计量经济学复习要点

合集下载

计量经济学重点复习资料

计量经济学重点复习资料

计量经济学1、 P5 计量经济学的研究步骤① 模型设定 ②估计参数 ③模型检验 ④模型应用2、 P11 数据类型① 时间序列数据(同一空间不同时间)② 截面数据(同一时间不同空间) ③面板数据 ④虚拟变量数据3、P18 回归分析① 回归的现代意义:一个被解释变量对若干个解释变量依存关系的研究。

② 回归的实质:由解释变量去估计被解释变量的平均值。

4、P22-25总体和样本 总体回归函数:12()i i i E Y X X ββ=+ 样本回归函数:12ˆˆˆi i Y X ββ=+总体回归模型:12ii i Y X u ββ=++样本回归模型:12ˆˆi i iY X e ββ=++ 5、P22 “线性”的两种解释① 就变量而言是线性的——Y 的条件期望(均值)是X 的线性函数12()i i i E Y X X ββ=+:对参数“线性”,对变量“非线性” ② 就参数而言是线性的——Y 的条件期望(均值)是参数β的线性函数12()ln i i i E Y X X ββ=+:对变量“线性”,对参数“非线性”6、P22 随机扰动项随机扰动项是被解释变量实际值与条件均值的偏差,实际代表了排除在模型以外的所有因素对Y 的影响,i u 是其期望为0有一定分布的随机变量。

7、P23 总体回归线、样本回归线的意义① 样本回归线随抽样波动而变化:每次抽样都能获得一个样本,就可以拟合一条样本回归线。

(SRF 不唯一)② 样本回归函数的函数形式应与设定的总体回归函数的函数形式一致。

③ 样本回归线只是样本条件均值的轨迹,还不是总体回归线,它至多只是未知的总体回归线的近似表现。

8、P25i e :剩余项或残差项① 表达式:ˆi ii e Y Y =- 或 12ˆˆi i iY X e ββ=++ ② 经济含义:被解释变量Y 的实际观测值不完全等于样本条件均值,二者之差用i e 表示 ③ 与随机扰动项的联系:i e 在概念上类似总体回归函数中的i u ,可视为对i u 的估计。

计量经济学复习笔记要点

计量经济学复习笔记要点

计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。

方差:变量的每个样本与均值的距离大小的概念。

标准差:对方差开根号就是标准差。

数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。

假设检验的步骤:第一步,设定假设条件。

原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。

第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。

第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。

第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。

如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。

第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。

通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。

计量经济学重点

计量经济学重点

计量经济学重点计量经济学复习资料一、名词解释1.广义计经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。

2.狭义计经济学以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。

3.总体回归函数:指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。

4.样本回归函数:指从总体中抽出的关于Y, x的若干组值形成的样本所建立的回归函数。

6、随机的总体回归函数:含有随机千扰项的总体回归函数(是相对于条件期望形式而言的)。

5.线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的I次方出现。

6.随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。

9、残差项:是一随机变量,是针对样本回归函数而言的。

7.条件期望:即条件均值,指X取特定值Xi时Y的期望值。

8.回归系数:回归模型中βo, β1等未知但却是固定的参数。

9.回归系教的估计量:指用β 0^ β1^等表示的用已知样本提供的信息所估计出来总体未知参数的结果。

10.最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

11.最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。

12.估计的标准差:度量一个变量变化大小的测量值。

13.总离差平方和:用TSS表示,用以度量被解释变量的总变动。

14.回归平方和:用ESS表示:度量由解释变量变化引起的被解释变量的变化部分。

15.残差平方和:用RSS表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。

16.协方差:用Cov(X, Y)表示,度量XY两个变量关联程度的统计量。

17.拟合优度检验:检验模型对样本观测值的拟合程度,用R2表示,该值越接近1,模型对样木观测值拟合得越好。

(完整)计量经济学考试重点整理

(完整)计量经济学考试重点整理

计量经济学考试重点整理第一章:P1:什么是计量经济学?由哪三组组成?定义:“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。

