:A组“3t<”,B组“35t≤<”,C组“57t≤<”,D组“79t≤<”,E组“9t≥”,将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是_______,B组所在扇形的圆心角的大小是_______,将条形统计图补充完整;(2)这次抽样调查中平均每周劳动时间的中位数落在_______组:(3)该校共有2000名学生,请你估计该校学生平均每周劳动时间不少于7h的学生人数.【答案】(1)100,108︒,统计图见解析(2)B(3)300【解析】【分析】(1)根据D组的人数除以占比得出样本的容量,根据B组的人数除以总人数乘以360︒得出B组所在扇形的圆心角的大小,进而根据总人数求得C组的人数,补全统计图即可求解;(2)根据中位数的定义即可求解;(3)根据样本估计总体,用2000乘以不少于7h的学生人数的占比即可求解.【小问1详解】解:这次抽样调查的样本容量是1010%=100÷,B组所在扇形的圆心角的大小是30360=108100︒⨯︒,C组的人数为1002530105=30----(人),故答案为:100,108︒.补充条形统计图如图所示,【小问2详解】解;∵253055+=,中位数为第50个与第51个数的平均数,∴中位数落在B 组,故答案为:B .【小问3详解】解:估计该校学生平均每周劳动时间不少于7h 的学生人数为1052000=300100+⨯(人).【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,AB 是O 的直径,AD 是O 的弦,C 是AB 延长线上一点,过点B 作BE CD ⊥交CD 于E ,交O 于F ,2EBC DAC ∠∠=.(1)求证:CD 是O 的切线;(2)若3cos 5ABF ∠=,O 的半径为5,求BC 的长.【答案】(1)见解析(2)103BC =【解析】【分析】(1)连接OD ,由等腰边对等角,三角形外角定理,可得2EBC DAC ∠∠=,于是DOC EBC ∠=∠,得到BE OD ∥,进而OD CD ⊥,即可得证,(2)由BE OD ∥,3cos cos 5DOC ABF ∠=∠=,根据余弦定义,可求OC ,进而可求BC ,本题考查了,切线的判定,平行线的性质与判定,解直角三角形,解题的关键是:熟练掌握相关性质定理.【小问1详解】解:连接OD ,∵OA OD =,∴DAO ADO ∠=∠,∴2DOC DAO ADO DAO ∠=∠+∠=∠,∵2EBC DAC ∠∠=,∴DOC EBC ∠=∠,∴BE OD ∥,∵BE CD ⊥,∴OD CD ⊥,∴CD 是O 的切线,【小问2详解】解:由(1)得BE OD ∥,∴DOC FBA ∠=∠,∵OD CD ⊥,∴3cos cos 5DOC ABF ∠=∠=,∴35OD OC =,即:535OC =,解得:253OC =,∴2510533BC OC OB =-=-=,故答案为:103BC =.20.某商店准备购进甲、乙两款篮球进行销售,若一个甲款篮球的进价比一个乙款篮球的进价多30元.(1)若商店用6000元购进甲款篮球的数量是用2400元购进乙款篮球的数量的2倍.求每个甲款篮球,每个乙款篮球的进价分别为多少元?(2)若商店购进乙款篮球的数量比购进甲款篮球的数量的2倍少10个,且乙款篮球的数量不高于甲款篮球的数量;商店销售甲款篮球每个获利30元,商店销售乙款篮球每个获利为20元,购进甲款篮球的数量为多少时,商店获利最大?【答案】(1)每个甲款篮球的进价为150元,每个乙款篮球的进价为120元(2)购进甲款篮球的数量为10个时,商店获利最大【解析】【分析】本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的应用.(1)设每个乙款篮球的进价为x 元,则每个甲款篮球的进价为()30x +元,根据商店用6000元购进甲款篮球的数量是用2400元购进乙款篮球的数量的2倍.列出分式方程,解方程即可;(2)设该商店本次购进甲款篮球m 个,则购进乙款篮球()210m -个,根据乙款篮球的数量不高于甲款篮球的数量,列出关于m 的一元一次不等式组,解之求出m 的取值范围,再设商店共获利w 元,利用总利润=每个的利润×销售数量(购进数量),得出w 关于m 的函数关系式,然后利用一次函数的性质,即可解决最值问题.【小问1详解】解:设每个乙款篮球的进价为x 元,则每个甲款篮球的进价为()30x +元,根据题意得:26000302400 xx =⨯+,解得:120x =,经检验,120x =是所列方程的解,且符合题意,3012030150x ∴+=+=,答:每个甲款篮球的进价为150元,每个乙款篮球的进价为120元;【小问2详解】解:设该商店本次购进甲款篮球m 个,则购进乙款篮球()210m -个,根据题意得:210m m -≤,解得:10m ≤,设商店共获利w 元,则()302021070200w m m m =+-=-,即70200w m =-,700> ,∴w 随m 的增大而增大,且10m ≤,∴当10m =时,w 取得最大值,答:购进甲款篮球的数量为10个时,商店获利最大.21.