函数的最大值与最小值
函数的最大值和最小值

函数的最大值和最小值函数的最大值和最小值是数学中重要的概念,它们可以提供函数的极限性质和图像的关键信息。
在本文中,我们将探讨函数的最大值和最小值的定义、计算方法以及在实际问题中的应用。
一、定义设函数$f(x)$在区间$I$上有定义,$x_0$是$I$的内点,则称$f(x_0)$是$f(x)$在$I$上的最大值(或极大值),如果对于任意$x\in I$,都有$f(x)\leq f(x_0)$成立;同样,$f(x_0)$是$f(x)$在$I$上的最小值(或极小值),如果对于任意$x\in I$,都有$f(x)\geq f(x_0)$成立。
二、计算方法1. 首先,我们需要找到函数$f(x)$的极值点(即导数为0或不存在的点)以及区间$I$的端点。
2. 然后,我们需要比较这些点和端点对应的函数值,找到函数在这些点上的最大值和最小值。
3. 最后,我们需要比较上述最大值和最小值,找到函数在整个区间$I$上的最大值和最小值。
需要注意的是,如果函数在某一点处没有导数或者导数不存在,那么这个点也可能是函数的最大值或最小值。
此时,我们需要通过其他方法(例如使用左极限和右极限)来判断函数在该点上的极值性质。
三、应用函数的最大值和最小值在很多实际问题中都有重要的应用。
以下是几个例子:1. 生产问题:假设一家工厂生产某种产品,每天可生产$x$件。
设$C(x)$是当天生产$x$件产品的总成本(包括生产和运输成本)。
如果我们希望生产最少的产品来达到最低成本,那么需要找到$C(x)$的最小值点,以及在该点处的最小成本。
2. 经济问题:有一种商品的需求量$D(p)$与它的价格$p$相关。
如果我们希望在某一价格范围内销售最大量的商品,那么需要找到$D(p)$的最大值点,以及在该点处的最大需求量。
3. 地理问题:假设一辆汽车可以在不加油的情况下行驶$D$公里。
设$v(x)$是汽车在速度为$x$千米/小时时的油耗。
如果我们希望以最少的油耗行驶最远的距离,那么需要找到$v(x)$的最小值点,以及在该点处汽车的最大行驶距离。
函数的极值与最大值最小值

f ( x) x4 4x3 10
上页 下页 返回
§2.9 函数的极值与最大值最小值
2
例2 求f ( x) 1 ( x 2)3的极值.
解
f
(
x)
2
(
x
2)
1 3
( x 2)
3
当x 2时, f ( x)不存在. 但函数f ( x)在该点连续.
f ( x) 3x2 6x 24 3( x 4)(x 2) 令 f ( x) 0,得驻点 x1 4, x2 2.
上页 下页 返回
§2.9 函数的极值与最大值最小值
注 ① 可导函数的极值点一定是驻点,但
反过来驻点不一定是极值点;
② 导数不存在的点也可能是极值点.
0
R
Q 400 Q40400Q0
令QL2 , 2
00,得QQ430000.
只有一个驻点,而最大80值00一0,定存在,Q此驻4点00就
是最大值点, L(300)=25000,
即当产量为300件时,总利润最大,为25000元.
上页 下页 返回
§2.9 函数的极值与最大值最小值
注 f ( x0 ) 0时, 定理3(第二充分条件)不能
应用. 当f ( x0 ) 0, f ( x0 ) 0时, f ( x)在点x0处 可能有极大值, 也可能有极小值, 也可能没有极值. 例如, f1( x) x6, f2( x) x4, f3( x) x3 在x 0处分别有极大值,极小值,无极值.
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点.
