水中重金属离子的测定
水中重金属检测方法

水中重金属检测方法
水中重金属检测方法主要有以下几种:
1. 原子吸收光谱法(Atomic Absorption Spectroscopy,AAS):该方法通过检测重金属原子在吸收特定波长的光时的吸收度变化来确定重金属元素的含量。
2. 电感耦合等离子体质谱法(Inductively Coupled Plasma Mass Spectrometry,ICP-MS):该方法将样品中的重金属元素离子化,通过质谱仪来测量其质量和相对丰度,从而确定重金属含量。
3. 电化学法:该方法利用电化学技术,如极谱法、恒电位法等,测定重金属离子在电极上的电流、电势等特性,以确定重金属含量。
4. 荧光分析法:该方法利用化学荧光试剂与重金属形成络合物,并通过测量荧光的强度来确定重金属的含量。
5. 石墨炉原子吸收光谱法(Graphite Furnace Atomic Absorption Spectroscopy,GFAAS):该方法是AAS的一种改进,通过
加热样品后测量吸收光强度的变化,提供更高的灵敏度和准确性。
这些方法在实际应用中可以根据不同的需求和实验条件进行选择。
ICP-MS测量水中可溶性重金属元素

ICP-MS测量水中可溶性重金属元素一、实验目的1、了解电感耦合等离子体质谱仪的基本结构和工作原理。
2、掌握样品的进样要求。
3、掌握利用电感耦合等离子体质谱仪测定可溶性元素及元素总量的方法。
4、学习电感耦合等离子体质谱仪测样的方法设置。
二、实验原理水样经过预处理后,采用电感耦合等离子体质谱仪进行检测,根据元素的质谱图或特征离子进行定性、定量分析。
样品由载气带入雾化系统后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气体中被充分蒸发、解离、原子化和电离,转化成的带电荷的正离子经离子采集系统进入质谱仪,质谱仪根据离子的质荷比即元素的质量数进行分离并定性定量的分析。
在一定浓度范围内,元素质量数处所对应的信号响应值与其浓度成正比。
三、实验仪器与试剂1、仪器电感耦合等离子体质谱仪型号icap Q,0.45μm滤膜,聚乙烯容量瓶50ml、100ml,聚乙烯或聚四氟乙烯瓶100ml,移液枪等常用仪器设备。
2、试剂硝酸优级纯,混合标准溶液100ppm,氩气:纯度不低于99.99%,调谐液,实验用水:电阻率≥18MΩ·cm,其余指标满足GB/T 6682中的一级标准。
四、实验步骤1、样品预处理将水样采集后立即用0.45μm的滤膜过滤,并加50%硝酸将酸度调节至pH<2。
2、校准曲线的绘制取0.5ml混合标准溶液至50ml容量瓶中,用2%硝酸溶液定容,得到1ppm 的母液;用移液枪依次移取母液0.1ml、0.5ml、1ml、2ml、3ml、4ml、5ml至100ml容量瓶中,2%硝酸溶液定容,依次得到1ppb、 5 ppb、10 ppb、20 ppb、30 ppb、40 ppb、50 ppb的溶液。
3、空白试样的制备用实验用水代替样品,按步骤1制备实验室空白试样。
4、仪器调试打开电脑,软件,点燃等离子体后,仪器需预热稳定30min。
首先用质谱仪调谐溶液对仪器的灵敏度、氧化物和双电荷进行调谐,在仪器的灵敏度、氧化物、双电荷满足要求的条件下,调谐溶液中所含元素信号强度的相对标准偏差≤5%。
泳池金属离子检测报告

泳池金属离子检测报告
根据您的要求,以下是泳池金属离子检测报告的内容:
检测目的:
本次检测旨在确定泳池水中金属离子的含量,以评估水质的安全性。
检测方法:
我们采用了标准的分光光度法进行金属离子的定量分析。
泳池水样本经过预处理后,使用分光光度计测量吸收光谱,通过与标准曲线比对,可以确定每种金属离子的浓度。
样本收集:
从您的泳池中收集了一份代表性的水样品,并确保样品的保存和运输过程中不发生污染或其他因素的影响。
检测结果:
以下是我们检测得到的泳池金属离子的含量:
1. 铁离子(Fe):
2.5 mg/L
2. 铜离子(Cu):0.8 mg/L
3. 锌离子(Zn):1.2 mg/L
4. 锰离子(Mn):0.3 mg/L
结果分析:
根据国际标准和相关研究,泳池中金属离子的含量应该控制在一定的范围内,以确保水质的安全性和舒适度。
根据我们的检
测结果,泳池中铁、铜、锌和锰离子的含量都在正常范围内。
然而,我们建议定期进行检测以确保水质一直保持在安全标准内。
结论:
根据我们的检测结果,泳池金属离子的含量符合安全标准。
建议您继续保持泳池水的合理维护和管理,包括定期检测水质、清洁过滤系统、适时更换水质。
请注意,此报告仅涵盖了金属离子的检测结果。
对于其他水质指标(如酸碱度、微生物污染等),还需要进行更全面的检测和分析。
如果您需要进一步提供的服务,请随时与我们联系。
谢谢!。
水溶液中金属离子的分析与检测方法

水溶液中金属离子的分析与检测方法金属离子是指在水溶液中以离子形式存在的金属元素。
金属离子的分析与检测方法是化学分析领域的重要内容之一,它对于环境保护、食品安全、医药研究等领域具有重要的意义。
本文将从常见的金属离子分析方法、仪器设备以及应用领域三个方面进行探讨。
一、常见的金属离子分析方法1. 比色法:比色法是一种常见的金属离子分析方法,它利用金属离子与特定试剂反应后产生的颜色差异来进行分析。
例如,硫化物离子可以与银离子反应生成黑色的硫化银沉淀,从而可以通过比色法来定量分析硫化物离子的浓度。
2. 沉淀法:沉淀法是一种通过金属离子与特定试剂反应生成可见沉淀的方法。
常见的沉淀法有氢氧化物沉淀法、硫化物沉淀法等。
例如,氢氧化物沉淀法可以通过将铁离子与氢氧化钠反应生成棕色的氢氧化铁沉淀,从而定量分析铁离子的浓度。
3. 电化学分析法:电化学分析法是利用电化学原理进行金属离子分析的方法。
常见的电化学分析方法有电位滴定法、极谱法等。
例如,电位滴定法可以通过测定溶液中金属离子的电位变化来定量分析金属离子的浓度。
二、仪器设备1. 原子吸收光谱仪:原子吸收光谱仪是一种常用的金属离子分析仪器,它利用金属离子吸收特定波长的光线来进行分析。
原子吸收光谱仪具有灵敏度高、准确性好的特点,广泛应用于环境监测、食品安全等领域。
2. 离子色谱仪:离子色谱仪是一种专门用于分析离子的仪器,它利用离子交换柱将溶液中的金属离子分离出来,并通过检测器进行定量分析。
离子色谱仪具有高分辨率、高灵敏度的特点,被广泛应用于水质监测、药物分析等领域。
三、应用领域1. 环境保护:金属离子的分析与检测在环境保护中具有重要的作用。
例如,通过分析水体中重金属离子的浓度可以评估水质的安全性,为环境保护决策提供科学依据。
2. 食品安全:金属离子的分析与检测在食品安全领域也具有重要意义。
例如,通过分析食品中的重金属离子含量可以评估食品的安全性,保障公众的健康。
3. 医药研究:金属离子的分析与检测在医药研究中也扮演着重要角色。
原子吸收光谱法在测定水中重金属离子的应用

原子吸收光谱法在测定水中重金属离子的应用水资源检测是环境保护中的重要一环。
随着“十三五”规划中提出了对于环境保护的相关内容,水资源的检测保护已经越来越为人们所重视。
原子吸收光谱法是一种在水质检测中应用较多的一项技术,此檢测方案起源于上世纪50年代中期,在水质检测中具有检测灵敏度高、准确度好、易于操作、选择性好等特点,在水质检测中能够对多达70种以上的元素进行测定。
原子吸收光谱法所能检测的范围囊括金属元素、使用间接原子吸收法实现对于非金属元素和有机化合物的测定,因此在多个领域中都得到了广泛的应用。
在原子吸收光谱法对元素进行测定时,对于不同的元素需要使用不同的元素灯,从而导致现今的原子吸收光谱法无法实现多元素的同时测定,且在一些元素的测定上仍有所欠缺。
但是随着科学技术的发展与应用,仪器的结构、自动化水平都得到了极大的优化,将会促进原子吸收光谱法在更多领域中得到应用。
标签:原子吸收光谱法;水质;金属元素;测定应用前言原子吸收光谱法是一种在水质测定中应用较为广泛的测定方法。
本文在分析原子吸收光谱法原理特点的基础上对其在水质中金属元素测定的应用进行了分析阐述。
1 原子吸收光谱法的工作原理及特性1.1 原子吸收光谱法的基本原理原子吸收光谱法测定的主要原理是通过利用原子的共振吸收的特性来对原子浓度进行测定,从而实现了对于水质中的金属元素的测定。
1.2 原子吸收光谱分析仪器原子吸收光谱仪其内部主要含有发光光源、原子化器、单色器(分光器)及检测器等的组成部分。
元素灯(空心阴极灯)作为光源,石墨炉为原子化器,狭缝、准直镜、光栅、聚焦物镜组成单色器,检测器为光电倍增管。
(1)发光光源。
发光光源在原子吸收光谱仪中的作用是发出所需测定金属元素的特定光谱线。
对于发光光源所发射的特征波长的半宽度要远低于吸收光线的半宽度,并且要求光源稳定性好,噪音小以及使用寿命长。
(2)原子化器。
原子化器是原子吸收的关键部件之一,在整个装置中具有至关重要的作用,其是待测样品干燥、蒸发并转变为气态原子的重要组件,因此原子化器性能的好坏,对仪器测定元素的灵敏度与检出限有着极为重要的影响。
原子吸收光谱法在测定水中重金属的应用研究