某排球运动员在原点O 处训练发球,MN 为球网,AB 为球场护栏,且MN ,AB 均与地面垂直,球场的边界为点K ,排球(看作点)从点O 的正上方点()0,2P 处发出,排球经过的路径是抛物线L 的一部分,其最高点为G ,落地点为点H ,以点O 为原点,点O ,M ,H ,K ,A 所在的同一直线为x 轴建立平面直角坐标系,相应点的坐标如图所示,点N 的坐标为()9,2.4(单位:米,图中所有的点均在同一平面内).(1)求抛物线L 的函数表达式;(2)通过计算判断发出后的排球能否越过球网?是否会出界?(3)由于运动员作出调整改变了发球点P 的位置,使得排球在点K 落地后立刻弹起,又形成了一条与L 形状相同的抛物线L ',且最大高度为1m .若排球沿L '下落时(包含最高点)能砸到球场护栏AB ,直接写出m 的最大值与最小值的差.【答案】(1)()216336y x =--+(2)发出后的排球能越过球网,不会出界,理由见解析(3)m 的最大值与最小值的差为6【解析】【分析】本题考查二次函数与实际问题,待定系数法求函数解析式,二次函数的图象及性质.(1)根据抛物线L 的最高点()6,3G 设抛物线L 的函数解析式为()263y a x =-+,把点()0,2P 代入即可求得a 的值,从而解答;(2)把9x =代入抛物线解析式中,求得排球经过球网时的高度,从而根据球网高度即可判断排球能否越过球网;把0y =代入抛物线解析式中,求得点H 的坐标,根据边界点K 的位置即可判断排球是否出界;(3)根据抛物线L '的形状与抛物线L 相同,且最大高度为1m .可设抛物线L '的解析式为:()21136y x k =--+,把点()18,0K 代入可求得抛物线L '解析式为()21018136k =--+,从而得到排球反弹后排球从最高处开始下落,护栏在距离原点24m 处,就会被排球砸到,即24m ≥,在排球着地点A 处砸到护栏,把0y =代入解析式,求解可得到30m ≤,从而可解答.【小问1详解】∵排球经过的路径是抛物线L 的一部分,其最高点为()6,3G ,∴抛物线L 的顶点坐标为()6,3,设抛物线L 的解析式为:()263y a x =-+,∵抛物线L 过点()0,2P ,∴2363a =+,解得:136a =-,∴抛物线L 的函数表达式为()216336y x =--+;【小问2详解】∵当9x =时,()21963 2.75 2.436y =--+=>,∴发出后的排球能越过球网.∵当0y =时,()2163036x --+=,解得:16x =+,26x =-∴点H 的坐标为()6+,∵618+<∴不会出界.综上,发出后的排球能越过球网,不会出界;【小问3详解】∵抛物线L '的形状与抛物线L 相同,且最大高度为1m .设抛物线L '的解析式为:()21136y x k =--+,∵抛物线L '过点()18,0K ,∴()21018136k =--+.解得:112k =(不合题意,舍去),224k =,∴()2124136y x =--+,∴抛物线L '的最高点坐标为()24,1∵排球从最高处开始下落,护栏在距离原点24m 处,就会被排球砸到.∴24m ≥;∵排球落地时,砸到点A .把0y =代入函数()2124136y x =--+,得()21024136x =--+,解得:118x =(不合题意,舍去),230x =.∴30m ≤.∴m 的最大值与最小值的差为:30246-=.22.(1)【问题探究】如图1,正方形ABCD 中,点F 、G 分别在边BC 、CD 上,且AF BG ⊥于点P ,求证:AF BG =;(2)【知识迁移】如图2,矩形ABCD 中,4,8AB BC ==,点E 、F 、G 、H 分别在边AB 、BC 、CD 、AD 上,且EG FH ⊥于点P ,若48EG HF ⋅=,求HF 的长;(3)【拓展应用】如图3,在菱形ABCD 中,60ABC ∠=︒,6AB =,点E 在直线AB 上,4BE =,AF D E ⊥交直线BC 或CD 于点F ,请直接写出线段FC 的长.【答案】(1)见解析(2)HF 的长为(3)线段FC 的长为127或1213【解析】【分析】(1)由正方形的性质,同角的余角相等即可证明()ASA ABF BCG ≌,由全等三角形的性质即可得证;(2)作EM DC ⊥于点M ,交FH 于点J ,作HN BC ⊥于点N ,交EM 于点I ,根据四边形ABCD 是矩形,依次可证四边形EBCM 和四边形ABNH 是矩形,进而可证HNF EMG ∽,可得2EG HF =,再由48EG HF ⋅=,求解即可;(3)分两种情况讨论,当E 在AB 的延长线上时,过A 作AM CD ⊥于M ,延长BA ,过D 作DN AB ⊥于N ,AF 交DE 于Q ,由四边形ABCD 是菱形,可得6AD CD AB ===,60ADC ABC ∠=∠=︒,由含30︒的直角三角形的性质,再结合勾股定理可求出AM ND ==,由同角的余角相等可证END AMF ∽,可得EN ND AM FM=,求出FM ,进而求解即可;当E 在线段AB 上时,过A 做AH BC ⊥于H ,过E 作EG BC ⊥于G ,延长,GE DA 交于J ,设,AF DE 交于I ,由四边形ABCD 是菱形,6AD AB BC ===,由含30︒的直角三角形的性质,再结合勾股定理可求出EJ AH ==,由同角的余角相等可证DJE AHF ∽,可得DJ EJ AH HF=,进而可求出97HF =,由线段的和差关系求解即可.