铝合金砂型铸造-壳体
ZL系列铸造铝合金的应用

ZL系列铸造铝合金的应用牌号用途举例ZL101 适用于砂型、金属型和熔模铸造等工艺方法,制造形状复杂、壁厚较薄或要求气密的承受中等载荷的零件,如支臂、支架、液压元件、附件壳体,仪器外壳等。
ZL101A 可用于飞机发动机动的各种机匣,泵体、壳体等。
ZL102 用于形状复杂、工作温度在200以下要求高气密性承受低载荷的零件,如仪表壳体、活塞、制动器外壳等。
ZL104 适用于砂型或金属型铸造形状复杂的薄壁零件,适合制造中等载何而工作温度不超过180的零件,如机匣、框架、缸体等ZL105 适于铸造形状较复杂和承受中等载荷,工作温度至250的各种发动机零件和附件零件如汽缸件、机匣、油泵壳体等ZL108ZL109 用于发动机活塞等高温下(≤250)工作的零件。
当要求热膨胀系数小,强度高,耐磨性高时,也可采用。
ZL111 用于形状复杂,承受高载荷,气密性要求高的大型零件。
ZL201 适用于制造承受较高载荷或在175-300下工作的,形状不太复杂的零件,如飞机的外挂架、支臂等ZL201A 承受较大载荷、工作温度达300、中等复杂程度的高强度铸件,如梁、框、肋和轮毂等ZL203 用于形状简单,承受中等静载荷和冲击载荷,工作温度不超过200,并要求切削性良好的零件,如曲轴箱、支架、飞轮盖等。
ZL204A 是一种新型合金,其应用范围和工作条件与ZL201A相似,但具有更高的强度性能,其工作温度限于200以下。
该合金已用于取代2A14制造导弹重要部件,还可用于飞机承力部件,如各种梁、框等。
ZL205A T5状态用于承力构件,如导弹和飞机的梁框、支臂、支座等零件,减轻重量;并可代替2A50等锻铝,减少工时;T6状态用于承受大载荷零件,可代替2A14锻件。
也可代替中碳钢,做雷达的横轴等;T7状态合金用于在腐蚀气氛中工作的承力构件,如代替45号钢制作超高压线路架线中轮。
ZL207 用于制造工作温度达400并要求气密的零件,如飞机空气分配器和电动活门壳体等,可取代铜或钛合金,显著减轻重量,降低成本。
铝合金电机壳低压砂型铸造工艺设计

铝合金电机壳低压砂型铸造工艺设计摘要:近年来,在节能减排和环保的需求下,汽车制造企业的研发重点正在由传统燃料汽车向新能源汽车转移。
铝合金电机壳作为新能源汽车的动力总成核心铸件,结构比较复杂,铸造难度大。
水冷电机壳体的侧壁环绕冷却水套的密封性是产品的重要技术要求,也是产品最大的铸造。
同时,电机壳体上、下端面以及侧壁的缩松也是工艺开发中需要避免的铸造缺陷。
随着计算机技术在铸造领域的迅速发展,通过铸造过程模拟仿真分析模拟可以预测铸造缺陷,评估工艺可行性。
关键词:铝合金电机壳;低压砂型铸造;工艺设计;前言:由于大型薄壁壳体类铸件壁的空间分布无明显规律,有必要在低压铸造设备完备的前提下针对树脂砂或石墨型低压铸造方法进行工艺试验研究,从而铸造成组织致密、尺寸精确的优质铸件这类铸件在核电装备中亦具有重要地位。
一、对象目前,型号弹上产品的壳体类铸件可以分为两大类:①四面体结构;②五面体结构。
四面体壳体铸件长一般为260~280 mm,宽140~150 mm,高120~150 mm,最小壁厚3 mm,最大壁厚10 mm。
在每个侧面的两端都有突出的台肩;要求铸件满足规定的各项技术要求;其材质选用ZL 104或ZL 114A,铸件毛坯重约20 kg;要求铸件不能有裂纹、气孔、缩松、夹杂等铸造缺陷;铸件针孔度要求为三级,局部允许四级。