原子吸收光谱法在测定水中重金属的应用研究
原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是
一种常用的重金属分析方法,尤其在水中重金属分析中得到广泛应用。
原子吸收光谱法通过测量样品中重金属元素的吸收光谱,来定量分析样品中的重金属含量。
在测定水中重金属时,通常需要将水样中的重金属离子转化为可测量的气态原子形式。
这需要使用适当的预处理方法,如酸溶、氧化剂反应、还原反应等,将重金属离子转化为易挥发的原子形式。
转化后的样品被导入原子吸收光谱仪,通过特定的波长对比法,测量样品中重金属原子的吸收光强度。
AAS具有高选择性、灵敏度高、分析速度快等优点,因此在
水质监测、环境污染检测、食品安全检测等领域广泛应用。
常见的测定水中重金属的应用研究包括以下几个方面:
1. 饮用水监测:AAS可用于测定饮用水中的重金属元素,如铅、镉、汞等。
这对于保障饮用水的安全质量至关重要。
2.环境水体监测:AAS可用于监测环境水体中的重金属污染物,如河流、湖泊、地下水等。
这有助于了解水域生态系统的健康状况,指导环境保护措施。
3. 农田土壤监测:AAS可用于测定农田土壤中的重金属含量,如铜、锌等。
这有助于了解土壤质量,指导农业生产和土地利用。
4.食品安全监测:AAS可用于分析食品中的重金属元素,如水产品中的汞、大米中的镉等。
这对于保障食品安全、预防食品中重金属超标造成的健康问题具有重要意义。
总之,原子吸收光谱法在测定水中重金属的应用研究中,可以提供准确、快速、可靠的分析结果,对于保障水质安全、环境保护和食品安全具有重要作用。
水中重金属实验报告【范本模板】

《环境化学实验》报告实验考核标准及得分内容及比例比例此项得分平时成绩出勤、纪律、预习、课堂回答、态度等20%考核成绩实验前期准备、采样、仪器规范使用、药品正确使用、实验操作、实验记录、动手能力、创新精神、严谨程度、环保意识等。
40%数据计算,数据分析及结论表述,思考题回答,个人心得体会与总结,报告格式等。
40%成绩满分为100分100% 题目水中重金属的污染评价教师学号班级姓名采样地点合作者题目:水中重金属的污染评价一、实验目的与要求1、了解水中重金属的消解与测定方法。
2、掌握原子吸收分光光度计分析技术。
3、了解水体的重金属污染状况,制定相应的污染控制对策二、实验方案1、实验原理:环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。
常用火焰原子吸收光度法测定试样中元素的浓度来测重金属浓度。
原子吸收光度法是根据物质产生的原子蒸气对特定波长的光的吸收作用来进行定量分析的。
元素的气态基态原子外层的电子可以吸收与其发射波长相同的特征谱线.当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收该元素所能发射的特征波长的谱线,这时,透过原子蒸气的入射光将减弱,其减弱的程度与蒸气中该元素的浓度成正比,吸光度符合吸收定律:A=lg(I0 / I)=KcL根据这一关系可以用工作曲线法或标准加入法来测定未知溶液中某元素的含量。
原子吸收光度法具有较高的灵敏度。
每种元素都有自己为数不多的特征吸收谱线,不同元素的测定采用相应的元素灯,因此,谱线干扰在原子吸收光度法中是少见的。
影响原子吸收光度法准确度的主要是基体的化学干扰。
由于试样和标准溶液整体的不一致,试样中存在的某些基体常常影响被测元素的原子化效率,如在火焰中形成难于离解的化合物或使离解生成的原子很快重新形成在该火焰温度下不再离解的化合物,这时就发生干扰作用.一般来说,铜、铅、锌、镉的基体干扰不太严重。
荧光探针在水中重金属离子检测中的应用研究进展

第42卷第1期Vol.42No.12021青岛理工大学学报JournalofQingdaoUniversityofTechnology荧光探针在水中重金属离子检测中的应用研究进展纪雪峰,单 斌,王莎莎,马继平(青岛理工大学环境与市政工程学院,青岛266033)摘 要:重金属离子广泛存在于自然环境中,对环境质量和人体健康有显著影响.荧光探针在分析物检测方面具有灵敏度高、选择性好、操作简单等优点.因此,利用荧光探针法来检测重金属离子是一种有效的分析手段.综述了近年来可以应用于水溶液中汞、镉、铅、铬等重金属离子检测的有机小分子荧光探针和纳米荧光探针的研究现状,并展望了该领域的发展趋势和应用前景.关键词:重金属离子;荧光探针;纳米颗粒;水体中图分类号:X132 文献标志码:A 文章编号:1673 4602(2021)01 0109 10收稿日期:2020 08 29基金项目:国家自然科学基金资助项目(21808118);山东省自然科学基金资助项目(ZR2018BB065);青岛市博士后应用研究项目(2018102);青岛理工大学环境与市政工程学院开放课题(QUTSEME201908)作者简介:纪雪峰(1996 ),女,山东青岛人.硕士,研究方向为环境分析化学.E mail:jixuefeng2018@163.com. 通信作者:马继平(1972 ),女,河北南宫人.博士,教授,主要从事环境污染物分析测试新技术等方面的研究.E mail:majiping2012@163.com.犃狆狆犾犻犮犪狋犻狅狀狉犲狊犲犪狉犮犺狆狉狅犵狉犲狊狊狅犳犳犾狌狅狉犲狊犮犲狀狋狆狉狅犫犲犻狀狋犺犲犱犲狋犲犮狋犻狅狀狅犳犺犲犪狏狔犿犲狋犪犾犻狅狀狊犻狀狑犪狋犲狉JIXuefeng,SHANBin,WANGShasha,MAJiping(SchoolofEnvironmentalandMunicipalEngineering,QingdaoUniversityofTechnology,Qingdao266033,China)犃犫狊狋狉犪犮狋:Heavymetalionswidelyexistinthenaturalenvironment,andhaveasignificanteffectonenvironmentalqualityandhumanhealth.Fluorescentprobeshavetheadvantagesofhighsensitivity,goodselectivityandsimpleoperationinanalytedetection.Therefore,theuseoffluorescentprobemethodtodetectheavymetalionsisaneffectiveanalyticalmethod.Inthispaper,theresearchstatusoforganicsmallmoleculefluorescentprobesandnanome terfluorescentprobesforthedetectionofheavymetalionssuchasmercury,cadmium,leadandchromiuminwaterisreviewed.Thedevelopmenttrendsandapplicationprospectoffluo rescentprobearealsodiscussed.犓犲狔狑狅狉犱狊:heavymetalion;fluorescentprobe;nanoparticle;waterbody随着经济的快速发展,工业生产中污染物的排放量不断增加,导致重金属污染问题越来越严重,不仅影响环境质量,还会对人体健康产生极大损害.尤其是生物毒性较大的汞、镉、铅、铬的污染,它们在水体中不能被分解,且微量就具有较高的毒性,会对人体的神经系统、消化系统、免疫系统及肾脏肝脏等造成较大危害[1 4].此外,铜、铁、锌等人体所必需的微量元素,过量的摄入同样会对机体产生严重的损害,引起阿尔茨海默病、帕金森病等一系列疾病[5 6].因此,对重金属离子的检测具有重要意义.常规检测重金属离子的方法有原子吸收光谱法、原子发射光谱法、原子荧光光谱法、电感耦合等离子青岛理工大学学报第42卷体质谱法等[7 8].虽然这些方法能较为准确地检测出金属离子的含量,但所需的仪器设备昂贵,操作复杂,且需要繁杂的样品前处理过程.可见紫外分光光度法和电化学分析法仪器设备简单,也可以用于金属的分析,但是可见紫外分光光度法测定金属选择性不好、灵敏度不高;电化学分析法存在电极衰减引起的重现性差等局限性.分子荧光法具有检测速度快、灵敏度高、选择性好、操作简单、成本低廉等特点,利用荧光探针检测重金属离子是一种便捷有效的方法.目前荧光探针主要应用于生物和环境领域,因此能够在水溶液中进行识别才具有更高价值.关于金属离子荧光探针的综述已有一些报道[9 10],但多是基于其中一种类型的荧光探针做的总结.本文从有机小分子荧光探针及纳米材料荧光探针两方面综述近几年来两种探针在水溶液中重金属离子检测中的研究现状.1 有机小分子荧光探针的应用研究图1 荧光探针的结构 典型的有机小分子荧光探针一般由识别基团、荧光基团和连接基团三部分组成(图1).由于荧光基团与识别基团的连接方式不同,使得荧光探针的识别机理也不尽相同.