【详解】1) 四边形ABCD 是正方形,90ABC C ∴∠=∠=︒,AB BC =,90ABP CBG ∴∠+∠=︒,AF BG ⊥ ,90APB ∴∠=︒,90BAF ABP ∴∠+∠=︒,BAF CBG ∴∠=∠,()ASA ABF BCG ∴ ≌,AF BG ∴=.(2)作EM DC ⊥于点M ,交FH 于点J ,作HN BC ⊥于点N ,交EM 于点I ,则=90EMC EMG HNB HNF ∠∠=∠=∠=︒,如图,四边形ABCD 是矩形,4,8AB BC ==,90A B C D ∴∠=∠=∠=∠=︒,90B C EMC ∠=∠=∠=︒ ,∴四边形EBCM 是矩形,8,EM BC EM BC ∴==∥,90HIJ HNF ∴∠=∠=︒,90A B HNB ∠=∠=∠=︒ ,∴四边形ABNH 是矩形,4,HN AB ∴==90HIJ ∠=︒ ,90NHF EJH ∴∠+∠=︒,EG FH ⊥ ,90EPJ ∴∠=︒,90MEG EJH ∴∠+∠=︒,NHF MEG ∴∠=∠,90EMG HNF ∠=∠=︒ ,HNF EMG ∴ ∽,4182HF HN EG EM ∴===,2EG HF ∴=,48EG HF ⋅= ,2248HF ∴=,HF ∴=,(3)当E 在AB 的延长线上时,过A 作AM CD ⊥于M ,延长BA ,过D 作DN AB ⊥于N ,AF 交DE 于Q ,如图,则90N AMD AMC ∠=∠=∠=︒,四边形ABCD 是菱形,60ABC ∠=︒,6AD CD AB ∴===,60ADC ABC ∠=∠=︒,AB CD ∥,60DAN ADC ∴∠=∠=︒,90EAM MAN AMC ∠=∠=∠=︒,∴四边形AMDN 是矩形,9030ADN DAN ∠=︒-∠=︒,132MD AN AD ∴===,46313EN BE AB AN ∴=++=++=,在Rt ADN △中,AM ND ====, AF D E ⊥,90EQA ∴∠=︒,90E EAQ ∴∠+∠=︒,90EAM ∠=︒ ,90MAF EAQ ∴∠+∠=︒,E MAF ∴∠=∠,90N AMC ∠=∠=︒ ,END AMF ∴ ∽,EN ND AM FM∴=,271313AM ND FM EN ⋅∴===,2712631313FC CD FM MD ∴=--=--=,当E 在线段AB 上时,过A 做AH BC ⊥于H ,过E 作EG BC ⊥于G ,延长,GE DA 交于J ,设,AF DE 交于I ,如图,AF D E ⊥,AH BC ⊥,EG BC ⊥,90AHB AHC AID BGE ∴∠=∠=∠=∠=︒,四边形ABCD 是菱形,60ABC ∠=︒,AD BC ∴∥,6AD AB BC ===,90,90,60J BGE DAH AHB EAJ ∴∠=∠=︒∠=∠=︒∠=︒,2AE AB BE =-=,9030,9030JEA EAJ BAH ABC ∴∠=︒-∠=︒∠=︒-∠=︒,。
届高三数学(理)第一次月考模拟试卷及答案

届高三数学(理)第一次月考模拟试卷及答案2018届高三数学(理)第一次月考模拟试卷及答案高考数学知识覆盖面广,我们可以通过多做数学模拟试卷来扩展知识面!以下是店铺为你整理的2018届高三数学(理)第一次月考模拟试卷,希望能帮到你。
2018届高三数学(理)第一次月考模拟试卷题目一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=( )A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ >0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是( )A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin ),b=f(cos ),c=f(tan ),则( )A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1 ,1]时,f(x)=1﹣x2,g(x)= ,则函数h(x)=f(x)﹣g(x)在区间x∈[-5 ,11]内零点的个数为( ) A.8 B.10 C.12 D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n 项和Sn的取值范围是( )A.[ ,2)B.[ ,2]C.[ ,1)D.[ ,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为( )A . B.C. D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( )①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值= =…= 成立,则n的取值集合是( )A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是 .14.