上页 下页 返回
函数的最大值与最小值

(3)函数在其定义域上的最大值与最小值至多各 函数在其定义域上的最大值与最小值至多各 有一个,而函数的极值则可能不止一个 而函数的极值则可能不止一个,也可能没有 有一个 而函数的极值则可能不止一个 也可能没有 极值,并且极大值 极小值)不一定就是最大值 最小 极值 并且极大值(极小值 不一定就是最大值(最小 并且极大值 极小值 不一定就是最大值 但除端点外在区间内部的最大值(或最小值 值),但除端点外在区间内部的最大值 或最小值 则 但除端点外在区间内部的最大值 或最小值),则 一定是极大值(或极小值 或极小值). 一定是极大值 或极小值 (4)如果函数不在闭区间 如果函数不在闭区间[a,b]上可导 则在确定函 上可导,则在确定函 如果函数不在闭区间 上可导 数的最值时,不仅比较该函数各导数为零的点与端 数的最值时 不仅比较该函数各导数为零的点与端 点处的值,还要比较函数在定义域内各不可导的点 点处的值 还要比较函数在定义域内各不可导的点 处的值. 处的值 (5)在解决实际应用问题中 如果函数在区间内只 在解决实际应用问题中,如果函数在区间内只 在解决实际应用问题中 有一个极值点(这样的函数称为单峰函数 这样的函数称为单峰函数),那么要根 有一个极值点 这样的函数称为单峰函数 那么要根 据实际意义判定是最大值还是最小值即可,不必再 据实际意义判定是最大值还是最小值即可 不必再 与端点的函数值进行比较. 与端点的函数值进行比较
函数的最大值与最 小值与导数
1.当函数 当函数f(x)在x0处连续时,判别 0)是极大 小)值的 在 处连续时 判别f(x 是极大(小 值的 当函数 判别 是极大 方法是: 方法是 如果在x 右侧f ①如果在 0附近的左侧 f/(x)>0 ,右侧 /(x)<0 ,那 ) 右侧 那 是极大值; 么,f(x0)是极大值 是极大值 如果在x 右侧f ②如果在 0附近的左侧 f/(x)<0, 右侧 /(x)>0 ,那 那 是极小值. 么,f(x0) 是极小值 2.导数为零的点是该点为极值点的必要条件 而不是充 导数为零的点是该点为极值点的必要条件,而不是充 导数为零的点是该点为极值点的必要条件 分条件.极值只能在函数的 极值只能在函数的导数为零且在其附近左右 分条件 极值只能在函数的导数为零且在其附近左右 时取到. 两侧的导数异号时取到 两侧的导数异号时取到 3.在某些问题中 往往关心的是函数在一个定义区间上 在某些问题中,往往关心的是函数在一个定义区间上 在某些问题中 往往关心的是函数在一个定义区间上, 哪个值最大,哪个值最小 而不是极值. 哪个值最小,而不是极值 哪个值最大 哪个值最小 而不是极值
函数的最大值和最小值

函数的最大值与最小值
a b 2、设 x, y 与 a, b 均为正实数,且满足 + = 1,求 x + y 的最小值. x y
a b π 2 2 解: 设 = sin t , = cos t , t ∈ (0, ). x y 2 a b x+ y = + = a csc 2 t + b sec 2 t sin 2 t cos 2 t
函数的最大值与最小值
x2 + x + 2 的最大值和最小值. 4、求函数y = 2 2x − x + 1
解: 本题可用判别式法求最值.
去分母得, y − 1) x 2 − ( y + 1) x + y − 2 = 0 (2
1 当y = 时,x = −1; 因为x ∈ R, 所以只须Δ ≥ 0. 2 1 当y ≠ 时,此为关于x的一元二次方程,且x, y 均为实数, 2
函数的最大值与最小值
主讲人:贺才兴
函数的最大值与最小值
函数的最大值与最小值的常用求法:
(1) 配方法:把函数写成若干个非负代数式及一个常数的和, 从而估计出函数的上、下界,进而求出其最大、小值.
(2) 判别式法:把所求最值的函数放到某一个一元二次方程的 系数上,利用判别式求出该函数的上界或下界,从而求得 最值.
函数的最大值与最小值
6、已知实数 x, y 满足1 ≤ x 2 + y 2 ≤ 4,求 f ( x, y ) = x 2 + xy + y 2 的 最小值和最大值. 1 2 3 2 2 2 2 ∵ xy ≤ ( x + y ), ∴ f ( x, y ) = x + y + xy ≤ ( x + y 2 ) ≤ 6, 解: 2 2
大学数学_3_4 函数的最大值与最小值

例5 3 甲船以 20nmile / h 的速度向东行驶,同一时间 乙船在甲船的正北 82nmile 处以16nmile / h 的速度向南行 驶,问经过多少时间,甲乙两船相距最近. y 82 解 设在时刻 t 0 时甲船位于 O 点, 16t 乙船位于甲船正北82nmile 处,在时刻 t B (单位:h)甲船由点 O 出发向东行驶了 20t (单位:nmile)至A点,乙船向南行驶 O 20t A x 了16t (单位:nmile)至B点(图 3-7) 图3-7 甲乙两船的距离为
内容小结
1. 最值点应在极值点和边界点上找
2. 应用题可根据问题的实际意义判别
作业
P134 1(1), (5), 2, 3, 4
由这个例子看出,为什么我们经常用n次测量值的算 术平均值作为所测量值的近似值. 例题中x-xi代表第i次的 测量值xi与真值x的误差,由于x-xi(i=1,2, …,n)可为正 也可为负,不能用它们的和作为n次测量值的总误差,以 免正负误差相抵消,因此一般采用n次测量误差的平方和 作为总误差,寻求如何取近似值能使这个总误差最小. 这 就是通常所谓的最小二乘法.
