计量经济学复习要点
计量经济学重点复习资料

计量经济学1、 P5 计量经济学的研究步骤① 模型设定 ②估计参数 ③模型检验 ④模型应用2、 P11 数据类型① 时间序列数据(同一空间不同时间)② 截面数据(同一时间不同空间) ③面板数据 ④虚拟变量数据3、P18 回归分析① 回归的现代意义:一个被解释变量对若干个解释变量依存关系的研究。
② 回归的实质:由解释变量去估计被解释变量的平均值。
4、P22-25总体和样本 总体回归函数:12()i i i E Y X X ββ=+ 样本回归函数:12ˆˆˆi i Y X ββ=+总体回归模型:12ii i Y X u ββ=++样本回归模型:12ˆˆi i iY X e ββ=++ 5、P22 “线性”的两种解释① 就变量而言是线性的——Y 的条件期望(均值)是X 的线性函数12()i i i E Y X X ββ=+:对参数“线性”,对变量“非线性” ② 就参数而言是线性的——Y 的条件期望(均值)是参数β的线性函数12()ln i i i E Y X X ββ=+:对变量“线性”,对参数“非线性”6、P22 随机扰动项随机扰动项是被解释变量实际值与条件均值的偏差,实际代表了排除在模型以外的所有因素对Y 的影响,i u 是其期望为0有一定分布的随机变量。
7、P23 总体回归线、样本回归线的意义① 样本回归线随抽样波动而变化:每次抽样都能获得一个样本,就可以拟合一条样本回归线。
(SRF 不唯一)② 样本回归函数的函数形式应与设定的总体回归函数的函数形式一致。
③ 样本回归线只是样本条件均值的轨迹,还不是总体回归线,它至多只是未知的总体回归线的近似表现。
8、P25i e :剩余项或残差项① 表达式:ˆi ii e Y Y =- 或 12ˆˆi i iY X e ββ=++ ② 经济含义:被解释变量Y 的实际观测值不完全等于样本条件均值,二者之差用i e 表示 ③ 与随机扰动项的联系:i e 在概念上类似总体回归函数中的i u ,可视为对i u 的估计。
计量经济学复习笔记要点

计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
计量经济学重点

计量经济学重点计量经济学复习资料一、名词解释1.广义计经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
2.狭义计经济学以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
3.总体回归函数:指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
4.样本回归函数:指从总体中抽出的关于Y, x的若干组值形成的样本所建立的回归函数。
6、随机的总体回归函数:含有随机千扰项的总体回归函数(是相对于条件期望形式而言的)。
5.线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的I次方出现。
6.随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。
9、残差项:是一随机变量,是针对样本回归函数而言的。
7.条件期望:即条件均值,指X取特定值Xi时Y的期望值。
8.回归系数:回归模型中βo, β1等未知但却是固定的参数。
9.回归系教的估计量:指用β 0^ β1^等表示的用已知样本提供的信息所估计出来总体未知参数的结果。
10.最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
11.最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
12.估计的标准差:度量一个变量变化大小的测量值。
13.总离差平方和:用TSS表示,用以度量被解释变量的总变动。
14.回归平方和:用ESS表示:度量由解释变量变化引起的被解释变量的变化部分。
15.残差平方和:用RSS表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
16.协方差:用Cov(X, Y)表示,度量XY两个变量关联程度的统计量。
17.拟合优度检验:检验模型对样本观测值的拟合程度,用R2表示,该值越接近1,模型对样木观测值拟合得越好。
计量经济学复习知识点重点难点

计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。
2、计量经济学是统计学、经济学和数学的结合。
3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。
4、计量经济学是经济学的一个分支学科。
第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。
2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。