定义在R上的奇函数f(x)以2为周期,则f(1)= .15.设有两个命题,p:x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .16.在下列命题中①函数f(x)= 在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则 f(x)dx=2 f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为 (写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式: >0(c为常数).19.已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )= .(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。
山西省部分学校2023-2024学年高三下学期3月月考数学试题含答案

2023~2024学年第二学期高三3月月考试卷数学考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。
3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效...........................。
4.本卷命题范围:高考范围。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是合题目要求的。
1.已知集合(){6,},{lg 20}A xx x B x x =<∈=-<N ∣∣,则()R A B = ð()A .{}1,2,3,4,5B .{}0,1,2,3,4,5C .{}0,1,4,5D .{02xx ≤≤∣,或36}x ≤<2.已知复数512iz =+,则2i z --=()A B .C 1D 3.已知D 是ABC △的AB 边上一点,若()1,,2AD DB CD CA CB λμλμ==+∈R,则λμ-=()A .23B .13C .0D .13-4.已知函数()2log ,02,23,2,x x f x x x <≤⎧=⎨->⎩若()()1210f a f a +--≥,则实数a 的取值范围是()A .(],2-∞B .[)2,+∞C .[]2,6D .1,22⎛⎤⎥⎝⎦5.已知12,F F 是椭圆()2222:10x y C a b a h+=>>的两个焦点,若C 上存点P ,使12PF PF =则C 的离心率的取值范围是()A .10,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .1,13⎡⎫⎪⎢⎣⎭D .1,12⎡⎫⎪⎢⎣⎭6.已知各项都是正数的等比数列{}n a 的前3项和为21,且312a =,数列{}n b 中,131,0b b ==,若{}n n a b +是等差数列,则12345b b b b b ++++=()A .153B .91C .33D .-337.已知e 是自然对数的底数,212e sin ,e ln2a b c ===,则()A .a b c>>B .c a b >>C .a c b>>D .b c a>>8.在棱长为4的正方体1111ABCD A B C D -中,E 是CD 的中点,F 是1CC 上的动点,则三棱锥A DEF -外接球半径的最小值为()A .3B .CD 二、选择题:本题共3小题,每小题6分,共18分。
广东省深圳市普通高中学校2018届高考高三数学4月月考

2018高考高三数学4月月考模拟试题03第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数243(2)ii +-=(A )1 (B )-1 (C )i (D )-i (2)向量(3,4),(,2)x ==a b ,若||⋅=a b a ,则实数x 的值为 (A )1- (B )12-(C )13- (D )1 (3)已知随机变量X 服从正态分布N 2(1,)σ,若P (X ≤2)=0.72,则P (X ≤0)=(A )0.22(B )0.28(C )0.36 (D )0.64(4)在等差数列{}n a 中,135792()3()48a a a a a ++++=则此数列的前10项的和10S =(A )10 (B )20 (C )40 (D )80(5)执行右图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是 (A )1 (B )2 (C )3 (D )4 (6)设函数())sin(2)(||)2f x x x πϕϕϕ=+++<且其图象关于直线0x =对称,则 (A )()y f x =的最小正周期为π,且在(0,)2π(B )()y f x =的最小正周期为π,且在(0,)2π上为减函数(C )()y f x =的最小正周期为2π,且在(0,)4π上为增函数 (D )()y f x =的最小正周期为2π,且在(0,)4π上为减函数(7)已知一个几何体的三视图如图所示,则该几何体的体积为 (A )6 (B )5.5 (C )5 (D )4.5(8)下列叙述正确的个数是①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α②若命题2000,10p x x x ∃∈-+R :≤,则2,10p x x x ⌝∀∈-+>R :③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角(A )1 (B )2 (C )3 (D )4正视图 侧视图俯视图 11 1 23(第7题)(9)双曲线22221x y a b-=(0,0a b >>)的两个焦点为12,F F ,若双曲线上存在一点P ,满足122PF PF =,则双曲线离心率的取值范围为(A )(]1,3 (B )()13, (C )()3+∞, (D )[)3,+∞(10)已知球的直径SC =4,A 、B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S —ABC 的体积为 (A )3 3 (B )2 3 (C ) 3 (D )1(11)已知长方形ABCD ,抛物线以CD 的中点E 为顶点,经过A 、B 两点,记拋物线与AB边围成的封闭区域为M .若随机向该长方形内投入一粒豆子,落入区域M 的概率为p .则下列结论正确的是(A )当且仅当AB =AD 时,p 的值最大 (B )当且仅当AB =AD 时,p 的值最小(C )若ABAD的值越大,则p 的值越大 (D )不论边长AB ,AD 如何变化,p 的值为定值 (12)定义域为R 的偶函数()f x 满足对x ∀∈R ,都有(2)()(1)f x f x f +=-成立,且当[2,3]x ∈时,2()21218f x x x =-+-.若函数()log (1)a y f x x =-+在()0,+∞上至少有三个零点,则a 的取值范围是 (A) (B) (C) (D)第Ⅱ卷本卷包括必考题和选考题两部分。
广东省深圳市普通高中学校2018届高三数学3月月考模拟试题01201804211149

2018高考高三数学3月月考模拟试题01第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集}{1,2,3,4U =,集合{}{}1,2,2,4A B ==,则()U A B = ð(A ){}1,2 (B ){}2,3,4 (C ){}3,4 (D ){}1,2,3,4【答案】B因为{}{}1,2,2,4A B ==,所以{34}U A =,ð,即()U A B = ð}{=2,3,4,选B. (2)2i 1-i=为虚数单位,则 (A )1+i (B )-1+i(C )1-i(D )-1-i【答案】A22(1)2(1)11(1)(1)2i i i i i i ++===+--+,选A. (3)一个几何体的三视图如图所示,则该几何体的体积为(A )1(B )13 (C )12(D )32【答案】B由三视图可知,该几何体是四棱锥,以俯视图为底,高为1,俯视图的面积为11=1⨯,使用四棱锥的体积为111133⨯⨯=,选B. (4)右图是2013年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,则去年一个最高分和一个最低分后,所剩数据的平均数和方差分别为(A )84,4.84 (B )84,1.6 (C )85,1.6 (D )85,4 【答案】C数据中的最高分为93,最低分为79.所以平均分为184(23)855++=,方差为2221[3(8485)(8685)(8785)] 1.65-+-+-=,所以选C. (5)已知向量(1,2)=a ,(,6)x =b ,且a ∥b ,则x 的值为(A )1 (B )2 (C )3 (D )4 【答案】C因为a ∥b ,所以1620x ⨯-=,解得3x =,选C.(6)执行如图所示的程序框图,若输出结果为3,则可输入的实数x 值的个数为(A )1 (B )2 (C )3 (D )4 【答案】C由题意知221,2log ,2x x y x x ⎧-≤=⎨>⎩。
广东省深圳市南山区为明学校2023-2024学年高一下学期3月月考数学试题