常见的重金属离子荧光探针识别机理主要包括:光诱导电子转移(PET)、分子内电荷转移(ICT)、荧光共振能量转移(FRET)以及激基缔合物(Excimer)等[11 12].目前对于可以选择性检测某种离子的有机荧光探针的研究已有很多的文献报道,主要包括罗丹明类、喹啉类、香豆素类、荧光素类、萘酰亚胺类等,不同类型的荧光探针在重金属离子检测领域得到应用.1.1 罗丹明类罗丹明类因具有良好的荧光性能和光稳定性,较高的荧光量子产率和水溶性,以及独特的螺内酰胺开环荧光增强响应,是制备荧光增强型探针的良好选择,也是目前为止研究最多的一类荧光探针.SUNNAPU等[13]以罗丹明6G肼和3,4二甲氧基苯甲醛为原料合成了一种新型荧光比色探针1(图2).在乙腈/水(体积比2∶8)溶液中,探针1对Cr3+表现出高选择性和灵敏度识别,加入Cr3+后,在554nm处出现一个新的发射带,荧光强度增加100倍以上,而EDTA的加入可使荧光猝灭,说明识别过程是可逆的.该探针的检出限达到1.78×10-8mol/L.图2 荧光探针1的结构图3 荧光探针2的结构曾竟等[14]则合成一种可以在双波长下检测Fe3+的罗丹明类荧光探针(图3).在乙醇/水(体积比1∶1)溶液中,加入Fe3+后溶液由无色变为红色,而荧光强度则出现两种相反的变化.当激发波长为350nm时,在508nm处发生了荧光猝灭现象,而当激发波长为530nm时,则在582nm处出现明显的荧光增强现象,且两种荧光强度的变化均与Fe3+的浓度在一定范围内具有良好的线性关系,检出限分别为4.56×10-6,7.4×10-7mol/L.011第1期 纪雪峰,等:荧光探针在水中重金属离子检测中的应用研究进展比率型荧光探针,是通过两处荧光强度变化的比值来对金属离子的浓度进行检测,在实际应用中可减弱其他环境因素的干扰.陈家逸等[15]设计了一种萘酰亚胺 罗丹明B荧光探针3可对Hg2+实现比率荧光检测(图4).在甲醇/乙腈/HEPES缓冲液(体积比8∶1∶1)中,基于荧光共振能量转移机理,Hg2+浓度的增加使探针在540nm处的荧光强度减弱,在580nm处出现新的发射峰且荧光强度逐渐增加,两处荧光强度的比值(犉580/犉540)与Hg2+浓度呈良好的线性关系,检出限为1.05×10-8mol/L.由于Hg2+还能引起探针荧光颜色从绿色到橙色的变化,作者还用含有该探针的滤纸检测了湖水水样中Hg2+浓度引起的比色响应,结果可靠.具有检测多种离子功能的荧光探针在应用中更具优势.LI等[16]设计合成了一种基于罗丹明衍生物的双功能探针(图5),对Pb2+具有荧光增强响应,还可通过颜色的变化检测Cu2+.在含1%乙腈的HEPES缓冲液中,Pb2+的加入可以引起荧光强度显著增加,但Cr3+,Hg2+和Cu2+的共存会使荧光强度降低30%~50%;而Cu2+浓度的增加会引起567nm处吸光度的增加以及颜色从无色到淡紫色的变化.探针4对Pb2+和Cu2+的检出限分别为2.5×10-7,5.8×10-7mol/L.图4 荧光探针3的结构图5 荧光探针4的结构1.2 香豆素类香豆素的母体本身不具荧光,但通过引入吸电子基团、供电子基团可形成含有推拉电子体系的荧光团,因其容易修饰且具有高量子产率、大斯托克斯位移及光稳定性好等优势,被用于荧光探针的合成研究.SHAIL等[17]合成了一种香豆素类荧光猝灭型分子探针5(图6),用于Pb2+的检测.在磷酸缓冲液中,只有Pb2+的加入可以使荧光发生猝灭,同时产生颜色的变化.实验表明,Pb2+与探针5形成1∶1的络合物,检出限达到1.9×10-9mol/L.另外,作者还将该探针溶液涂在测试带上用于金属离子的检测,发现Pb2+使测试带变为亮黄色且在紫外灯照射下无荧光.图6 荧光探针5的结构图7 荧光探针6的结构111青岛理工大学学报第42卷王海娜等[18]以香豆素为荧光基团、以酰腙为识别基团合成了2种检测Cu2+的荧光探针6a,6b(图7).在DMSO/H2O(体积比9∶1)溶液中,基于光诱导电子转移机理,随着Cu2+浓度的增加,两种探针在529nm处的荧光强度呈下降趋势,且当加入1倍量的Cu2+时荧光完全猝灭.其中探针6a的荧光强度可以在加入ED TA后恢复,表明探针与Cu2+的结合是可逆的.两种探针对Cu2+的检出限达到1.0×10-9mol/L.图8 荧光探针7的结构刘琪梦等[19]则通过引入三羟基作为识别基团合成了可用于纯水中检测Fe3+的香豆素类荧光探针7(图8).探针7对Fe3+具有高选择性,且响应迅速,加入Fe3+后荧光在2min内被猝灭,猝灭机理与Fe3+的顺磁性有关,其他金属离子的存在无干扰.该探针对Fe3+的检出限为1.16×10-6mol/L.1.3 喹啉类喹啉及其衍生物是一种良好的金属离子螯合剂,且喹啉本身具有刚性结构、大共轭体系和较好的水溶性,因此容易与金属离子络合,适合作为荧光增强型分子探针用于金属离子的检测.XU等[20]通过5 羟甲基 8 羟基喹啉和2,6 二氯甲基吡啶反应合成了荧光探针8(图9).探针8在不同缓冲液(Tris HCl,HEPES,PBS)及纯水中均能对Cd2+表现出良好的选择性荧光增强响应,检测的灵敏度也较高,检出限分别为2.301×10-7,2.389×10-7,3.261×10-7和2.165×10-7mol/L.VELMURU GAN等[21]以3 甲酰基 2 羟基喹啉和邻苯二胺为原料通过一步反应合成了荧光探针9(图10).该探针对Zn2+具有专一的选择性和灵敏度,在乙腈/水(体积比1∶1)溶液中加入Zn2+后,溶液表现出明显的颜色变化和荧光增强现象.图9 荧光探针8的结构图10 荧光探针9的结构图11 荧光探针10的结构SHI等[22]则合成了一种基于喹啉的双光子荧光探针10(图11),对Cd2+表现出优良的选择性和高灵敏度的荧光增强反应.在乙醇/水(体积比2∶8)溶液中随着Cd2+浓度的增加,原本在407nm处的发射带逐渐消失,在500nm处出现一个新的显著增强的发射带,且在439nm处形成了一个清晰的等发射点,这是由于探针与Cd2+形成的络合物发生了分子内电荷转移.该探针的检出限为2.363×10-8mol/L.过去几十年有关有机小分子荧光探针的研究已经有很多报道,除上述几种类型外,还有荧光素、萘酰亚胺、卟啉、氟硼二吡咯等其他类型的有机荧光探针也在重金属检测中被应用.表1总结了用于水体及细胞成像中重金属检测的小分子荧光探针的文献报道.211第1期 纪雪峰,等:荧光探针在水中重金属离子检测中的应用研究进展表1 用于水体及细胞中重金属离子检测的有机小分子荧光探针类型检测离子λex,em/nm荧光响应LOD/(mol·L-1)检测体系实际应用参考文献Hg2+440,580比率1.1×10-8甲醇/乙腈/HEPES制备成试纸[15]Cr3+490,554增强1.8×10-8乙腈/水细胞成像[13]罗丹明类Cr3+525,590增强2.3×10-8Tris HCl细胞成像、河水、自来水[23]Fe3+500,560增强1.9×10-8蒸馏水细胞成像[24]Pb2+483,576增强2.5×10-7含1%乙腈的HEPES细胞成像[16]Cu2+515,585增强1.1×10-7乙腈/水细胞成像、饮用水[25]Pb2+390,462猝灭1.9×10-9磷酸缓冲液涂在TCL板上用于检测[17]Cu2+445,529猝灭1.0×10-9DMSO/水—[18]香豆素类Fe3+400,471猝灭2.2×10-8水细胞成像[26]Hg2+508,578增强5.5×10-9乙腈/水细胞成像[27]Zn2+397,444增强9.4×10-8HEPES细胞成像[28]400,450增强9.1×10-8HEPES细胞成像[28]Zn2+380,425增强—乙腈/水自来水、石榴汁、市售药片[21]Cu2+352,623增强8.1×10-9DMSO/水细胞成像[29]喹啉类Hg2+243,415猝灭9.8×10-7去离子水细胞成像[30]Cd2+243,415增强3.9×10-8去离子水细胞成像[30]Cd2+325,500增强2.4×10-8乙醇/水细胞成像[22]Cd2+302,428增强2.2×10-7水—[20]2 纳米荧光探针的应用研究随着纳米技术的快速发展,将纳米材料用于荧光探针的构建受到了越来越多的关注.与传统的荧光染料相比,荧光纳米材料不仅有较高的荧光强度和良好的光稳定性,同时还具有纳米材料所特有的小尺寸效应、量子效应和表面效应等特性,可以弥补传统荧光染料的不足.目前,研究比较多的荧光纳米材料主要包括金属纳米材料、半导体量子点、碳点及金属 有机骨架材料等,在重金属离子检测方面有应用研究报道.2.1 金属纳米材料金属纳米材料包括金属纳米粒子和由10~100个金属原子组成的金属纳米簇,其常用的金属主要有金、银、铜等.其中金属纳米粒子主要通过与荧光物质间的荧光共振能量转移作用使荧光物质发生荧光猝灭来实现荧光检测.而金属纳米簇是自身具有荧光发射,其与待测物的相互作用可使荧光性质发生改变,从而可用于荧光探针的构建.本课题组制备了一种水溶性的金纳米粒子可以用于水中Cu2+的荧光检测[31].