2 ( x 差平方和 1
x1 x2 n
xn
( x x2 )2 ( x xn ) 2 为最小. 2 2 2 y ( x x ) ( x x ) ( x x ) 证 记 1 2 n . 现求y的最小
值.
y 2[( x x1 ) ( x x2 ) ( x xn )] 2[nx ( x1 x2 xn )]. 令 y 0 得唯一驻点 1 x ( x1 x2 xn ). n 1 又y一定存在最小值,故当x ( x1 x2 xn ).时误差平 n 方和最小.
函数的极值与最大值最小值

函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点.
函数极值的判定法 由费马引理可知可导函数的极值点一定是驻点 .
注意: 1) 函数的极值是函数的局部性质.
2) 对常见函数, 极值可能出现在驻点或导数 不存在的点.
y
3) 函数的最值是函数的全局性质.
x 1 , x4 为极大点 x 2 , x5 为极小点
提示: 利用 f ( x) 单调增加 , 及
f (1) f (0) f ( ) (0 1)
利用导数求函数的最值是导数的又一重要应用.
若函数f(x)在闭区间[a,b]上连续,则值的方法: (1) 求 f ( x)在 (a , b) 内的极值可疑点
x1 , x2 , , xm
(2) 最大值
M max f ( x1 ) , f ( x2 ) ,, f ( xm ) , f (a) , f (b)
最小值
m min f ( x1 ) , f ( x2 ) , , f ( xm ) , f (a) , f (b)
特别:
• ●当 f ( x) 在 [a , b]内只有一个极值可疑点时, 若在 此点取极大 (小)值 , 则也是最大 (小)值 . • ●当 f ( x) 在 [a , b]上单调时, 最值必在端点处达到.
(证明略)
例如, 容易验证x=0是 y x2 , x ( , ) 的极小 值点. 而 x=0不是 y x , x ( , ) 的极值点.
3
例3 求函数 f ( x) ( x 1) x 的极值 . 2 x 2 1 2 5 解 1) 求导数 f ( x) x 3 ( x 1) x 3 5 3 3 3x 2) 求极值可疑点 2 令 f ( x) 0 , 得 x1 ; 令 f ( x) , 得 x2 0 5 3) 列表判别
函数的最大值与最小值

课题:函数的最大值和最小值教学目的:⒈使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件;⒉使学生掌握用导数求函数的极值及最值的方法和步骤 教学重点:利用导数求函数的最大值和最小值的方法.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系. 教学过程:一、复习引入:1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点3.极大值与极小值统称为极值 注意以下几点:值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的可以不止一个值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 二、讲解新课:1.函数的最大值和最小值观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .x 3x 2x 1baxOyy=x 4-2x 2+512108642-4-242xOy一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明:⑴在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值;⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⒉利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值三、讲解范例:例1求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值例2已知x,y 为正实数,且满足22240x x y -+=,求xy 的取值范围例 3.设213a <<,函数323()(11)2f x x ax b x =-+-≤≤的最大值为1,最小值为62-,求常数a,b例4已知23()log x ax bf x x++=,x ∈(0,+∞).是否存在实数a b 、,使)(x f 同时满足下列两个条件:(1))(x f )在(0,1)上是减函数,在[1,+∞)上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由.四、课堂练习:1.下列说法正确的是( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x ) ( ) A.等于0 B.大于0 C.小于0 D.以上都有可能3.函数y =234213141x x x ++,在[-1,1]上的最小值为( ) A.0B.-2C.-1D.12134.函数y =122+-x x x 的最大值为( )A.33 B.1 C.21 D.23 5.设y =|x |3,那么y 在区间[-3,-1]上的最小值是( ) A.27 B.-3 C.-1 D.16.设f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29,且a >b ,则( ) A.a =2,b =29 B.a =2,b =3 C.a =3,b =2 D.a =-2,b =-3 五、小结 :⑴函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;⑵函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件;⑶闭区间[]b a,上的连续函数一定有最值;开区间),(b a内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.。