广东省深圳市南山区为明学校2023-2024学年高一下学期3月月考数学试题一、单选题1.已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =I ( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}22.已知向量(2,(1,2),)a b x ==-r r ,若//a b r r ,则a b +=r r( )A .()2,1--B .()2,1C .()3,1-D .()3,1-3.已知AB u u u v =(2,3),AC u u u v =(3,t ),|BC|=1,则AB ⋅BC = A .-3 B .-2 C .2D .34.在ABC V中,若π1,cos 63a A C =∠==-,则c =( ) AB .23CD .835.设ABC V 内角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,b 30A =︒,则边c =( ) A .1B .2C .1或2D6.已知向量()()1,1,1,1a b ==-r r,若()()a b a b λμ+⊥+r r r r ,则( )A .1λμ+=B .1λμ+=-C .1λμ=D .1λμ=-7.已知a =r 2a b ⋅=-r r ,则向量b r 在向量a r上的投影向量为( )A .12a rB .12b rC .a -rD .b -r8.已知函数()y f x =的图象关于y 轴对称,且对于()(R)y f x x =∈,当1x ,2(,0]x ∈-∞时,1212()()0f x f x x x -<-恒成立,若()()2221f ax f x <+对任意的R x ∈恒成立,则实数a 的取值范围是( )A .(-∞B .(C .⎡⎣D .)+∞二、多选题9.已知3cos 5α=,π,02α⎛⎫∈- ⎪⎝⎭,则( )A .4sin(π)5α+=B .π4cos 25α⎛⎫+=- ⎪⎝⎭C .4tan(π)3α-=D .3πin 325s α⎛⎫+= ⎪⎝⎭10.在ABC V 中,D 在AB 边上,2AD DB =u u u r u u u r,E 是CD 的中点,则( )A .BC AB AC =-u u u r u u u r u u u rB .2133CD CA CB =+u u u r u u u r u u u rC .1132AE AB AC =+u u u r u u u r u u u r D .23AC CB CD =-uu u r uu r uu u r11.在ABC V 中,角,,A B C 的对边分别是,,a b c ,若cos sin a B b A c +=,222sin a a b c ab C =+-=,则( )A .tan 2C =B .π3A =C .b =D .ABC V 的面积为三、填空题12.已知向量(2,1)a =r ,(2,4)b =-r ,则||a b -=rr .13.为了估算圣索菲亚教堂的高度,某人在教堂的正东方向找到一座建筑物AB ,高约为36m ,在它们之间的地面上的点M (,,B M D 三点共线)处测得建筑物顶A 、教堂顶C 的仰角分别是45︒和60︒,在建筑物顶A 处测得教堂顶C 的仰角为15︒,则计算圣索菲亚教堂的高度CD 为m .14.设锐角ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若2C A =,则2c ba+的取值范围是.四、解答题15.已知向量 a r 和 b r ,则 2=r a ,2b =r , ,60a b 〈〉=︒rr 求:(1)a b ⋅r r 的值;(2)2a b +u u r r 的值; (3)2a b +r r 与 b r的夹角θ的余弦值.16.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,且222s in s i n s i n s i n s i n B C A B C+-=.(1)求角A ;(2)若6a =,2b c =,求ABC V 的面积.17.已知函数()222cos 1f x x x =+-. (1)求()f x 的单调递增区间;(2)若π102313f α⎛⎫-= ⎪⎝⎭,π,π2α⎛⎫∈ ⎪⎝⎭,求πsin 4α⎛⎫+ ⎪⎝⎭的值.18.蜀绣又名“川绣”,与苏绣,湘绣,粤绣齐名,为中国四大名绣之一,蜀绣以其明丽清秀的色彩和精湛细腻的针法形成了自身的独特的韵味,丰富程度居四大名绣之首.1915年,蜀绣在国际巴拿马赛中荣获巴拿马国际金奖,在绣品中有一类具有特殊比例的手巾呈如图所示的三角形状,点D 为边BC 上靠近B 点的三等分点,60ADC ∠=︒,2AD =.(1)若45ACD ∠=︒,求三角形手巾的面积; (2)当ACAB取最小值时,请帮设计师计算BD 的长. 19.已知函数()221x f x a =-+为定义在R 上的奇函数. (1)求实数a 的值;(2)(i )证明:()f x 为单调递增函数; (ii )()0,x ∀∈+∞,若不等式()2221log log 1011m f x x x x x +⋅-+>++恒成立,求非零实数m 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高考高三数学3月月考模拟试题04第I 卷(60分)一 、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={x ∈N +|-2<x ≤7},集合M ={2,4,6},P ={3,4,5},那么集合 C U (M ∪P )是A .{-1,0,1,7}B .{1,7}C .{1,3,7}D .φ2.复数534i +的共轭复数是 A .3455i + B .3455i - C .3+4i D .3-4i3.下列说法正确的是A .