以往所采用的砂型重力铸造方法不能满足技术要求。
二、铝合金电机壳低压砂型铸造工艺设计1.铸件的浇注位置。
铸件的浇注位置是指浇注时铸件在铸型中的位置。
浇注位置是根据零件的结构特点、尺寸、重量、技术要求、铸造合金特性、铸造方法以及生产车间的条件决定的。
正确的浇注位置应能保证获得健全的铸件,并使造型、造芯和清理方便。
铸件的加工面、主要工作面应尽量放在底部或侧面,以防止这些表面上产生沙眼、气孔、夹渣等铸造缺陷。
因此,根据上述要求和有利于铸件的凝固顺序,以及有利于砂心的定位和稳固支撑、使排气顺畅等的分析,砂箱中铸件数量的确定砂箱中铸件的数量一般要根据工艺要求和生产条件(生产批量及设备的相互要求和配合等)来确定。
各种铸造铝合金牌号的主要特点及应用

各种铸造铝合金牌号的主要特点及应用Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998各种铸造铝合金牌号的主要特点及用途ZL101的特点是成分简单,容易熔炼和铸造,铸造性能好,气密性好、焊接和切削加工性能也比较好,但力学性能不高。
适合铸造薄壁、大面积和形状复杂的、强度要求不高的各种零件,如泵的壳体、齿轮箱、仪表壳(框架)及家电产品上的零件等。
主要采用砂型铸造和金属型铸造。
Zl101A由于是在ZL101的基础上加了微量Ti,细化了晶粒,强化了合金的组织,其综合性能高于Zl101、ZL102,并有较好的抗蚀性能,可用作一般载荷的工程结构件和摩托车、汽车及家电、仪表产品上的各种结构件的优质铸件。
其使用量目前仅次于ZL102。
多采用砂型和金属型铸造。
(ZL101A合金是以ZL101合金为基础严格控制杂质含量,改进铸造技术可以获得更高的力学性能。
铸造性能,耐腐蚀性能和焊接性良好。
用于铸造各种壳体零件,飞机的泵体、汽车变速箱、燃油箱的弯管等)Zl102这种合金的最大特点是流动性好,其它性能与ZL101差不多,但气密性比ZL101要好,可用来铸造各种形状复杂、薄壁的压铸件和强度要求不高的薄壁、大面积、形状复杂的金属或砂型铸件。
不论是压铸件还是金属型、砂型铸件,都是民用产品上用得最多的一个铸造铝合金品种。
Zl104因其工晶体量多,又加入了Mn,抵消了材料中混入的Fe有害作用,有较好的铸造性能和优良的气密性、耐蚀性,焊接和切削加工性能也比较好,但耐热性能较差,适合制作形状复杂、尺寸较大的有较大负荷的动力结构件,如增压器壳体、气缸盖,气缸套等零件,主要用压铸,也多采用砂型和金属型铸造。
Zl105、ZL105A由于加入了Cu,降低了Si的含量,其铸造性能和焊接性能都比ZL104差,但室温和高温强度、切削加工性能都比ZL104要好,塑性稍低,抗蚀性能较差。
适合用作形状复杂、尺寸较大、有重大负荷的动力结构件。
各种牌号铸铝的主要特点及用途

各种牌号铸铝的主要特点及用途Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998各种牌号铝合金的主要特点及用途ZL101的特点是成分简单,容易熔炼和铸造,铸造性能好,气密性好、焊接和切削加工性能也比较好,但力学性能不高。
适合铸造薄壁、大面积和形状复杂的、强度要求不高的各种零件,如泵的壳体、齿轮箱、仪表壳(框架)及家电产品上的零件等。
主要采用砂型铸造和金属型铸造。