函数的最大值和最小值(教案与课后反思

函数的最大值和最小值一、教学目标:1. 让学生理解函数的最大值和最小值的概念。
2. 让学生掌握求函数最大值和最小值的方法。
3. 培养学生解决实际问题的能力。
二、教学内容:1. 函数的最大值和最小值的定义。
2. 求函数最大值和最小值的方法。
3. 实际问题中的应用。
三、教学重点与难点:1. 教学重点:函数的最大值和最小值的定义,求最大值和最小值的方法。
2. 教学难点:如何运用方法求解实际问题中的最大值和最小值。
四、教学方法:1. 采用讲授法,讲解函数最大值和最小值的概念及求解方法。
2. 利用案例分析,让学生理解最大值和最小值在实际问题中的应用。
3. 开展小组讨论,培养学生合作解决问题的能力。
五、教学过程:1. 引入新课:通过生活中的例子,如购物时如何选择最划算的商品,引出函数的最大值和最小值的概念。
2. 讲解概念:详细讲解函数的最大值和最小值的定义,让学生明确最大值和最小值的意义。
3. 方法讲解:讲解求函数最大值和最小值的方法,并通过示例进行演示。
4. 案例分析:分析实际问题中的最大值和最小值,让学生了解最大值和最小值在生活中的应用。
5. 小组讨论:让学生分组讨论,运用所学方法解决实际问题。
6. 课堂小结:总结本节课的主要内容,强调最大值和最小值的概念及求解方法。
7. 课后作业:布置相关练习题,巩固所学知识。
课后反思:本节课通过生活中的例子引入最大值和最小值的概念,让学生容易理解。
在讲解方法时,结合示例进行演示,有助于学生掌握。
在案例分析和小组讨论环节,学生能够积极参与,运用所学知识解决实际问题。
但部分学生在理解最大值和最小值的应用时仍有一定难度,需要在今后的教学中加强引导和练习。
六、教学评价:1. 通过课堂提问、作业批改和课后访谈等方式,了解学生对函数最大值和最小值概念的理解程度。
2. 评估学生在实际问题中运用最大值和最小值方法的能力。
3. 根据学生的表现,调整教学策略,以提高教学质量。
七、教学拓展:1. 引导学生关注其他类型的函数(如二次函数、指数函数等)的最大值和最小值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第08课时-函数的最大值与最小值
教学目的:使学生理解函数的最大值和最小值的概念,掌握可导函数f(x)在闭区间[a,b]上所有点(包括端点a,b处的函数中的最大(或最小)值必有的充分条件;使学生掌握用导数求函数的极值及最值的方法和步骤.
教学重点:利用导数求函数的最大值和最小值的方法.
教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.
教学过程:
一、复习
1.极大(小)值:设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<(>)f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大(小)值=f(x0),x0是极大(小)值点.
2.极大值与极小值统称为极值:在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.
3.求可导函数f(x)的极值的步骤:
二、函数的最大值和最小值
观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.最大值是f(x
一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
说明:
(1)在开区间(a ,b )内连续的函数f (x )不一定有最大值与最小
值.如函数f (x )=x 1
在(0,+∞)内连续,但没有最大值与最小值;
(2)函数的最值是比较整个定义域内的函数值得出的;
函数的极值是比较极值点附近函数值得出的.
(3)函数f (x )在闭区间[a ,b ]上连续,是f (x )在闭区间[a ,b ]上有最大值与最小值的充分条件而非必要条件.
(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.
三、例题选讲: 利用导数求函数的最值
例1:求下列函数在相应区间上的最大值与最小值. (1) y =x 4-2x 2+5,x ∈[-2,2];
(2)x x x f sin 21
)(+=,x ∈]2,0[π
(1)解:先求导数,得x x y 443/-=
令/
y =0即0443
=-x x 解得1,0,1321==-=x x x
导数/
y 的正负以及)2(-f ,)2(f 如下表
从上表知,当时,函数有最大值13,当时,函数有最小值4 .
小结:
利用导数求函数的最值步骤:
由上面函数f (x )的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.
设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,则求f (x )在[a ,b ]上的最大值与最小值的步骤如下: (1)求f (x )在(a ,b )内的极值;
(2)将f (x )的各极值与f (a )、f (b )比较得出函数f (x )在[a ,b ]上的最值.