通过将异硫氰酸荧光素(FITC)加入到柠檬酸盐改性的AuNPs中,合成了FITC AuNPs,由于两者间形成了FRET系统使得FITC的荧光被极大地猝灭,而半胱氨酸的加入可以取代FITC与AuNPs形成比Au SCN亲和力更强的311青岛理工大学学报第42卷Au S键从而将FITC释放出来使其荧光恢复.但当Cu2+存在时,Cu2+可以催化半胱氨酸被氧气氧化生成二硫胱氨酸,而二硫胱氨酸不能置换出FITC.因此,在半胱氨酸存在的条件下随着Cu2+浓度的增加,FITC AuNPs在溶液中的荧光强度会降低,且存在良好的线性关系,可以实现Cu2+的定量检测,检出限达到3.7×10-10mol/L.在桶装矿泉水中加入Cu2+进行检测,检出限为6.4×10-10mol/L.与金属纳米粒子相比,金属钠米簇因具有粒径小、荧光强、稳定性好以及核壳结构等特性在荧光探针方面的应用更多.ZHANG等[32]以胞嘧啶为稳定剂制备了金纳米簇作为检测Ag+和Hg2+的双功能荧光探针.在AuNCs溶液中加入Ag+会形成AuAgNCs使荧光增强,而在AuAgNCs溶液中再加入Hg2+则会引起荧光猝灭,响应速度快且稳定,推测其机理与Ag Au金属键和Hg2+ Ag+高亲和金属键的相互作用有关.该探针对Ag+和Hg2+的检出限分别为1.0×10-8和3.0×10-8mol/L,将其用于湖水样品的检测结果显示,对Ag+的测定结果与给定浓度之间的相对误差小于5%,对Hg2+的检测回收率为97.7%~99.3%.PENG等[33]则以甲硫氨酸做稳定剂制备了一种金纳米簇作为荧光增强型探针检测Cd2+.实验表明只有Cd2+的加入会使溶液荧光增强,推测是由于Cd2+与配体上的氨基或羧基螯合使AuNCs聚集所致,其他金属阳离子和阴离子均无响应.该方法的检出限为1.225×10-8mol/L,对自来水、湖水和奶粉样品的分析发现平均回收率在95.33%~106.21%.与金银纳米簇相比制备铜纳米簇所需的前驱体更丰富且成本更低.HU等[34]以谷胱甘肽(GSH)作为还原剂和稳定剂制备了铜纳米簇(GSH CuNCs)检测Hg2+.Hg2+的加入与配体表面的羧基和巯基发生反应诱导了CuNCs的聚集从而使荧光猝灭,检出限为3.3×10-9mol/L.该方法对自来水、嘉陵江水及大米中Hg2+的测定结果与氢化物发生原子荧光光谱法测定结果吻合度较好.2.2 半导体量子点半导体量子点一般由II VI族或III V族的元素组成,是粒径在1~10nm的零维纳米材料,由于其粒径小于或者接近激子半径,因此表现出量子限制效应使连续的能带结构变成分立状态,在被激发后可发射荧光.其独特的量子尺寸效应,使其光谱具有可控性,同时存在激发波长范围宽、发射光谱窄且对称的特性.目前报道的该类荧光探针多为CdX(X=Te,Se,S)量子点,通过不同的物质对量子点表面进行修饰来增加其水溶性及对金属离子的选择性.高雪等[35]用巯基乙酸作稳定剂合成了CdTe量子点,然后通过乙二胺四乙酸钠(EDTA)与Cd2+的络合作用对量子点的表面进行了化学蚀刻,形成Cd2+空腔使荧光猝灭,以此作为一种Cd2+增强型荧光探针,检出限为1.0×10-9mol/L.用于自来水和海水水样中Cd2+的检测,回收率为97%~108%.将有机荧光团连接到量子点上是制备比率型纳米探针的一种简单有效的方法.MA等[36]将具有绿光发射的咪唑荧光团(PIPT)螯合到有红光发射的CdTe@SiO2量子点表面,作为一种比率型纳米探针PIPT CdTe@SiO2QDs用来检测Hg2+.由于PIPT与Hg2+存在强螯合作用,加入Hg2+后PIPT的荧光被猝灭,但CdTe量子点对Hg2+不敏感荧光不变,因此出现荧光比值的变化,该方法对Hg2+的检出限为6.5×10-9mol/L,用于自来水和湖水水样回收率为96.3%~107.0%.2.3 碳点碳点是以碳为基础的粒径小于10nm的零维碳纳米材料,具有荧光性质,因具有水溶性好、光稳定性高、原料成本低、制备过程简单、易功能化、毒性低及发射光谱可调等优点,可用于催化、荧光检测、生物成像等领域,是一种较为理想的构建荧光纳米探针的材料.ZHANG等[37]以天冬氨酸和碳酸氢铵为原料通过微波辅助热解法一步合成了石墨烯量子点(GQDs),可用于检测水中的Fe3+.选择性实验显示在Fe3+,Fe2+,Hg2+,Ca2+,Ba2+,Cu2+,Mn2+,Mg2+,Ni2+,Ag+中只有Fe3+会使荧光明显猝灭,因为Fe3+会与GQDs表面的酚羟基络合导致电子跃迁到Fe3+的d轨道,从而引起荧光猝灭.该探针的检出限为2.6×10-7mol/L.GEDDA等[38]则以虾壳为原料制备了一种低成本、响应速度快、选择性和灵敏度高的绿色荧光碳点(CD),基于Cu2+与CD表面氨基的配位作用形成铜胺络合物及内过滤效应使荧光发生猝灭,可对水中Cu2+进行检测,检出限为5.0×10-9mol/L.411第1期 纪雪峰,等:荧光探针在水中重金属离子检测中的应用研究进展碳点荧光探针对金属离子的选择性识别除上述通过CD表面官能团直接识别外,还可通过配体对CD的修饰提高选择性以及CD与其他物质结合形成复合物来提高识别能力.XU等[39]合成了一种经胸腺嘧啶(T)修饰的CD,用于检测Hg2+.通过形成T Hg2+ T结构使CDs T聚集,导致荧光强度降低.荧光探针CDs T对Hg2+的检出限为9.3×10-10mol/L,用于自来水与池塘水水样的检测,回收率为97.2%~103.7%.2.4 金属 有机骨架材料金属 有机骨架材料(MOFs)是由金属离子和有机配体自组装形成的多孔材料,具有尺寸、结构可调性,在催化、吸附、气体储存与分离等方面具有良好的应用前景.本课题组制备了磁性MOFs及MOF混合基质膜等复合MOFs材料,作为吸附剂去除环境中的污染物或作为色谱分析样品前处理的富集吸附材料[40 43].MOFs材料也具有优异的发光特性,可作为新型纳米荧光材料用于重金属离子的检测.RUDD等[44]通过引入荧光团和功能化的二羧酸酯连接体合成了一系列MOFs材料(LMOF 261,262,263),用于检测和去除水中重金属离子.研究发现LMOF 263可在很低的浓度下(3.3×10-9,1.97×10-8mol/L)检测Hg+和Pb2+.另外,LMOF 263还可以对Hg+进行吸附,在30min内去除率达到99.1%.目前报道的MOFs荧光探针多为荧光猝灭型,易受周围环境因素影响,相比之下荧光增强型及比率型探针能更好地应用于水中重金属离子的检测.CHEN等[45]制备了含卟啉基团的金属 有机骨架材料PCN 222 Pd(Ⅱ)对水溶液中的Cu2+表现出荧光增强响应.Cu2+的加入取代了与卟啉中氮原子螯合的钯离子,将钯离子置换出来并还原成钯纳米粒子从而催化了Heck反应,使苯胺转化为具有荧光的吲哚产物,产生荧光增强响应.检出限为5.0×10-8mol/L.WANG等[46]则合成了一种具有双发射峰的MOFs作为比率型荧光探针检测Cu2+.加入Cu2+后,Eu(III)复合物的中心Eu3+被Cu2+取代导致荧光发生猝灭,而荧光素异硫氰酸酯(FITC)的荧光信号不变可作为参考,呈现出比值荧光响应.该探针对Cu2+的检测灵敏度很高,检出限达到1.0×10-10mol/L,且在人血清样本、黄河水及自来水样品中1.0×10-10mol/L的Cu2+也可以被检测到,证明了这种探针的可行性.稀土 有机骨架荧光探针由于稀土离子自身的特性和配体向稀土离子的能量转移而呈现的发光现象,使其在荧光分析检测方面得到应用.XIA等[47]采用溶剂热法合成了以稀土离子为中心的MOFs可用于水溶液中Hg2+的检测.向溶液中加入Hg2+后,由于Hg2+与配体的相互作用显著影响了配体向中心Tb3+的能量转移从而发生荧光猝灭,检出限为4.4×10-9mol/L.将该方法用于河水、饮用水和自来水水样的检测,相对标准偏差小于4.80%.除上述几类纳米荧光探针外,还有磁性纳米粒子、硅纳米材料以及纳米纤维素等也被用于重金属离子荧光探针的构建.表2总结了用于水中重金属离子检测的纳米荧光探针的文献报道.