Zl101A由于是在ZL101的基础上加了微量Ti,细化了晶粒,强化了合金的组织,其综合性能高于Zl101、ZL102,并有较好的抗蚀性能,可用作一般载荷的工程结构件和摩托车、汽车及家电、仪表产品上的各种结构件的优质铸件。
其使用量目前仅次于ZL102。
多采用砂型和金属型铸造。
Zl102这种合金的最大特点是流动性好,其它性能与ZL101差不多,但气密性比ZL101要好,可用来铸造各种形状复杂、薄壁的压铸件和强度要求不高的薄壁、大面积、形状复杂的金属或砂型铸件。
不论是压铸件还是金属型、砂型铸件,都是民用产品上用得最多的一个铸造铝合金品种。
Zl104因其工晶体量多,又加入了Mn,抵消了材料中混入的Fe有害作用,有较好的铸造性能和优良的气密性、耐蚀性,焊接和切削加工性能也比较好,但耐热性能较差,适合制作形状复杂、尺寸较大的有较大负荷的动力结构件,如增压器壳体、气缸盖,气缸套等零件,主要用压铸,也多采用砂型和金属型铸造。
Zl105、ZL105A由于加入了Cu,降低了Si的含量,其铸造性能和焊接性能都比ZL104差,但室温和高温强度、切削加工性能都比ZL104要好,塑性稍低,抗蚀性能较差。
适合用作形状复杂、尺寸较大、有重大负荷的动力结构件。
如增压器壳体、气缸盖、气缸套等零件。
Zl105A是降低了ZL105的杂质元素Fe的含量,提高了合金的强度,具有比ZL105更好的力学性能,多采用铸造优质铸件。
ZL106由于提高了Si的含量,又加入了微量的Ti、Mn,使合金的铸造性能和高温性能优于ZL105气密性、耐蚀性也较好,可用作一般负荷的结构件及要求气密性较好和在较高温度下工作的零件,主要采用砂型和金属型铸造。
常见铸造工艺

常见铸造工艺一、铸造工艺概述铸造是通过将熔化的金属或合金倒入模具中,经过冷却凝固后得到所需形状的工艺。
铸造工艺广泛应用于各个领域,如汽车、航空、船舶、机械、建筑等。
二、常见铸造工艺分类1. 砂型铸造:以石英砂为主要原料制作模具,常用于生产大型和中小型零件。
2. 金属型铸造:采用金属模具进行浇注,可生产高精度和高质量的零件。
3. 压力铸造:利用高压力将液态金属注入模具中,适用于生产复杂形状的零件。
4. 熔蜡模铸造:先制作出蜡模具,然后在蜡模上涂覆陶瓷浆料,并进行干燥和硬化。
最后将蜡模加热蒸发掉,留下空心的陶瓷壳体,再进行浇注。
5. 精密铸造:采用特殊工艺和设备进行生产,可生产高精度和高质量的零件。
三、详细介绍常见铸造工艺1. 砂型铸造(1)模具制作:先根据零件的形状和尺寸制作出模板,然后将模板放入砂箱中,用湿砂将其覆盖。
待湿砂干燥后,将模板取出,留下模具。
(2)浇注:将铝合金或其他金属加热至液态状态,然后倒入模具中。
待金属冷却凝固后,取出零件。
(3)处理:对零件进行去毛刺、打磨等处理。
2. 金属型铸造(1)模具制作:根据零件的形状和尺寸制作出金属模具。
(2)浇注:将液态金属倒入金属模具中。
待金属冷却凝固后,取出零件。
(3)处理:对零件进行去毛刺、打磨等处理。
3. 压力铸造(1)模具制作:根据零件的形状和尺寸制作出压力铸造机所需的模具。
(2)浇注:将液态金属通过高压力喷射到模具中。
待金属冷却凝固后,取出零件。
(3)处理:对零件进行去毛刺、打磨等处理。
4. 熔蜡模铸造(1)蜡模制作:根据零件的形状和尺寸制作出蜡模具。
(2)陶瓷壳体制作:将蜡模浸入陶瓷浆料中,待干燥后再重复涂覆几层。
最后将其加热硬化。
(3)浇注:将液态金属倒入陶瓷壳体中。
待金属冷却凝固后,取出零件。
(4)处理:对零件进行去毛刺、打磨等处理,并将陶瓷壳体清理干净。