计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。

经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。

三者结合起来,就是力量,这种结合便构成了计量经济学。

”P9:理论模型的设计主要包含三部分工作,即选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围。

P12:常用的样本数据:时间序列,截面,虚变量数据P13:样本数据的质量(4点)完整性;准确性;可比性;一致性P15-16:模型的检验(4个检验)1、经济意义检验2、统计检验拟合优度检验总体显著性检验变量显著性检验3、计量经济学检验异方差性检验序列相关性检验共线性检验4、模型预测检验稳定性检验:扩大样本重新估计预测性能检验:对样本外一点进行实际预测P16计量经济学模型成功的三要素:理论、方法和数据。

P18-20:计量经济学模型的应用1、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究.结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。

计量经济学模型的功能是揭示经济现象中变量之间的相互关系,即通过模型得到弹性、乘数等。

2、经济预测计量经济学模型作为一类经济数学模型,是从用于经济预测,特别是短期预测而发展起来的。

计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律为主要技术手段。

对于非稳定发展的经济过程,对于缺乏规范行为理论的经济活动,计量经济学模型预测功能失效。

模型理论方法的发展以适应预测的需要。

3、政策评价政策评价是指从许多不同的政策中选择较好的政策予以实行,或者说不同的政策对经济目标所产生的影响的差异。

计量经济学复习重点

计量经济学复习重点

1、经济变量:用来描述经济因素数量水平的指标。

2、解释变童:用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

它对因变量的变额为发热所引5动做出解释。

3、被解释变量:是作为研究对象的变量。

它的变动是由•解释变量做出廉释的4、控制变量:在计量经济模型中人为设置的反映政黃要求、决策者意愿、经济系统运行条件和状态等方面的变量。

5、计量经济模型:为了研究分析某个系统中经济变量之问的数量关系而采用的随机代数模型。

6、相关关系:如果一个变量y的取值受另一个变量或另一组变量的彩响.但并不由它们惟一确定,则y与这个变量或这组变量之问的关系就是相关关系。

7、最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法。

8、拟合优度:样本回归直线与样本观测数据之问的拟合程度。

(9、残差:样本回归方程的拟合值与观測值的误差。

10、显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检豔程序。

11、偏相关系数:在Y. X|. 1三个变量中,当儿既定时,表示Y与X2之问相关关系的指标。

12、异方差性:在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称葩机项U1具有异方差性。

13、序列相关性:对于模型Xi = % + 妙九 +色乜+•••+%%+“i = 12 …屮菠机误差项互相独立的基本假设表现为C"(冷"” =0 /> j,i,j = \2…』(I分)如果出现Cov(比,“ J) H 0 i H人i J = 12…屮即对于不同的样本点•随机误差项之问不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性。

14、自回归模型:15、广乂最小二乘法:是最有普遍意义的最小二乘法,普通最小二乘法和加权最小二乘法是它的特例。

16、相关系数:度量变量之问相关程度的一个系数,一般用P表示。

17、多重共线性:解释变量之问存在完全或不完全的线性关系。

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点

计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。

2、计量经济学是统计学、经济学和数学的结合。

3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。

4、计量经济学是经济学的一个分支学科。

第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。

2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。

3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。

4、参数估计量的评价标准:无偏性、有效性、一致性。

5、OLS估计量的统计特征:线性特性、无偏性、有效性。

6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。

第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。

2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。

3、参数最小二乘估计的性质:线性性质、无偏性、有效性。

4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。

5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。

6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。

计量经济学复习重点

计量经济学复习重点

1、统计检验是利用统计推断的原理,对参数估计的可靠程度、观察数据的拟合程度进行检验;主要方法有拟合优度检验、变量和方程的显著性检验2、计量经济学检验:检验模型的计量经济学性质,即检验模型基本假设的满足程度、各种经济计量假设的合理性。