“若x 2=1,则x=1”的否命题为:“若x 2=1,则x ≠1” B .“x=-1”是“x 2-5x-6=0”的必要不充分条件.C .“∀x ∈R ,x 2+x+1<0”的否定是:“∃ x ∈R ,x 2+x+1<0”D .“若x=y ,则sin x=sin y ”的逆否命题为真命题4.某程序框图如图所示,该程序运行后输出的k 的值是 A .4 B .5 C .6 D .75.,有下面四个命题:平面,直线平面已知直线βα⊂⊥m l(1)//l m αβ⇒⊥;(2)//l m αβ⊥⇒;(3)//l m αβ⇒⊥;(4)//l m αβ⊥⇒其中正确的命题是A .(1)(2)B .(2)(4)C .(1)(3)D .(3)(4)6.要得到函数)42cos(3π-=x y 的图象,可以将函数x y 2sin 3=的图象A.沿x 轴向右平移8π个单位 B.沿x 轴向左平移8π个单位C.沿x 轴向右平移4π个单位 D.沿x 轴向左平移4π个单位 7.若x ,y 满足约束条件 02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则y x z +=的最小值是A.-3B.0C.32D.3 8.已知圆C 与直线x -y =0 及x -y -4=0都相切,且圆心在直线x +y =0上,则圆C 的方程为A.22(1)(1)2x y ++-=B. 22(1)(1)2x y -++=C. 22(1)(1)2x y -+-=D.22(1)(1)2x y +++=9.已知函数()2log f x x =,正实数m,n 满足m n <,且()()f m f n =,若()f x 在区间2,m n ⎡⎤⎣⎦上的最大值为2,则m 、n 的值分别为A .1,22B. 1,241,4410. 在长方形ABCD 中,AB =2,BC =1,M 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到M 的距离大于1的概率为 A.4π B.8πC.14π-D.18π- 11.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体 A.外接球的半径为3B.C.1 D.外接球的表面积为163π12.已知奇函数f (x )满足f (-1)=f (3)=0,在区间[-2,0)上是减函数,在区间[2,+∞)是增函数,函数F (x )=(),(),0xf x x f x x ⎧⎨⎩-<0->,则0)(>x F 的解集是A .{x |x <-3,或0<x<2,或x>3}B .{x |x<-3,或-1<x<0,或0<x<1,或x>3}C .{x |-3<x <-1,或1<x <3}D .{x |x <-3,或0<x <1,或1<x <2,或2<x <3}正视图侧视图俯视图第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.若抛物线px y 22-=(p>0)的焦点与双曲线22163x y -=的左焦点重合,则p 的值为________ .14.设n S 为等比数列{}n a 的前n 项和,已知2354-=a S ,3432S a =-,,则公比q =________.15.在△ABC 中,AC 边上的高为BD ,垂足为D ,且|BD则BD ·CB =___________. 16.已知.22)(),3)(2()(-=++-=x x g m x m x m x f 若0)(,<∈∀x f R x 或0)(<x g ,则m 的取值范围是____________.三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)已知函数21)6sin(cos 2)(--⋅=πx x x f ]。
(Ⅰ)求函数()x f 的最小值和最小正周期;(Ⅱ)设ABC ∆的内角C B A 、、的对边分别为c b a 、、且3=c ,角C满足()0=C f ,若A B sin 2sin =,求b a 、的值.18.(本小题满分12分)已知等差数列{}n a 满足:,1442=+a a 136=a .{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令211n n b a =-(+∈N n ),数列{}n b 的前n 项和为n T ,求证:4181<≤n T . 19. (本小题满分12分)如图,已知多面体ABCDE 中,DE ⊥平面DBC ,D E AB ∥,2====AB BC CD BD ,F 为BC 的中点. (Ⅰ)求证:D F ⊥平面ABC ; (Ⅱ)求点D 到平面EBC 的距离的取值范围.B ACDEF 19题图20. (本小题满分12分)某单位开展岗前培训.期间,甲、乙2人参加了5次考试,成绩统计如下:(Ⅰ)根据有关统计知识,回答问题:若从甲、乙2人中选出1人上岗,你认为选谁合适,请说明理由;(Ⅱ)根据有关概率知识,解答以下问题:① 从甲、乙2人的成绩中各随机抽取一个,设抽到甲的成绩为x ,抽到乙的成绩为y .用A 表示满足条件2||≤-y x 的事件,求事件A 的概率;② 若一次考试两人成绩之差的绝对值不超过3分,则称该次考试两人“水平相当”.