5. 精密铸造(1)模具制作:根据零件的形状和尺寸制作出精密模具。
(2)浇注:采用真空或低压浇注技术,将液态金属倒入模具中。
铸造零部件举例

铸造零部件举例
铸造是一种通过将熔融金属或合金浇注进模具中制造三维形状
的工艺。
在制造中,常常需要使用各种形状和尺寸的零部件。
下面以几种常见的零部件为例,介绍铸造技术的应用。
1. 铸造轮毂:轮毂是车辆的重要零部件之一,它连接轮胎和车轴,负责承受车辆的重量和提供牵引力。
铸造轮毂需要高强度和耐磨性能。
传统的铸造方法是采用砂型铸造,但现在越来越多的轮毂采用低压铸造或重力铸造来提高质量和生产效率。
2. 铸造引擎缸体:引擎缸体是发动机中最重要的部件之一,它固定汽缸和配气机构。
引擎缸体需要高强度、高耐用性和高耐热性。
常用的材料包括铝合金、铸铁和镁合金。
铸造引擎缸体通常采用压铸或重力铸造。
3. 铸造水泵壳体:水泵壳体是水泵的主体部分,它用于将水从低处吸入并向高处泵送。
水泵壳体需要具有高强度、高耐用性和耐蚀性。
通常采用砂型铸造或压铸工艺制造。
铸造技术在不同领域中得到广泛应用,可以生产出各种形状和尺寸的零部件。
通过不断改进工艺和材料,铸造技术在制造中的地位不断提高。
- 1 -。
壳型铸造工艺

壳型铸造工艺壳型铸造工艺壳型铸造工艺是一种常见的金属铸造工艺,广泛应用于各个领域的制造业中。
它以其高精度和良好的表面质量而受到重视。
在本文中,我将深入探讨壳型铸造工艺的原理、应用和发展前景,并分享我对该工艺的观点和理解。
作为一种近几十年来发展迅猛的铸造工艺,壳型铸造工艺通过制作具有空腔的模具来实现金属制品的生产。
其基本原理是在充填模腔的过程中,通过模具表面上的壳层材料固化形成壳体。
待模具内的金属液体冷却凝固后,壳体即可被拆除,从而得到所需的金属制品。
值得一提的是,壳型铸造工艺在铸造精度方面有着较大的优势。
相比传统的砂型铸造工艺,壳型铸造能够制造出更为精细的铸件。
这得益于壳型铸造工艺中所使用的耐高温的耐火材料,它们能够承受高温条件下的熔融金属,并保持壳体的稳定性。
另外,由于模具外壳较为坚硬,不易变形,壳型铸造还能够生产出具有较高表面质量和复杂结构的零件。
相较于其他几种常见的铸造工艺,壳型铸造工艺在这些方面具有明显的优势。
壳型铸造工艺在各个行业有着广泛的应用。
例如在航空航天领域,壳型铸造工艺常被用来生产高温合金零件、涡轮叶片等。
由于这些零件通常需要具备高强度和耐腐蚀性能,而壳型铸造工艺能够提供高精度和高质量的铸造件,因此成为了最佳选择。
在汽车制造领域,壳型铸造工艺可以用于生产发动机零部件、变速箱外壳等。
壳型铸造工艺还被广泛应用于船舶、军事装备、工程机械等领域。
随着科技的不断进步,壳型铸造工艺也在不断改善和创新。
近年来,随着数控(Computer Numerical Control, CNC)技术的发展,壳型铸造工艺与CNC技术的结合越来越紧密。
通过CNC技术,可以实现对铸型的精确加工和控制,进一步提高铸件的精度和质量。
3D打印技术的快速发展也为壳型铸造工艺提供了新的可能性。
通过3D打印技术,可以快速制作出复杂形状的铸型,减少模具制作的时间和成本。
壳型铸造工艺在金属制品制造领域具有广泛的应用前景和发展潜力。
铝合金铸造工艺流程

铝合金铸造工艺流程铝合金是一种重要的金属材料,其具有较高的强度、优异的导热性和较轻的重量,广泛应用于汽车、航空航天、电子产品等领域。