主要检验准则:序列相关检验、异方差检验和多重共线检验。

3、模型预测检验:检验模型参数估计量的稳定性以及相对样本容量变化时的灵敏度,确定所建立的模型是否可以用于观察值以外的范围。

具体检验方法:(1)利用扩大了的样本 重新估计参数,检验两次估计结果的差异显著性;(2)将所建立的模型用于样本以外某一时期的实际预测,预测值与实际值进行比较并检验差异显著性。

4、建立计量经济模型的步骤5、样本回归模型回归分析是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。

由于总体的信息往往无法掌握,现实的情况只能是在一次观测中得到总体的一组样本样本散点图近似于一条直线,画一条直线以尽可能好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。

该线称为样本回归线,其函数形式记为:6、随机扰动项U :理论经济学和数理经济学一般假定经济变量之间存在确定性的规律,从而建立确定性的模型。

引入随机扰动项是为了更准确地描述社会经济系统。

随机扰动项是不可观察的,只能通过残差——实际值与拟合值的差——进行估计7、Gauss —Markov 定理(高斯-马克):满足性质1、2、3的最小二乘估计量是最优线性无偏估计量 最小二乘法求出参数估计量达到最小值。

性质1:线性特性;估计量a,b 均可由被解释变量Y 线性表示出来。

性质2:无偏性E (a )= E (b )= β 性质3:在a 、β的各种线性无偏估计中,最小二乘估计量a,b 具有最小方差。

8、完全共线性:如果存在 c 1X 1i +c 2X 2i +…+c k X ki =0 i=1,2,…,nii i X X f Y 10ˆˆ)(ˆββ+== (2.1.4)称为样本回归函数(sample regression function )SRF 。

(完整版)计量经济学重点知识归纳整理

(完整版)计量经济学重点知识归纳整理

1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。

普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。

2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。

从此意义看,加权最小二乘法也称为广义最小二乘法。

3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。

4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。

5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。

6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。

7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。

如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。

9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学复习要点第1章绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念习题:Cl、C2第2章简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是山固定的解释变量去估计被解释变量的平均值。

简单线性回归模型是只有一个解释变量的线性回归模型。

回归中的四个重要概念1.总体回归模型(Popu I at i on Regress ion Mode I, PRM)X =0o + 0i£ +妁--代表了总体变量间的真实关系。

2.总体回归函数(Popu I at io n Regressio n Function, PRF)E(x)= A) +0K —代表了总体变量间的依存规律。

3.样本回归函数(Sample Regression Function, SRF)X =00+01 x t +弓一代表了样本显示的变量关系。

4.样本回归模型(Sample Regression Mode I, SRM)7\ Ay t - +P\x t——代表了样本显示的变量依存规律。

总体回归模型与样本回归模型的主要区别是:①描述的对象不同。

总体回归模型描述总体中变量y 与x的相互关系,而样本回归模型描述所关的样本中变量y与x的相互关系。

② 建立模型的依据不同。

总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。

总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。

线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数)线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项U的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定)普通最小二乘法(原理、推导)最小二乘法估讣参数的原则是以“残差平方和最小” OMin 工(乙一£)9(Bo,Bi): i=iX(x,-x)(^.-y)E= ------------------------------------工(X*f=lOLS的代数性质拟合优度R2离差平方和的分解:TSS二ESS+RSS“拟合优度”是模型对样本数据的拟合程度。

检验方法是构造一个可以表征拟合程度的指标——判定系数又称决定系数。

(1)/?2=—=^-^ = 1-—,表示回归平方和与总离差平方和之比;反映了样本SST SST SST回归线对样本观测值拟合优劣程度的一种描述;(3)回归模型中所包含的解释变量越多,疋越大! 改变度量单位对OLS统计量的影响函数形式(对数.半对数模型系数的解释)(1)£=阮+百Xi: X变化一个单位Y的变化(2)ln£=B()+BjnX,:X 变化1%, Y 变化p,%,表示弹性。