练习:
求下列函数的值域:
(1)
]4,0[,)2()1(2
2∈--=x x x y ; (2)]4,2[,2122-∈-+=x x x
y ;
(3)
)10(3)(3
≤≤+-=x ax x x f (a 为常数).
例2:已知动点M 在抛物线y 2=2px (p >0)上,问M 在何位置时到定点P (p ,p )的距离最短.
练习:
动点P(x,y)是抛物线y=x2-2x-1上的点,O为原点,设S=|OP|2,求S的最小值.
例3:已知x,y为正实数,且满足关系式x2-2x+4y2=0,求x⋅y 的最大值.
例4:已知抛物线y= -x2+2,过其上一点P引抛物线的切线l,使l与两坐标轴在第一象限围成的三角形的面积最小,求l的方程.
小结:
⑴函数在闭区间上的最值点必在下列各种点之中:
导数等于零的点,导数不存在的点,区间端点;
⑵函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件;
⑶闭区间[a,b]上的连续函数一定有最值;开区间(a,b)内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.
例5:设a ∈R ,函数f (x )=x 2e 1-x -a (x -1).
(1)当a =1时,求f (x )在⎝
⎛⎭
⎪⎪⎫34,2内的极大值; (2)设函数g (x )=f (x )+a (x -1-e 1-x ),当g (x )有两个极值点x 1,x 2(x 1<x 2)时,总有x 2g (x 1)≤λf '(x 1),求实数λ的值.(其中f '(x )是f (x )的导函数).
[解] (1)当a =1时,f (x )=x 2e 1-
x -(x -1),
则f '(x )=(2x -x 2)e 1-x
-1=(2x -x 2)-e x -
1e x -
1
, 令h (x )=(2x -x 2)-e x -
1,则h '(x )=2-2x -e x -
1,
显然h '(x )在⎝⎛⎭⎫34,2内是减函数,又h ′⎝⎛⎭⎫34=12-14e
<0,故x ∈⎝⎛⎭⎫34,2时,总有h '(x )<0,所以h (x )在⎝⎛⎭
⎫34,2内是减函数.又h (1)=0,所以当x ∈⎝⎛⎭⎫
34,1时,h (x )>0,从而f '(x )>0,这时f (x )单调递增,当x ∈(1,2)时,
h (x )<0,从而f '(x )<0,这时f (x )单调递减,所以f (x )在⎝⎛⎭⎫
34,2内的极大值是f (1)=1.
(2)由题可知g (x )=(x 2-a )e 1-
x ,
则g '(x )=(2x -x 2+a )e 1-
x =(-x 2+2x +a )e 1-
x .
根据题意,方程-x 2+2x +a =0有两个不同的实根x 1,x 2(x 1<x 2), 所以Δ=4+4a >0,即a >-1,且x 1+x 2=2, 因为x 1<x 2,所以x 1<1.
由x 2g (x 1)≤λf ′(x 1),其中f ′(x )=(2x -x 2)e 1-
x -a ,
可得(2-x 1)(x 21-a )e1-x 1≤λ[(2x 1-x 21
)e 1-x 1-a ],
注意到-x 21+2x 1+a =0,
所以上式化为(2-x 1)(2x 1)e 1-x 1≤λ[(2x 1-x 21)e 1-x 1+(2x 1-x 21)],
即不等式x 1
[2e 1-x 1-λ(e 1-x 1+1)]≤0对任意的x 1
∈(-∞,1)恒成立.
①当x 1=0时,不等式x 1[2e 1-x 1-λ(e 1-x 1+1)]≤0恒成立,λ∈R ;
②当x 1∈(0,1)时,2e 1-x 1-λ(e 1-x 1
+1)≤0恒成立,即λ≥2e 1-x 1e 1-x 1+1
,
令函数k (x )=2e 1-x e 1-x +1=2-2
e 1-x +1
,显然,k (x )是R 上的减函数,
所以当x ∈(0,1)时,k (x )<k (0)=2e e +1,所以λ≥2e
e +1
;
③当x 1∈(-∞,0)时,2e 1-x 1-λ(e 1-x 1
+1)≥0恒成立,即λ≤2e 1-x 1e 1-x 1+1
,
由②,当x ∈(-∞,0)时,k (x )>k (0)=2e e +1,所以λ≤2e
e +1
.
综上所述,λ=2e
e +1
.
作业布置:
完成《全品》练习册P15-16
完成《全品》单元测评(一)A。