3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。
4、参数估计量的评价标准:无偏性、有效性、一致性。
5、OLS估计量的统计特征:线性特性、无偏性、有效性。
6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。
第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。
2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。
3、参数最小二乘估计的性质:线性性质、无偏性、有效性。
4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。
5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。
6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。
计量经济学复习重点

1、统计检验是利用统计推断的原理,对参数估计的可靠程度、观察数据的拟合程度进行检验;主要方法有拟合优度检验、变量和方程的显著性检验2、计量经济学检验:检验模型的计量经济学性质,即检验模型基本假设的满足程度、各种经济计量假设的合理性。
主要检验准则:序列相关检验、异方差检验和多重共线检验。
3、模型预测检验:检验模型参数估计量的稳定性以及相对样本容量变化时的灵敏度,确定所建立的模型是否可以用于观察值以外的范围。
具体检验方法:(1)利用扩大了的样本 重新估计参数,检验两次估计结果的差异显著性;(2)将所建立的模型用于样本以外某一时期的实际预测,预测值与实际值进行比较并检验差异显著性。
4、建立计量经济模型的步骤5、样本回归模型回归分析是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。
由于总体的信息往往无法掌握,现实的情况只能是在一次观测中得到总体的一组样本样本散点图近似于一条直线,画一条直线以尽可能好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。
该线称为样本回归线,其函数形式记为:6、随机扰动项U :理论经济学和数理经济学一般假定经济变量之间存在确定性的规律,从而建立确定性的模型。
引入随机扰动项是为了更准确地描述社会经济系统。
随机扰动项是不可观察的,只能通过残差——实际值与拟合值的差——进行估计7、Gauss —Markov 定理(高斯-马克):满足性质1、2、3的最小二乘估计量是最优线性无偏估计量 最小二乘法求出参数估计量达到最小值。
性质1:线性特性;估计量a,b 均可由被解释变量Y 线性表示出来。
性质2:无偏性E (a )= E (b )= β 性质3:在a 、β的各种线性无偏估计中,最小二乘估计量a,b 具有最小方差。
8、完全共线性:如果存在 c 1X 1i +c 2X 2i +…+c k X ki =0 i=1,2,…,nii i X X f Y 10ˆˆ)(ˆββ+== (2.1.4)称为样本回归函数(sample regression function )SRF 。
(完整版)计量经济学重点知识归纳整理

1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。
普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。
2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。
从此意义看,加权最小二乘法也称为广义最小二乘法。
3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。
4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。
5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。
6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。
7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。
计量经济学复习要点