(3)1疋=瓦+3必:X变化一个单位,Y变化百分之100B|(4)£=Bo+%lnXi: X 变化1%, Y 变化p,%oOLS无偏性,无偏性的证明OLS估计量的抽样方差误差方差的估计OLS估计量的性质(1)线性:是指参数估计值仇和Q分别为观测值开的线性组合。

(2)无偏性:是指仇和Q的期望值分别是总体参数几和人。

(3)最优性(最小方差性):是指最小二乘估计量几和Q在在各种线性无偏估讣中,具有最小方差。

高斯■马尔可夫定理 A 2OLS参数估计量的概率分布®沪亍OLS随机误差项H的方差o啲佔讣CTn-2简单回归的高斯马尔科夫假定对零条件均值的理解习题:4、5、6; C2、C3、C4第3章多元回归分析:估计1、变量系数的解释(剔除、控制其他因素的影响)对斜率系数B的解释:在控制其他解释变量(X2)不变的条件下,XI变化一个单位对Y = xp + u Y的影响;或者,在剔除了其他解释变量的影响之后,XI的变化对Y 八2 I的单独影响!p 2、多元线性回归模型var(0; = b-(X'X)・中对随机扰动项u的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定。

3、多元线性回归模f型参数的最小二乘估讣式;参数佔计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘佔讣式是最佳线性无偏估计式。

最小二乘法(OLS)公式:P = (X'X)JX'Y估计的回归模型:的方差协方差矩阵:残差的方差:估讣的方差协方差矩阵是: 拟合优度遗漏变量偏误多重共线性多重共线性的概念多重共线性的后果多重共线性的检验多重共线性的处理习题:1、2、6、7、8、10; C2、C5、C6第4章多元回归分析:推断经典线性模型假定正态抽样分布变量显著性检验,t检验检验卩值的其他假设P值实际显著性与统计显著性检验参数的一个线性组合假设多个线性约束的检验:F 入检验(x,x)“理解排除性约束var(Q = s2报告回归结果习题:1、2、3、4、6、7、10、11; C3、C5、C8第6章多元回归分析:专题测度单位对OLS统计量的影响进一步理解对数模型二次式的模型交互项的模型拟合优度修正可决系数的作用和方法。

工</5-灯=j n-\ X g>2 工&-卩)2/(〃_1)一一归“ _力2习题:1、3、4、7; C2、C3、C5、C9、C12第7章虚拟变量虚拟变量的定义如何引入虚拟变量:如果一个变量分成N组,引入该变量的虚拟变量形式是只能放入N-1个虚拟变量虚拟变量系数的解释虚拟变量系数的解释:不同组均值的差(基准组或对照组与处理组)以下几种模型形式表达的不同含义;1)乙=仇+0凶+020+忆截距项不同;2)乙=几+0必+020X『+的:斜率不同;3) X =A)+QX,+020+03°Xf +幼:截距项与斜率都不同;其中D是二值虚拟变量,X是连续的变量。

虚拟变量陷阱虚拟变量的交互作用习题:2、4、9; C2、C3、C6、C7、C11第8章异方差异方差的后果异方差稳健标准误BP检验异方差的检验(White检验)加权最小二乘法习题:1、2、3、4; Cl、C2、C8、C9Eviews回归结果界面解释表计量经济学复习题第1章习题:Cl 、C2第 2 章习题:4、5、6; C2、C3、C4第 3 章习题:1、2、6、7、8、10; C2、C5、C6 第 4 章习题:1、2、3、4、6、7、10、11; C3、C5、C8 第 6 章习题:1、3、4、7; C2、C3、C5、C9、C12 第 7 章习题:2、4、9; C2、C3、C6、C7、C11 第 8 章习题:1、2、3、4; Cl 、C2、C8、C91、判断下列表达式是否正确2469X =0o+0",心1,2,…/ X- =00+0",心1,2,・・・/E ( X | x J = 0o + A 兀 + “, i = 1,2,…/E (讣)=久+加,i = l,2,・・・‘2、给定一元线性回归模型:匕=0o + QX +〃 t = 1,2,…/(1)叙述模型的基本假定;A A A A 八A -一一一一 一一 一一・2 -z・z ・<・z+P\x i + “, 「= 1,+P\x i + “, ,=1,2,・+P\x i+ “,,=1,2,・+P\xi,=1,2,・+P\xi +,=1,2,(2)写出参数%和几的最小二乘估计公式;(3)说明满足基本假定的最小二乘估计量的统计性质;(4)写出随机扰动项方差的无偏估计公式。