由上述5次成绩统计,任意抽查两次考试,求至少有一次考试两人“水平相当”的概率. 21.(本小题满分12分)已知函数023)(x cx bx ax x f 在点++=处取得极小值-4,若x x f 的0)(>'的取值范围为(1,3).(Ⅰ)求)(x f 的解析式及)(x f 的极大值;(Ⅱ)()6(2)g x m x =-设,当[2,3],()x y f x '∈=时函数的图像恒在()y g x =的图象 的下方,求m 的取值范围.22.(本小题满分12分)已知两定点E(-2,0),F(2,0),动点P 满足0PE PF =,由点P 向x轴作垂线段PQ ,垂足为Q ,点M 满足PM MQ =,点M 的轨迹为C. (Ⅰ)求曲线C 的方程;(Ⅱ)过点D (0,-2)作直线l 与曲线C 交于A 、B 两点,点N 满足ON OA OB =+(O 为原点),求四边形OANB 面积的最大值,并求此时的直线l 的方程.参考答案一、选择题:1-5 BADAC 6-10 BCBAC 11-12 D C 二、填空题:13. 6 14. 4 15. -3 16. (-4,0) 三、解答题:17.解(Ⅰ)原式可化为:1cos 21()2sin(2)1226x f x x x π+=--=------3分 则()f x 的最小值是2-,最小正周期是22T ππ==; ----5分 (Ⅱ)()sin(2)10,sin(2)166f C C C ππ=--=-=则 1100222666C C C πππππ<<∴<<∴-<-<2,623C C πππ∴-=∴=-----7分1sin 2sin ,2a B Ab ==由正弦定理,得由余弦定理,得222222cos,33c a b ab a b ab π=+-+-=即解得1,2a b ==. -----10分 18.解(Ⅰ)设等差数列{}n a 的公差为d ,因为,1442=+a a 136=a ,所以有13,2a d ==,所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n ------5分 (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅, 所以n T =111111(1-+++-)4223n n+1⋅-=4111-141<⎪⎭⎫ ⎝⎛+n , ---------10分又811=≥T T n 单调递增,故4181n <≤T ---------12分19. 解法一:(Ⅰ)∵DE ⊥平面DBC ,AB D E ∥, ∴AB ⊥平面DBC ,∵D F ⊂平面DBC ,∴AB DF ⊥. 又∵BD CD B =2C ==,F 为CD 的中点, ∴D B F C ⊥. ∵BC ⊂平面ABC ,AB ⊂平面ABC ,AB BC=B ,∴D F ⊥平面ABC -------4分 (Ⅱ):设DE x =,则0x >. ∵DE ⊥平面DBC ,∴DE B C ⊥ 又∵D F BC ⊥,D E ⊂平面DEFD F ⊂平面DEF ,DE DF D =,∴BC ⊥平面DE F ,∵BC ⊂平面ABC ,∴平面DEF ⊥平面EBC . 连EF ,过D 作D H EF ⊥,垂足为H ,则DH ⊥平面EBC .线段DH 的长即为点D 到平面EBC 的距离. ----------8分在Rt DEF ∆中,,DE x DF =∴EF DH ===-----------12分解法二:, 2..111.23323133E BCD BCD BCE D BCE BCE E BCD D BCE DE x BD BC CD DE BCD V DE S x xBE CE S D BCE d dV d S V V x d x -∆∆-∆--====⊥∴==⋅⋅⨯====⋅====∈设平面另设到平面的距离为则由解得20.解(Ⅰ)222285853150x s s s s ====<乙甲乙乙甲甲,x ,,,∴派甲合适. -----4分(Ⅱ)(1)可以看出基本事件的总数n=25个,而满足条件2x y -≤的事件有(82,80),(82,80),(79,80),(95,95)(87,85)共5个, 51()255P A ∴== -----8分 (2)考试有5次,任取2次,基本事件共10个:(82,95)和(82,75),(82,95)和(79,80),(82,95)和(95,90),(82,95)和(87,85),(82,75)和(79,80),(82,75)和(95,90),(82,75)和(87,85),(79,80)和(95,90),(79,80)和(87,85),(95,90)和(87,85)其中符合条件的事件共有7个,则5次考试,任取2次,两人“水平相当”为事件B 7()10P B ∴=------12分 21.解:(Ⅰ)由题意知)0)(3)(1(323)(2<--=++='a x x a c bx ax x f ,(,1),()0,(1,3),()0,(3,),()0.f x f x f x '''∴-∞<>+∞<在上在在上因此1)(0=x x f 在处取得极小值-4,在x=3处取得极大值。