铝合金铸造是将铝合金熔化后,通过铸造工艺制造成各种形状的零件。
下面是铝合金铸造工艺的基本流程。
1. 原料准备:选择合适的铝合金原料。
铝合金按照成分的不同可分为固溶态铝合金、变质铝合金和高强度铝合金。
根据零件的要求,选择合适的铝合金材料。
2. 熔炉熔化:将铝合金原料放入熔炉中进行熔化。
熔炉可以是电炉、煤气炉或者感应炉。
通过加热和搅拌使铝合金均匀熔化。
3. 浇注:将熔化的铝合金从熔炉中倒入铸型中。
铸型可以是砂型、金属型、陶瓷型等。
在浇注过程中,需要注意控制温度、压力和浇注速度,以确保液态铝合金能够填充到整个铸型中。
4. 冷却:待铝合金充分填充铸型后,开始冷却。
冷却的时间和速度取决于零件的大小和复杂程度。
可以通过水冷、风冷或者自然冷却的方式进行。
5. 除砂:待零件冷却后,将其从铸型中取出。
对于砂型,需要进行除砂工艺,即将砂壳从铝合金零件上清除,可以通过机械或者喷砂的方式进行。
6. 修整:将除砂后的铝合金零件进行修整。
修整包括去除毛刺、修平表面、打磨等工序,以达到零件的精度和表面质量要求。
7. 热处理:对于一些需要强度或者耐腐蚀性能提升的铝合金零件,需要进行热处理工艺。
热处理包括固溶处理和时效处理,能够改善铝合金的力学性能和耐腐蚀性能。
8. 表面处理:根据需要对铝合金零件进行表面处理。
常见的表面处理包括阳极氧化、电泳涂装、喷涂等,以提高零件的耐腐蚀性、装饰性和表面硬度。
9. 检测:对铝合金零件进行质量检测。
常见的检测方法包括外观检查、尺寸检查、材料成分分析等,确保零件的质量达到要求。
10. 包装出厂:经过检测合格的铝合金零件进行包装,包括防潮、防震和标识等。
最后,将零件出厂,交付给客户使用。
以上是铝合金铸造工艺的基本流程。
不同的零件和要求可能会有所不同,但整体流程相似。
铝合金铸造工艺的发展,不仅提高了铝合金零件的生产效率和质量,也推动了铝合金在各个领域的广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冒口2 尺寸:直 径 2” x 高4” (普通砂冒口)
使用保温冒口套, 则尺寸减小为: 直径1” x高 2”
冒口 3尺寸:直 径 2” x 高4”
冒口4尺寸:直 径 2” x高 4”
通过分析冒口的放置位置,现铸件应该旋 转180度,以便于补缩。添加冒口后的铸件 工艺如下图所示:
根据铸件和冒口特点,顶冒口1、2 采用保温冒口套,3、4采用普通侧 冒口。
问题解答
问: 为什么冒口尺寸会过大?
答: 计算冒口大小的模数法是一种近似算法,同 样补缩体积也是根据假设的冒口补缩率确定 的。不同的合金-铸型材料会影响实际的冒口 效率,所以需要根据经验调整相应的补缩效 率。
问题解答
问: 下一步该如何做呢?
答: 接下来,调整冒口尺寸,在凸台位置增加冒 口或冷铁,再次进行模拟,分析结果。
联系方式 天津富宇创想科技有限公司
公司网站:
2. 最大冒口高度改为 3” 3. 在凸缘位置采用三角形冒口。 4. 在凸台位置放置铝合金冷铁。 5. 增大了内浇口尺寸。
改进的浇冒口系统
铝合金冷铁
模拟结果分析
凝固过程图
凝固过程显示,在顶部存在一个 小的孤立热节。
热节
缩孔预测分析
缩孔是由于缺少补缩形成的。如果连接冒口的补 缩通道过早凝固,则孤立液相区得不到补缩, 就会产生缩孔。SOLIDCast通过计算铸件收 缩及凝固过程液态金属补缩流动,预测可能 产生的缩孔。
问题解答
问: 有没有自动优化冒口的方法?