计量经济学复习要点第一篇:计量经济学复习要点计量经济学复习要点第一章、概率论基础1.随机事件的概念P22.古典概行例题P5例1.1P2例1.2利用第一章的知识说明抽签的合理性如何利用第一章的知识估计一个池塘有多少鱼还有一个关于晚上紧急集合穿错鞋的题目,记不太清楚了3.期望与方差的概念,切比雪夫不等式,看例题1.4-例题1.8,不要求求出数4.变异系数的概念P175.大数定律和中心极限定律(具有独立同分布的随机变量序列的有限和近似地服从正态分布)的概念P24、P25第二章、矩阵代数1.矩阵的定义,加(page29)、减(page29)、乘(page30)、转置(page30)、逆(page31)知道怎么回事2.最小二乘法P39-P41(定义最小二乘解)3.第三节没有听,求听课学霸补充第三章、数据的分析方法和参数的统计推断1.数据的分析方法(算数平均、加权算数平均、几何平均、移动平均)(1)几种分析方法的定义(2)几中分析方法的不同(3)每种分析方法的具体作用(4)移动平均法中k的选择(5)指数平滑法的意义,α的选择,P552.t分布的概率密度函数3.矩估计法定义4.几大似然估计法P65,例题3.7例题3.85.贝叶斯估计和极大极小估计(应该是只看一下概念就可以了)6.假设检验(1)基本思想P75(2)双边假设检验(3)单边假设检验(4)参数检验P807.方差分析的思想、作用和模型第四章、一元线性回归(计算题)回归方程的求法,显著性检验,经济解释(各参数的解释),不显著的解释第六章、虚拟变量的回归模型1.虚拟变量的作用及模型2.应用虚拟变量改变回归直线的截距、斜率3.对稳定性的检验第二篇:2007计量经济学复习要点2007年计量经济学课程要点归纳1.十大经典假设的证明(关于两变量模型的性质检验)2.BLUE估计量的证明3.自相关检验方法(检验方法一定要记住)4.异方差检验方法(至少三种)5.孙老师讲过的附录要留意6.异方差与自相关的补救措施7.违反十大经典假设情况下的问题怎么解决(如多重共线性,异方差,自相关问题,虚拟变量的估计)注:以上重点均是提供参考,不做考试说明计量考察的重点是对计量模型的建立与估算,结果评价与补救思路的考察,没有大量的数学计算,请同学们放心!建议大家根据参考要点确定进度,并根据孙老师上课的重点决定自己的复习范围!希望同学们认真复习,考出好成绩!王琳第三篇:计量经济学复习笔记计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
计量经济学复习重点

1、经济变量:用来描述经济因素数量水平的指标。
2、解释变量:用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变额为发热所引5动做出解释。
3、被解释变量:是作为研究对象的变量。
它的变动是由解释变量做出解释的4、控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量。
5、计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型。
6、相关关系:如果一个变量y 的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y 与这个变量或这组变量之间的关系就是相关关系。
7、最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法。
8、拟合优度:样本回归直线与样本观测数据之间的拟合程度。
9、残差:样本回归方程的拟合值与观测值的误差。
10、显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检验程序。
11、偏相关系数:在Y 、X 1、X 2三个变量中,当X 1 既定时,表示Y 与X 2之间相关关系的指标。
12、异方差性:在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称随机项U1具有异方差性。
13、序列相关性:对于模型01122i i k ki i y x x x i ββββμ=+++++… 1,2,,i n =…随机误差项互相独立的基本假设表现为(,)0i j Cov μμ= ,,1,2,,i j i j n ≠=…(1分)如果出现 (,)0i j Cov μμ≠ ,,1,2,,i j i j n ≠=…即对于不同的样本点,随机误差项之间不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性。
14、自回归模型:t t t y y μρ+=-115、广义最小二乘法:是最有普遍意义的最小二乘法,普通最小二乘法和加权最小二乘法是它的特例。
16、相关系数:度量变量之间相关程度的一个系数,一般用ρ表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学复习要点参考教材:李子奈 潘文卿 计量经济学 数据类型:截面、时间序列、面板第二章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值;简单线性回归模型是只有一个解释变量的线性回归模型; 回归中的四个重要概念1. 总体回归模型Population Regression Model,PRMt t t u x y ++=10ββ--代表了总体变量间的真实关系;2. 总体回归函数Population Regression Function,PRFt t x y E 10)(ββ+=--代表了总体变量间的依存规律;3. 样本回归函数Sample Regression Function,SRFtt t e x y ++=10ˆˆββ--代表了样本显示的变量关系; 4. 