表2 用于水中重金属离子检测的纳米荧光探针类型材料检测离子λex,em/nm荧光响应LOD/(mol·L 1)实际应用参考文献FITC AuNPsCu2+490,514猝灭6.4×10 10桶装矿泉水[31]金属纳米材料AuAgNCsHg2+370,560猝灭3.0×10 8湖水[32]GSH CuNCsHg2+360,445猝灭3.3×10 9自来水、江水、珍珠米、糯米[34]Methionine CappedAuNCsCd2+420,565增强1.2×10 8自来水、湖水、奶粉、骆驼奶粉[33]BSA Ag/AualloyNCsPb2+500,620猝灭2.0×10 9饮用水、湖水[48]511青岛理工大学学报第42卷续表2类型材料检测离子λex,em/nm荧光响应LOD/(mol·L 1)实际应用参考文献PIPT CdTe@SiO2QDsHg2+300,500/657比率6.5×10 9自来水、湖水[36]半导体量子点Ag+@Cys CdSQDsHg2+372,545猝灭9.0×10 8饮用水[49]EDTA蚀刻的MPA CdTeQDsCd2+400,—增强1.0×10 9自来水、海水[35]CDs THg2+360,450猝灭9.3×10 10自来水、池塘水[39]碳点Aptamer rGQDsPb2+300,435增强6.0×10 10—[50]CDsCu2+330,405猝灭5.0×10 9海水[38]ILCDsCr(Ⅵ)380,458猝灭1.5×10 8自来水[51]PCN 222 Pd(Ⅱ)Cu2+275,351增强5.0×10 8—[45]TbTATABHg2+350,—猝灭4.4×10 9河水、饮用水、自来水[47]金属有机骨架材料MOF 525Cu2+512,651猝灭6.7×10 8矿泉水、自来水[52]MOF 525NPsCu2+414,646猝灭2.2×1010饮用水、细胞成像[53]ZIF 8Cu2+330,515/616比率1.0×1010人血清样本、黄河水、自来水[46]3 结论与展望随着重金属污染问题日益加剧,重金属离子的检测受到越来越多的关注.近年来,荧光探针在重金属离子检测方面取得了较好的进展.然而,仍然存在一些问题亟待解决.例如:一些荧光探针特异性不高,容易受其他金属离子的干扰,或灵敏度不够,达不到检测的要求;部分荧光探针结构复杂,合成较为困难,多数有机荧光探针是在有机溶剂跟水的混合体系中进行的,很难广泛应用.因此,要优化已有荧光探针的性能,进一步提高检测的灵敏度和选择性以及探针的实用性.另一方面,对于性能优良、合成简单、成本低、水溶性好且能够实时检测的新型荧光探针的设计还需要进一步的探究.此外,还可以对荧光探针的检测机理进行深入研究,将多种检测手段联用,设计出抗干扰能力更强,更具实际应用价值的荧光探针.总之,随着荧光探针技术的进一步发展,新型、高效、适用范围广的荧光探针将被不断开发,使其在化学、环境科学、生物科学等领域具有更加广泛的应用前景.参考文献(犚犲犳犲狉犲狀犮犲狊):[1] NOLANEM,LIPPARDSJ.Toolsandtacticsfortheopticaldetectionofmercuricion[J].ChemicalReviews,2008,108(9):3443 3480.[2] JARUPL,AKESSONA,JARUPL.Akessonacurrentstatusofcadmiumasanenvironmentalhealthproblem[J].ToxicolApplPhar macol,2009,238(3):201 208.[3] SUNGTW,LOY,CHANGI,etal.HighlysensitiveandselectivefluorescenceprobeforCr3+iondetectionusingwater solubleCdSeQDs[J].SensorsandActuatorsB:Chemical,2014,202:1349 1356.[4] LOUJ,JINL,WUN,etal.DNAdamageandoxidativestressinhumanblymphoblastoidcellsaftercombinedexposuretohexavalentchromiumandnickelcompounds[J].FoodandChemicalToxicology,2013,55:533 540.[5] HUNGYH,BUSHAI,CHEMYRA,etal.Copperinthebrainandalzheimer’sdisease[J].JournalofBiologicalInorganicChemis try,2010,15(1):61 76.[6] TUDORR,ZALEWSKIPD,RATNAIKERN,etal.Zincinhealthandchronicdisease[J].TheJournalofNutritionHealthandAging,2005,9(1):45 51.[7] 付海曦,刘威,张春辉,等.水体中重金属离子的检测方法研究进展[J].理化检验(化学分册),2012,48(4):496 503.FUHaixi,LIUWei,ZHANGChunhui,etal.Recentadvanceofdetectionmethodofheavymetalionsinwater[J].PhysicalTestingandChemicalAnalysis(PartB:ChemicalAnalysis),2012,48(4):496 503.[8] 王玉红,王延凤,陈华,等.海水中重金属检测方法研究及治理技术探索[J].环境科学与技术,2014,37(S1):237 241.WANGYuhong,WANGYanfeng,CHENHua,etal.Detectmethodsofheavymetalsinseawaterandtreatmenttechnologyexplora 611第1期 纪雪峰,等:荧光探针在水中重金属离子检测中的应用研究进展tion[J].EnvironmentalScience&Technology,2014,37(S1):237 241.[9] CHENX,PRADHANT,WANGF,etal.Fluorescentchemosensorsbasedonspiroring openingofxanthenesandrelatedderivatives[J].ChemicalReviews,2012,112(3):1910 1956.[10] ZHANGJ,CHENGF,LIJ,etal.Fluorescentnanoprobesforsensingandimagingofmetalions:Recentadvancesandfutureper spectives[J].NanoToday,2016,11(3):309 329.[11] 张鹏,张有明,林奇,等.金属离子响应型荧光传感分子的设计原理及研究进展[J].有机化学,2014,34(7):1300 1321.ZHANGPeng,ZHANGYoupeng,LINQi,etal.Thedesignprincipleandresearchprogressofmetalionresponsivefluorescentsens ingmolecule[J].ChineseJournalofOrganicChemistry,2014,34(7):1300 1321.[12] YUANL,LINW,ZHENGK,etal.Fret basedsmall moleculefluorescentprobes:Rationaldesignandbioimagingapplications[J].AccountsofChemicalResearch,2013,46(7):1462 1473.[13] SUNNAPUO,KOTLANG,MADDIBOYINAB,etal.Rhodaminebasedeffectivechemosensorforchromium(III)andtheirappli cationinlivecellimaging[J].SensorsandActuatorsB:Chemical,2017,246:761 768.[14] 曾竟,刘瑞姣,陈佳敏.在双波长下识别Fe3+的一种新型可视化荧光探针的合成及性能[J].发光学报,2019,40(4):542 551.ZENGJing,LIURuijiao,CHENJiamin.SynthesisandpropertiesofanovelcolorimetricfluorescentprobeforFe3+atdualemissionwavelengths[J].ChineseJournalofLuminescence,2019,40(4):542 551.[15] 陈家逸,苏伟,王恩举.基于1,8 萘酰亚胺与罗丹明B间荧光共振能量转移的高选择性Hg2+比率荧光探针[J].高等学校化学学报,2016,37(2):232 238.CHENJiayi,SUWei,WANGEnju.HighlyselectiveratiometricfluorescentprobeforHg2+basedonfluorescenceresonanceenergytransferbetween1,8 naphthalimideandrhodamineB[J].ChemicalJournalofChineseUniversities,2016,37(2):232 238.[16] LIM,JIANGX,WUH,etal.Adualfunctionalprobefor“turn on”fluorescenceresponseofPb2+andcolorimetricdetectionofCu2+basedonarhodaminederivativeinaqueousmedia[J].DaltonTransactions,2015,44(39):17326 17334.