答: SOLIDCast 中有优化模块 OPTICast ,采 用多变量-响应面优化算法,自动找到铸件质 量和工艺出品率最高时的最小冒口尺寸。
铝合金砂型铸造工艺分析 模拟 #2
对于模拟#2, 对模型进行了一下调整:
1. 增加了冒口锥度,并延伸到铸型顶面。
接下来,设计浇铸系统。一般来说, 浇注系统有利于形成正的温度梯度, 也就是说尽量由冒口进入,从而使 冒口成为最热的部分。
工艺设计完成后,使用SOLIDCast进行初次 模拟,以验证浇冒口系统设计是否合理,是 否需要进一步的改进。
模拟结果如下图所示…
铸件完全凝固时的温度分布图。
铸件和冒口的凝固顺序。(颜色越 深的地方凝固越早)
X射线显示铸件上的缩孔分布。
热节位置产生的小缩孔。
缩松预测
缩松,即微观尺度弥散型的小孔。可能是在凝固 比较慢的特殊情况下(凝固前沿的波动超过 某一临界值)形成的。 SOLIDCast 通过局 部凝固时间和凝固速度来预测铸件上可能产 生的缩松。
X射线显示铸件上的缩松分布
非常小的局部热节
结论
改进后的工艺,基本上能得到良好的铸件。顶部 缩孔级别很小,如果有必要可以加一个小的 顶冒口(或减小冷铁)进行消除。 缩松很小,且水平很低,通过实际的X射线很可 能都无法检测到。实际很可能不会出问题, 但如果必要,可在该处增加小冷铁。
根据铸件类型,首先选 择“敏感性” 系数.
“向导”自动分析铸件,确定补缩区域,本例中存在4个独 立地补缩区,则需要放置4个冒口.
冒口设计向导 能够显示铸件上的各个补缩区, 如下图所示:
补缩区 1
补缩区 2
补缩区 3
补缩区 4
要想获得合格铸件,每个补缩区都需要放置冒 口. The Riser Design冒口设计向导 Wizard can 通过显示每个补缩区中模数最大的点,能够 确定放置冒口的最佳位置。 如下图所示:
冒口放置点 1
冒口放置点 2
冒口放置点 3
冒口放置点 4
接下来确定冒口尺寸。
根据模数和补缩体积,冒口设计向导能够自 动计算出相应的冒口大小。
计算得到的冒口1 的尺寸:直径 3” x 高 6” (假设为普 通砂冒口)
如果假设冒口1 采用保温冒口套, 则冒口尺寸减小 为:直径 2.5” x 高 4”
通过X射线透视图分析铸件和冒口中 的缩孔。除了下部小凸台,铸件其 他位置未发现缺陷。
小缩孔
小结
1. 凸台中的缩孔可以通过增加小冒口或冷铁 来消除。 2. 冒口(特别是顶部大冒口)尺寸看起来还 可以减小,而不会影响铸件质量。
问题解答 问: 为什么“冒口设计向导”未提示在小凸台缩 孔位置放置冒口? 答: 在“冒口设计向导”中,需要设置“敏感 度”。敏感度越高,能够识别的补缩区越小。 本例中,需要设置更高的敏感度。而如何设 置正确的敏感度也需要一定的学习积累过程。
初始模拟结果:等轴测视图
暗的区域先凝固,亮的区域后凝固.
XY 视图
初始模拟完成后,就可以使用SOLIDCast中的 冒口设计向导开始冒口设计. 冒口设计向导 将模拟结果转换为“模数”和“体积”数据,根据 冒口模数大于铸件,冒口补缩体积大于铸件凝 固收缩量,计算出冒口的最小尺寸.
冒口设计向导使用模数和补缩体积来计算冒 口大小. 从下图开始:
铝合金砂型铸件分析 -壳体
在本例中,通过图示说明使用SOLIDCast™ 中的工具建立铸件工艺的过程。
以铸件的三维模型为起点。首先导入铸件 STL文件,如下图所示。
导入的铸件三维几何(XZ 视图)
导入的铸件三维几何(等轴测试图)
下一步,对不带浇冒口系统的铸件进行模拟, 确定铸件的“自然”凝固顺序,以便于得到浇口 和冒口的正确放置位置. 铸件材料类型设为:C355 铝合金, 铸型为方形, 材料为橄榄石砂. 计算时间: 1 GHz PC, 约50分钟