样本回归模型Sample Regression Model,SRMtt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律; 总体回归模型与样本回归模型的主要区别是:①描述的对象不同;总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系;②建立模型的依据不同;总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的;③模型性质不同;总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变;总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型;线性回归的含义线性:被解释变量是关于参数的线性函数可以不是解释变量的线性函数线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定 普通最小二乘法原理、推导最小二乘法估计参数的原则是以“残差平方和最小”; Min21ˆ()niii Y Y =-∑01ˆˆ(,)ββ: 1121()()ˆ()nii i n ii XX Y Y XX ==--β=-∑∑ , 01ˆˆY Xβ=-βOLS 估计量的性质1线性:是指参数估计值0β和1β分别为观测值t y 的线性组合; 2无偏性:是指0β和1β的期望值分别是总体参数0β和1β; 3最优性最小方差性:是指最小二乘估计量0β和1β在在各种线性无偏估计中,具有最小方差; 高斯-马尔可夫定理OLS 参数估计量的概率分布OLS 随机误差项μ的方差σ2的估计 拟合优度的检验R 2 离差平方和的分解:TSS=ESS+RSS“拟合优度”是模型对样本数据的拟合程度;检验方法是构造一个可以表征拟合程度的指标——判定系数又称决定系数;121SSE SST SSR SSRR SST SST SST-===-,表示回归平方和与总离差平方和之比;反映了样本回归线对样本观测值拟合优劣程度的一种描述; 2 2[0,1]R ∈;3 回归模型中所包含的解释变量越多,2R 越大变量显着性检验,t 检验例子:回归报告函数形式对数、半对数模型系数的解释101ˆˆˆi iY X =β+β:X 变化一个单位Y 的变化 2^22()i Var x σβ=∑2^22ie n σ=-∑201ˆˆˆln ln i i Y X =β+β: X 变化1%,Y 变化1ˆβ%,表示弹性; 301ˆˆˆln i i Y X =β+β:X 变化一个单位,Y 变化百分之1001ˆβ 401ˆˆˆln i iY X =β+β:X 变化1%,Y 变化1ˆβ/100; 第三章 多元线性回归1、变量系数的解释剔除、控制其他因素的影响对斜率系数1ˆβ的解释:在控制其他解释变量X2不变的条件下,X1变化一个单位对Y 的影响;或者,在剔除了其他解释变量的影响之后,X1的变化对Y 的单独影响2、多元线性回归模型中对随机扰动项u 的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定;3、多元线性回归模型参数的最小二乘估计式;参数估计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘估计式是最佳线性无偏估计式;最小二乘法 OLS 公式: Y ' X X)' (X ˆ-1=β估计的回归模型: 的方差协方差矩阵: 残差的方差 : βˆ的估计的方差协方差矩阵是:4、修正可决系数的作用和方法;5、F 检验是对多元线性回归模型中所有解释变量联合显着性的检验,F 检验是在方差分析基础上进行的; 6、t检验7、可化为线性回归的模型 8、约束回归第四章 放宽基本假设一、异方差什么是异方差 异方差的后果ˆˆY =X β+u βˆ2ˆˆ'uu n k -s =异方差的检验White 检验 异方差的处理 加权最小二乘法 异方差稳健标准误二、序列相关什么是序列相关 序列相关的后果序列相关的检验DW 检验、LM 检验 序列相关的处理 广义最小二乘法 Newey-West 稳健标准误三、多重共线性多重共线性的概念 多重共线性的后果 多重共线性的检验 多重共线性的处理四、工具变量什么时候需要工具变量 作为工具变量的条件 两阶段最小二乘法第五章 专门问题一、虚拟变量1. 虚拟变量的定义:定性变量二值与多值;虚拟变量有时候不一定只是0和1;2. 如何引入虚拟变量:如果一个变量分成N 组,引入该变量的虚拟变量形式是只能放入N-1个虚拟变量;3. 虚拟变量系数的解释:不同组均值的差基准组或对照组与处理组4. 