3、对于多元线性计量经济学模型:乙=A+02*2『+“3心+ …+ AtX灯+“I= 1,2,---, n(1)该模型的矩阵形式及各矩阵的含义;(2)对应的样本线性回归模型的矩阵形式;(3)模型的最小二乘参数估计量。

4、根据美国1961年第一季度至1977年笫二季度的数据,我们得到了如下的咖啡需求函数的回归方程:In Q = 1.2789-0.1647 In R + 0.5115 In/, + 0.1483 In p t - 0.00897' 一0.0961 D” 一0.157 Dit~ 0-0097 D M (-2.14)(1. 23)(0. 55)(-3. 36)(-3. 74)(-6. 03)(-0. 37)/?2 = 0.80其中,Q二人均咖啡消费量(单位:磅);P二咖啡的价格(以1967年价格为不变价格);I二人均可支配收入(单位:千元,以1967年价格为不变价格);P二茶的价格(1/4磅,以1967年价格为不变价格);T二时间趋势变量(1961年笫一季度为1, (1977)第二季度为66);Di二1:第一季度;D c=l:第二季度;D3-l:第二季度。

请回答以下问题:①模型中P、I和“的系数的经济含义是什么?②咖啡的需求是否很有弹性?③咖啡和茶是互补品还是替代品?④你如何解释时间变量T的系数?⑤你如何解释模型中虚拟变量的作用?⑥哪一个虚拟变量在统计上是显著的?⑦咖啡的需求是否存在季节效应?解答(1)从咖啡需求函数的回归方程看,P的系数-0.164 7表示咖啡需求的自价格弹性:"的系数0.5115表示咖啡需求的收入弹性;P的系数0,148 3 表示咖啡需求的交叉价格弹性。

(2) 咖啡需求的自价格弹性的绝对值小于1,表明晰啡是缺乏弹性。

五、补充练习崩参考答叢147(3) F的系数大于0,表明咖啡与茶属于替代品。

(4) 从时间变量7*的系数为」).01看,咖啡的需求董应该是逐年减少,但减少的速度很慢. '(5) 虚拟变量在本模型中表示师啡需求可能受季节因素的彭响。

(6) 从各参数的t检验看,第一季度和第二季度的虚拟变童在统计上是显著的。

(7) 咖啡的需求存在季节效应,回归方程显示第一季度和第二季度的需求毎比其他季节少。

5、为研究体重与身高的关系,我们随机抽样调查了51名学生(其中36名男生,15名女生),并得到如下两种回归模型:W = -232.06551 + 5.56627? (5.1)t=(-5. 2066) (8. 6246)W = -122.9621 + 23.8238D + 3.7402〃(5. 2)t=(-2. 5884) (4. 0149) (5. 1613)其中,W(weight)=体重(单位:磅);h(height)=身高(单位:英寸)-b男生D(0女生请回答以下问题:①你将选择哪一个模型?为什么?②如果模型(5.2)确实更好,而你选择了(5.1),你犯了什么错误?③D的系数说明了什么?5 19解答(1)会选择e)模型,理由是该模型中。

相关文档
最新文档