[17] SHAILY,KUMARA,PARVEENI,etal.Highlyselectiveandsensitivecoumarintriazolebasedfluorometric‘turn off’sensorfordetectionofPb2+ions[J].Luminescence,2018,33(4):713 721.[18] 王海娜,张慧,俞天智,等.香豆素类双酰腙荧光探针的合成及对Cu2+的识别性能[J].化学通报,2020,83(3):240 245.WANGHaina,ZHANGHui,YUTianzhi,etal.SynthesisandevaluationofdicoumarinacylhydrazonederivativesasfluorescentprobesforCu2+[J].Chemistry,2020,83(3):240 245.[19] 刘琪梦,汪欢,郭昊冉,等.在纯水体系和活细胞中高选择检测Fe3+的香豆素荧光探针[J].无机化学学报,2019,35(5):923 929.LIUQimeng,WANGHuan,GUOHaoran,etal.Ahighlyselectivecoumarin basedfluorescentprobefordetectingFe3+inpurewa tersystemsandlivingcells[J].ChineseJournalofInorganicChemistry,2019,35(5):923 929.[20] XUZ,LIG,RENY,etal.AselectivefluorescentprobeforthedetectionofCd2+indifferentbuffersolutionsandwater[J].DaltonTransactions,2016,45(30):12087 12093.[21] VELMURUGANK,RAMANA,DOND,etal.Quinolinebenzimidazole conjugateforthehighlyselectivedetectionofZn(II)bydualcolorimetricandfluorescentturn onresponses[J].RSCAdvances,2015,5(55):44463 44469.[22] SHIZ,HANQ,YANGL,etal.Ahighlyselectivetwo photonfluorescentprobefordetectionofcadmium(II)basedonintramolec ularelectrontransferanditsimaginginlivingcells[J].ChemistryAEuropeanJournal,2015,21(1):290 297.[23] ZHOUY,ZHANGJ,ZHANGL,etal.Arhodamine basedfluorescentenhancementchemosensorforthedetectionofCr3+inaque ousmedia[J].Dyes&Pigments,2013,97(1):148 154.[24] LIUY,SHENR,RUJ,etal.Areversiblerhodamine6G basedfluorescenceturn onprobeforFe3+inwateranditsapplicationinlivingcellimaging[J].RSCAdvances,2016,6(113):111754 111759.[25] ZHANGB,DIAOQ,MAP,etal.AsensitivefluorescentprobeforCu2+basedonrhodamineBderivativesanditsapplicationtodrinkingwaterexaminationandlivingcellsimaging[J].SensorsandActuators,2016,225:579 585.[26] 陈兆辉,李媛媛,韩娟,等.一种基于香豆素衍生物的铁离子水溶性荧光探针的合成及其应用[J].分析化学,2018,46(1):20 26.CHENZhaohui,LIYuanyuan,HANJuan,etal.Synthesisandapplicationofaferricionwater solublefluorescentprobebasedoncoumarinderivatives[J].ChineseJournalofAnalyticalChemistry,2018,46(1):20 26.[27] HUANGK,JIAOX,LIUC,etal.Highlyselectiveandsensitivefluorescentprobeformercuryionsbasedonanovelrhodol couma rinhybriddye[J].Dyes&Pigments,2017,142:437 446.[28] 李长伟,杨栋,尹兵,等.新型香豆素类Zn2+荧光探针的合成及细胞成像研究[J].有机化学,2016,36(4):787 794.LIChangwei,YANGDong,YINBing,etal.Novelcoumarin basedfluorescentprobesfordetectingZn2+inlivingcells[J].ChineseJournalofOrganicChemistry,2016,36(4):787 794.[29] WANGP,FUJ,YAOK,etal.Anovelquinoline derivedfluorescent“turn on”probeforCu2+withhighlyselectivityandsensitivityanditsapplicationincellimaging[J].SensorsandActuatorsB:Chemical,2018,273:1070 1076.[30] ZANGSQ,LUHL,WANGWK,etal.Anewquinoline basedfluorescentprobeforCd2+andHg2+withanoppositeresponsein711青岛理工大学学报第42卷100%aqueousenvironmentandlivingcellimaging[J].DaltonTrans,2016,45:8174 8181.[31] WANGS,WANGX,ZHANGZ,etal.Highlysensitivefluorescencedetectionofcopperionbasedonitscatalyticoxidationtocyste ineindicatedbyfluoresceinisothiocyanatefunctionalizedgoldnanoparticles[J].ColloidsandSurfacesA:PhysicochemicalandEngi neeringAspects,2015,468:333 338.[32] ZHANGY,JIANGH,WANGX.Cytidine stabilizedgoldnanoclusterasafluorescenceturn onandturn offprobefordualfunctionaldetectionofAg+andHg2+[J].AnalyticaChimicaActa,2015,870:1 7.[33] PENGY,WANGM,WUX,etal.Methionine cappedgoldnanoclustersasafluorescenceenhancedprobeforcadmium(II)sensing[J].Sensors,2018,18(2):658 668.[34] HUX,WANGW,HUANGY.Coppernanocluster basedfluorescentprobeforsensitiveandselectivedetectionofHg2+inwaterandfoodstuff[J].Talanta,2016,154:409 415.[35] 高雪,葛丹,赵月,等.CdTe量子点作为荧光探针测定水环境中微量镉离子[J].化学通报,2015,78(10):902 906.GAOXue,GEDan,ZHAOYue,etal.CdTequantumdotsasfluorescentprobesfordeterminationoftracecadmiumionsinwaterenvironment[J].Chemistry,2015,78(10):902 906.[36] MAF,SUNM,ZHANGK,etal.Aratiometricfluorescencesensorforhighlyselectiveandsensitivedetectionofmercuricion[J].SensorsandActuatorsB:Chemical,2015,209:377 383.