以下几种模型形式表达的不同含义;1tt t t u D X Y +++=210βββ:截距项不同;2tt t t t u X D X Y +++=210βββ:斜率不同;3tt t t t t u X D D X Y ++++=3210ββββ:截距项与斜率都不同;其中D 是二值虚拟变量,X 是连续的变量;第八章 时间序列平稳性的概念 白噪声 随机游走 单位根的概念单位根的检验ADF 检验,ADF 的三种形式 单整趋势平稳与差分平稳 协整的概念 协整的检验 误差修正模型Eviews 回归结果界面解释表计量经济学复习题第二章习题:1、2、3、5、6、7、9、10、11、12第三章习题:1、2、3、4、5、6、7、8、9、10、11、12、13 第四章习题:2、5、6、8、9、10 第五章习题:1、2、3、5、6 第八章习题:1、2、5、6、7、8 1、判断下列表达式是否正确 2、给定一元线性回归模型:1叙述模型的基本假定;2写出参数0β和1β的最小二乘估计公式; 3说明满足基本假定的最小二乘估计量的统计性质; 4写出随机扰动项方差的无偏估计公式; 3、对于多元线性计量经济学模型:1该模型的矩阵形式及各矩阵的含义; 2对应的样本线性回归模型的矩阵形式; 3模型的最小二乘参数估计量;4、根据美国1961年第一季度至1977年第二季度的数据,我们得到了如下的咖啡需求函数的回归方程:D D D P I P t t t t t t tT Q 321'0097.0157.00961.00089.0ln 1483.0ln 5115.0ln 1647.02789.1ˆln ----++-=其中,Q=人均咖啡消费量单位:磅;P=咖啡的价格以1967年价格为不变价格;I=人均可支配收入单位:千元,以1967年价格为不变价格;P '=茶的价格1/4磅,以1967年价格为不变价格;T=时间趋势变量1961年第一季度为1,…,1977年第二季度为66;D 1=1:第一季度;D 2=1:第二季度;D 3=1:第三季度; 请回答以下问题:① 模型中P 、I 和P '的系数的经济含义是什么 ② 咖啡的需求是否很有弹性 ③ 咖啡和茶是互补品还是替代品④ 你如何解释时间变量T 的系数 ⑤ 你如何解释模型中虚拟变量的作用 ⑥ 哪一个虚拟变量在统计上是显着的 ⑦ 咖啡的需求是否存在季节效应5、为研究体重与身高的关系,我们随机抽样调查了51名学生其中36名男生,15名女生,并得到如下两种回归模型:h W5662.506551.232ˆ+-= t=h D W7402.38238.239621.122ˆ++-= t=其中,Wweight=体重 单位:磅;hheight=身高 单位:英寸 请回答以下问题:① 你将选择哪一个模型为什么② 如果模型确实更好,而你选择了,你犯了什么错误 ③ D 的系数说明了什么6、以t Q 表示粮食产量,t A 表示播种面积,t C 表示化肥施用量,经检验,它们取对数后都是)1(I 变量且互相之间存在)1,1(CI 关系;同时经过检验并剔除不显着的变量包括滞后变量,得到如下粮食生产模型:t t t t t t C C A Q Q μααααα+++++=--1432110ln ln ln ln ln 1 ⑴ 写出长期均衡方程的理论形式; ⑵ 写出误差修正项ecm 的理论形式; ⑶ 写出误差修正模型的理论形式;⑷ 指出误差修正模型中每个待估参数的经济意义;7、简述异方差对下列各项有何影响:1OLS 估计量及其方差;2置信区间;3显着性t 检验和F 检验的使用;8、假设某研究使用250名男性和280名女性工人的工资Wage 数据估计出如下OLS 回归:标准误其中WAGE 的单位是美元/小时,Male 为男性=1,女性=0的虚拟变量;用男性和女性的平均收入之差定义工资的性别差距;1性别差距的估计值是多少2计算截距项和Male系数的t统计量,估计出的性别差距统计显着不为0吗5%显着水平的t统计量临界值为3样本中女性的平均工资是多少男性的呢4对本回归的R2你有什么评论,它告诉了你什么,没有告诉你什么评价这个回归结果5另一个研究者利用相同的数据,但建立了WAGE对Female的回归,其中Female 为女性=1,男性=0的变量;由此计算出的回归估计是什么9、基于人口调查1998年的数据得到平均小时收入对性别、教育和其他特征的回归结果,见下表;其中:AHE=平均小时收入;College=二元变量大学取1,高中取0;Female女性取1,男性取0;Age=年龄年;Northeast居于东北取1,否则为0;Midwest居于中西取1,否则为0;South居于南部取1,否则为0;West居于西部取1,否则取0;表1:基于2004年CPS数据得到的平均小时收入对年龄、性别、教育、地区的回归结果概括统计量和联合检验SERR2注:括号中是标准误;(1)计算每个回归的调整R2;(2)利用表1中列1的回归结果回答:大学毕业的工人平均比高中毕业的工人挣得多吗多多少这个差距在5%显着性水平下统计显着吗男性平均比女性挣的多吗多多少这个差距在5%显着性水平下统计显着吗(3)年龄是收入的重要决定因素吗请解释;使用适当的统计检验来回答;(4)Sally是29岁女性大学毕业生,Betsy是34岁女性大学毕业生,预测她们的收入;(5)用列3的回归结果回答:地区间平均收入存在显着差距吗利用适当的假设检验解释你的答案;(6)为什么在回归中省略了回归变量West如果加上会怎样;解释3个地区回归变量的系数的经济含义;7Juantia是南部28岁女性大学毕业生,Jennifer是中西部28岁女性大学毕业生,计算她们收入的期望差距。