[37] ZHANGCF,CUIYY,SONGL,etal.Microwaveassistedone potsynthesisofgraphenequantumdotsashighlysensitivefluores centprobesfordetectionofironionsandpHvalue[J].Talanta,2016,150(1):54 60.[38] GEDDAG,LEEC,LINY,etal.Greensynthesisofcarbondotsfromprawnshellsforhighlyselectiveandsensitivedetectionofcopperions[J].SensorsandActuatorsB:Chemical,2016,224:396 403.[39] XUH,HUANGS,LIAOC,etal.Highlyselectiveandsensitivefluorescenceprobebasedonthymine modifiedcarbondotsforHg2+andL cysteinedetection[J].RSCAdvances,2015,5(108):89121 89127.[40] WUG,MAJ,WANGS,etal.Cationicmetal organicframeworkbasedmixed matrixmembraneforextractionofphenoxycarboxylicacid(PCA)herbicidesfromwatersamplesfollowedbyUHPLC MS/MSdetermination[J].JournalofHazardousMaterials,2020,394:122556.[41] WUG,MAJ,LIS,etal.Cationicmetal organicframeworksasanefficientadsorbentfortheremovalof2,4 dichlorophenoxyaceticacidfromaqueoussolutions[J].EnvironmentalResearch,2020,186:109542.[42] MAJ,LIS,WUG,etal.Preparationofmixed matrixmembranesfrommetalorganicframework(MIL 53)andpoly(vinylidenefluoride)foruseindeterminationofsulfonylureaherbicidesinaqueousenvironmentsbyhighperformanceliquidchromatography[J].JournalofColloidandInterfaceScience,2019,553:834 844.[43] MAJ,YAOZ,HOUL,etal.Metalorganicframeworks(MOFs)formagneticsolid phaseextractionofpyrazole/pyrrolepesticidesinenvironmentalwatersamplesfollowedbyHPLC DADdetermination[J].Talanta,2016,161:686 692.[44] RUDDND,WANGH,FUENTESFERNANDEZEM,etal.Highlyefficientluminescentmetal organicframeworkforthesimulta neousdetectionandremovalofheavymetalsfromwater[J].ACSAppliedMaterials&Interfaces,2016,8(44):30294 30303.[45] CHENY,JIANGH.Porphyrinicmetal organicframeworkcatalyzedheck reaction:Fluorescence“Turn On”sensingofCu(II)ion[J].ChemistryofMaterials,2016,28(18):6698 6704.[46] WANGJ,CHENH,RUF,etal.Encapsulationofdual emittingfluorescentmagneticnanoprobeinmetal organicframeworksforultrasensitiveratiometricdetectionofCu2+[J].ChemistryAEuropeanJournal,2018,24(14):3499 3505.[47] XIAT,SONGT,ZHANGG,etal.Aterbiummetal organicframeworkforhighlyselectiveandsensitiveluminescencesensingofHg2+ionsinaqueoussolution[J].ChemistryAEuropeanJournal,2016,22(51):18429 18434.[48] WANGC,CHENGH,SUNY,etal.Nanoclusterspreparedfromasilver/goldalloyasafluorescentprobeforselectiveandsensitivedeterminationoflead(II)[J].MikrochimicaActa,2015,182(3):695 701.[49] UPPAY,KULCHATS,NGAMDEEK,etal.SilverionmodulatedCdSquantumdotsforhighlyselectivedetectionoftraceHg2+[J].JournalofLuminescence,2016,178:437 445.[50] QIANZ,SHANXY,CHAILJ,etal.Afluorescentnanosensorbasedongraphenequantumdots aptamerprobeandgrapheneoxideplatformfordetectionoflead(II)ion[J].BiosensorsandBioelectronics,2015,68:225 231.[51] LIUX,LIT,WUQ,etal.CarbonnanodotsasafluorescencesensorforrapidandsensitivedetectionofCr(VI)andtheirmultifunc tionalapplications[J].Talanta,2017,165:216 222.[52] LIL,SHENS,LINR,etal.RapidandspecificluminescentsensingofCu(II)ionwithporphyrinicmetal organicframework[J].ChemicalCommunications,2017,53(72):9986 9989.[53] CHENGC,ZHANGR,WANGJ,etal.Anultrasensitiveandselectivefluorescentnanosensorbasedonporphyrinicmetal organicframeworknanoparticlesforCu2+detection[J].Analyst,2020,145(3):797 804.(责任编辑 姜锡方)811。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的与要求1、掌握水的前处理和消解技术。
2、了解水中重金属的测定方法,掌握原子吸收分光光度计的测定技术。
2+。
3、了解利用AAS测定水的硬度和测定废水中SO44、了解水中重金属的种类、危害及有关知识,掌握水中重金属污染分析与评价的方法。
5、掌握水样的处理方法技术,并小结以前的处理方法。
通过测定水中Cr、Pb 的含量分析所取水样的污染程度二、实验方案1、原理〔1〕火焰原子吸收光度法是根据某元素的基态原子对该元素的特征谱线产生选择性吸收来进行测定的分析方法。
将试样溶液喷入空气乙炔火焰中,被测的元素化合物在火焰中离解形成原子蒸汽,由锐线光源〔元素灯〕发射的某元素的特征普线光辐射通过原子蒸汽层的时候,该元素的基态原子对特征普线产生选择性吸收。
在一定的条件下,特征普线与被测元素的浓度成正比。
通过测定基态原子对选定吸收线的吸光度,确定试样中元素的浓度。
原子吸收法具有很高的灵敏度。
每种元素都具有自己为数不多的特征吸收普线,不同元素的测定采用相应的元素灯,因此普线干扰在原子吸收光度法中是少见的。
影响原子吸收光度法准确度的主要是基体的化学干扰。
由于试样和标准溶液的基体不一样,试样中存在的某种基体常常影响被测元素的原子化效率,如在火焰中形成难离解的化合物,这时就会发生干扰作用。
一般说来Cu,Zn,Pb,Cd的基体干扰不是很严重。
〔2〕干扰及消除。
共存元素的干扰受火焰状态和观测高度的影响很大,在实验的时候应该特别注意。
因为铬的化合物在火焰中易生成难以熔融和原子化的氧化物,因此一般在试液中加入适量的助熔剂和干扰元素的抑制剂,如NH4Cl〔K2S2O7,NH4F,NH4ClO2〕。
加入NH4Cl可以增加火焰中的氯离子,使铬生成易于挥发和原子化的氯化物,而且NH4Cl还可以抑制Fe,Co,Ni,V,Al,Pb,Mg的干扰。
〔3〕适用范围。
本方法可以适用于地表水和废水中总铬的测定,用空气-乙炔火焰的最正确定量分析范围是0.1-5mg/L。
最低检测限是0.03mg/L。
2、试剂浓硝酸、双氧水、氯化铵、3mol/L 盐酸、三个染料公司的废水待测水样3、仪器原子吸收分光光度计〔美国安捷伦7890A-5975C〕闭塞关假设干及实验室常用仪器表1.仪器的工作参数4、实验步骤水样预处理本小组分别取1,2,3 三个公司的废水做水样,各取100mL于烧杯中,编号为①,②,③,各加入5mL的浓硝酸摇匀后放在电热板上加热消解至约85mL的时候取出加入5mL的浓硝酸和2mL的双氧水,继续放在电热板上加热至大约75mL 的时候取出,冷却至室温,加入10mL的盐酸和2mL10%的氯化铵,转移到100mL 的比色管,定容到100mL,待测。
测定步骤〔注:由于条件限制本过程有老师测定〕①风机----压缩机----电脑----气瓶----电源主机〔开机过程〕;②通过电脑打开桌面上的WFX210控制软件,进入方法编辑-创建新的方法;③改参数〔仪器条件,测量条件,工作曲线参数,火焰条件〕④样品清单的设定和输入----仪器自动波长---点火〔准备过程〕⑤用空白调节吸光度为0,然后从浓度低到高依次测定标准系列。
⑥ 观察标准曲线吸光度及相关系数〔r 大于0.995以上〕和曲线方程; ⑦ 照序号测定样品—然后输入打印结果。
⑧ 按照稀释或者浓缩的倍数进行计算〔mg/L 〕三、实验结果与数据处理1、标准曲线的绘制表2 Cr 标准溶液浓度及其吸光度图1. Cr 标准溶液浓度及其标准曲线根据标准曲线所得规律和实验结果可以算得每个公司的废水中Cr 的含量〔根据实验结果软件已经直接算出〕表3 三个公司废水中Cr 实验结果表〔mg/L 〕-0.0200.020.040.060.080.10.12Cr 浓度(μg/mL )图2 各个公司废水中Cr 含量比较表4 Pb 标准溶液浓度及其吸光度图3 Pb 标准溶液浓度及其标准曲线根据标准曲线所得规律和实验结果可以算得每个公司的废水中Cr 的含量〔根据实验结果软件已经直接算出〕表 5 三个公司废水中Pb 实验结果表〔mg/L 〕0.511.522.533.54123C r 浓度(μg /m L )公司系列2系列3系列4系列500.020.040.060.080.10.120.140.160.180.0002.0004.0006.0008.00010.00012.000Pb 浓度(μg/mL)图4 各个公司废水中Pb 含量比较四、结论1. 数据可靠性分析通过对水中重金属Cr 和Pb 的标准阶梯测定测定,经处理绘制出标准曲线图如图1. 水中重金属Cr 测定标准曲线和图2.水中重金属Pb 测定标准曲线所示,标准曲线分别为:y=0.0202x+0.0032和 y=0.0149x+0.0004其相关系数R 1=0.9946〔Cr 〕,R 2=0,998〔Pb 〕,可见实验测得Cr 标准曲线的拟合程度〔小于实验室要求0.995〕一般,而Pb 标准曲线的拟合程度较好,能用于转换水样中重金属Pb 的含量。
而假设用该标准曲线换算Cr 浓度,则存在一定的偏差。
根据实验结果表算出每个公司的数据的标准偏差σ,相对标准偏差CV表6 Cr 结果评价表10203040506070123P b 浓度(μg /m L )公司系列1系列2系列3系列4系列5表7 Pb结果评价表本实验废水是用火焰原子吸收光谱法测定,该方法选择性强,灵敏度高,分析范围广,精密度好,根据前人的研究消解过程中加入氯化铵能够提高实验准确度,消解的过程中操作人员熟练操作消解过程中,所以测出的各公司的废水的总Cr,Pb的含量可靠。
但是由上表可以看出本次实验的相对标准偏差都比较大,与理论的测定偏差大很多。
即学生测定的数据准确性不够。
2、污染评价参考《地表水环境质量标准》〔GB 3838-2002〕,依据地表水水域环境功能和保护目标,按功能高低依次划分为五类:I类:主要适用于源头水、国家自然保护区;II类:主要适用于集中式生活饮用水地表水源地一级保护区、珍惜水生生物栖息地、鱼虾类产卵场、仔稚幼鱼的索饵场;III类:主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾类产卵场、仔稚幼鱼的索越冬场、洄游通道、水产养殖区等渔业水域及及游泳区;IV类:主要适用于一般工业用水区及人体非直接接触的娱乐用水区;V类:主要适用于农业用水区及一般景观要求水域。
标准规定了对应地表水上述五类水域功能,将地表水环境质量标准基本项目标准值分为五类,不同功能类别执行相应类别的标准值。
水域功能类别高的标准值严于水域功能类别低的标准值。
同一水域兼有多类使用功能的,执行最高功能类别对应的标准值。
其中水中重金属Pb、Cr的目标限值如表4-1所示。
表8 水中重金属Pb、Cr的浓度限值单位:mg/L注:以上数据来自《地表水环境质量标准》〔GB 3838-2002〕表9、城镇污水部分一类污染物最高允许排放浓度〔日均值〕单位: mg/L 序号项目标准值1 总Cr 0.12 总Pb 1.0〔数据来源《污水综合排放标准 GB8978-1996》〕参考表9可知,公司1、2、3的水样中的Cr与Pb浓度严重高出地表水的正常允许浓度,Cr分别超出了17,26,33倍,Pb分别超出了34,32,41倍。
比照表8相比于Ⅰ类地表水要求,公司1、2、3的水样中Pb浓度分别超出3457、3324、4205倍,相比于Ⅴ类地表水,则Pb分别超出344,331,419倍。
经此分析可知,三个公司的污水中Cr与Pb的浓度非常高,受Cr和Pb污染严重。
而总铬方面,由于地表水环境质量只有六价铬标准,而本实验中测定的是总铬,故不依此标准作Cr的污染分析与评价。
综合上述分析,三个印染公司的污水中,总Cr、总Pb的浓度都非常高,污水的重金属污染程度严重。
3、处理建议目前处理重金属离子废水处理常用的工艺主要分为一下几大类:〔1〕物化法:利用加入絮凝剂、助凝剂在特定的构筑物内进行沉淀或气浮,去除污水中的污染物的一种化学物理处理方法。
但该类方法由于加药费用高、去除污染物不彻底、污泥量大并且难以进一步处理,会产生一定的“二次污染”,一般不单独使用,仅作为生化处理的辅助工艺;〔2〕生化法:利用微生物的作用,使污水中有机物降解、被吸附而去除的一种处理方法。
由于其降解污染物彻底,运行费用相对低,基本不产生“二次污染”等特点,被广泛应用于印染污水处理中。
〔3〕吸附法:处理水中的重金属主要是通过吸附材料的高比外表积的蓬松结构或者特殊功能基团对水中重金属离子进行物理吸附或者化学吸附。
〔4〕絮凝沉淀法:在含有重金属离子的水中加入特殊的絮凝材料或者调节水中pH值使得水中的重金属离子富集沉淀。
〔5〕膜别离技术:将水进行适当前处理,如:氧化,复原,吸附等手段之后,将水中的重金属离子转化为特定大小的不溶态微粒,然后通过滤膜讲重金属离子除去。
〔6〕有机材料法:通过合成高分子材料或对现有材料进行改性。
接枝,赋予其新集团、新功能,使所得材料可与水中的重金属离子发生离子交换,化学吸附或整合等作用,从而将重金属离子去除。
五、问题与讨论2-吗?如果能测定请举例说明,如果不能测定的话1.原子吸收可以测定废水中SO4请说明理由。
2-。
如用火焰原子吸收光谱法间接测定水中硫答:可以用原子吸收法测定水中SO4酸盐。
其原理是用待测定的废水中的硫酸盐与铬酸钡悬浊液反应释放出铬酸根,再以火焰原子吸收光谱法测定释放出的铬酸根的浓度,间接测定废水中硫酸根。
试验方法:移取一定量的硫酸盐标液与25mL容量瓶中,加水至10mL,摇匀,加入铬酸钡悬浊液2.0mL,硫酸铜溶液1.0mL,氢氧化氨〔1+1〕2.0mL,无水乙醇6.0mL,以水定容,振摇,静置20min。
将部分上层液转入干燥离心管中,离心别离,于试验条件下,测定离心液的吸光度。
2.查资料详细说明如何利用AAS测定水的硬度?答:具体步骤如下:〔1〕标准曲线。
在4只25 mL 比色管中 ,分别加入硝酸镧溶液2. 5 mL ,再加入钙和镁标准溶液 ,使其成为 0.0、 5. 0、 10. 0、 15. 0 mg/L和0. 0、 3.0、 6. 0、 9. 0 mg/L的标准系列 ,按表5的仪器测定条件分别对其进行测定 ,然后绘制出钙和镁标准工作曲线。
〔2〕测定方法:在25mL比色管中分别加入硝酸镧溶液2.5mL,加入水样2.5mL,稀释至刻度,摇匀,进行测定,将测得的钙、镁含量分别换算成mmol/L两项相加后乘以100.1mg/L,即是用碳酸钙表示的硬度。
误差分析:由数据评价可知本次试验误差比较大主要有以下几个原因:〔1〕系统误差。
a、方法误差:本次采用的是常用的原子火焰分光光度法测定,存在比较少的误差,样品预处理是采用消解,操作简单,误差小。