数学模型实验报告传染病

合集下载

数学建模_传染病模型

数学建模_传染病模型

数学建模_传染病模型第一篇:数学建模_传染病模型传染病模摘要: 本次实验是让同学们进一步了解、巩固、加强微分方程模型的建模、求解能力;学习掌握用MATLAB进行二维和三维基本图形绘制。

因为MATLAB具有很强的图形处理功能和丰富的图形表现方法。

它提供了大量的二维、三维图形函数,使得数学计算结果可以方便地、多样性地实现可视化,这是其它语言所不能比拟的。

MATLAB不仅能绘制几乎所有的标准图形,而且其表现形式也是丰富多样的。

MATLAB不仅具有高层绘图能力,而且还具有底层绘图能力——句柄绘图方法。

在面向对象的图形设计基础上,使得用户可以用来开发各专业的专用图形。

help graph2d可得到所有画二维、三维图形的命令。

描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型。

数学建模问题重述问题: 有一种传染病(如SARS、甲型H1N1)正在流行。

现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。

考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。

1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t时刻的感染人数。

2、假设环境条件下所允许的最大可感染人数为。

单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。

建立模型求t时刻的感染人数。

3、现有卫生防疫部门采集到的某地区一定时间内一定间隔区间的感染人数数据(见下表),利用该数据确定上述两个模型中的相关参数,并将它们的预测值与实际数据进行比较分析(计算仿真偏差)并对两个模型进行适当的评价。

(注:该问题中,设最大可感染人数为2000人)4、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。

1.实验7-1传染病模型2

1.实验7-1传染病模型2

河北大学《数学模型》实验实验报告一、实验目的二、实验要求1.实验7-1 传染病模型2( SI模型)——画di/dt~ i曲线图(参考教材 p137-138)传染病模型 2( SI 模型):;di/dt=ki(1-i),i(0)=i其中, i(t)是第 t 天病人在总人数中所占的比例。

λ是每个病人每天有效接触的平均人数(日接触率)。

i0是初始时刻( t=0)病人的比例。

取 k=0.1,画出 di/dt~ i 曲线图,求 i 为何值时di/dt达到最大值,并在曲线图上标注。

试编写一个 m 文件来实现。

参考程序运行结果(在图形窗口菜单选择 Edit/Copy Figure,复制图形):[提示]1)画曲线图用 fplot 函数,调用格式如下:fplot(fun,lims)fun 必须为一个 M 文件的函数名或对变量 x 的可执行字符串。

若 lims 取[xmin xmax],则 x 轴被限制在此区间上。

若 lims 取[xmin xmax ymin ymax],则 y 轴也被限制。

本题可用fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最大值用求解边界约束条件下的非线性最小化函数 fminbnd,调用格式如下:x=fminbnd(‘fun’,x1,x2)fun 必须为一个 M 文件的函数名或对变量 x 的可执行字符串。

返回自变量 x 在区间 x1<x<x2 上函数取最小值时的 x 值。

本题可用x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)4)指示最大值坐标用线性绘图函数plot,调用格式如下:plot(x1,y1,’颜色线型数据点图标’, x2,y2,’颜色线型数据点图标’,…) 说明参见《数学实验》 p225本题可用hold on; %在上面的同一张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');3)图形的标注使用文本标注函数 text,调用格式如下:格式 1text(x,y,文本标识内容,’HorizontalAlignment’,’字符串 1’)x,y 给定标注文本在图中添加的位置。

传染病传播地数学模型【范本模板】

传染病传播地数学模型【范本模板】

传染病传播的数学模型很多医学工作者试图从医学的不同角度来解释传染病传播时的一种现象,这种现象就是在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。

结果都不能令人满意,后来由于数学工作者的参与,用建立数学模型来对这一现象进行模拟和论证,得到了较满意的解答.一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。

如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。

为此,必须从诸多因素中,抓住主要因素,去掉次要因素。

先把问题简化,建立相应的数学模型。

将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。

从而使模型逐步完善。

下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。

一。

最简单的模型假设:(1)每个病人在单位时间内传染的人数是常数k;(2) 一个人得病后经久不愈,并在传染期内不会死亡.以i(t)表示t时刻的病人数,k表示每个病人单位时间内传染的人数,i(0)=i表示最初时有0i个传染病人,则在t 时间内增加的病人数为()()()i t t i t k i t t+∆-=∆两边除以t∆,并令t∆→0得微分方程()()()di tk i tdti i⎧=⎪⎨⎪=⎩…………(2.1)其解为()0k t i t i e=这表明传染病的转播是按指数函数增加的。

这结果与传染病传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长。

但由(2。

1)的解可知,当t→∞时,i(t)→∞,这显然不符合实际情况。

最多所有的人都传染上就是了。

那么问题在那里呢?问题是就出在于两条假设对时间较长时不合理。

特别是假设(1),每个病人单位时间内传染的人数是常数与实际情况不符。

SI.SIR.SIS模型

SI.SIR.SIS模型

数学模型实验—实验报告10学院: 专 业: 姓 名: 学号:___ ____ 实验时间:__ ____ 实验地点:一、实验项目:传染病模型求解二、实验目的和要求a.求解微分方程的解析解b.求解微分方程的数值解三、实验容问题的描述各种传染病给人类带来的巨大的灾难,长期以来,建立传染病的数学模型来描述传染病的的传播过程,分析受感染人数的变化规律,探索制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。

不同类型传染病有各自不同的特点,在此以一般的传播机理建立几种3模型。

分别对3种建立成功的模型进行模型分析,便可以了解到该传染病在人类间传播的大概情况。

模型一(SI 模型):(1)模型假设1.在疾病传播期所考察地区的总人数N 不变,人群分为健康人和病人,时刻t 这两类人在总人数中所占比例为s (t )和i (t )。

2.每个病人每天有效接触的平均人数是常数a ,a 成为日接触率,当病人与健康者有效接触时,可使其患病。

(2)建立模型根据假设,每个病人每天可使as (t )个健康人变成病人,t 时刻病人数为Ni (t ),所以每天共有aNs (t )i (t )个健康者被感染,即病人的增加率为: Ndi/dt=aNsi 又因为s (t )+i (t )=1再记时刻t=0时病人的比例为i0 则建立好的模型为:)1(i ai dt di-=i(0)=i0(3)模型求解 (代码、计算结果或输出结果)syms a i t i0 % a :日接触率,i :病人比例, s :健康人比例,i0:病人比例在t=0时的值i=dsolve('Di=a*i*(1-i)','i(0)=i0','t'); y=subs(i,{a,i0},{0.3,0.02}); ezplot(y,[0,100]) figurei=str2double(i);i=0:0.01:1; y=0.3*i.*(1-i); plot(i,y)SI 模型的i~t 曲线 SI 模型的di/dt~i 曲线(4)结果分析由上图可知,在i=0:1,di/dt 总是增大的,且在i=0.5时,取到最大值,即在t->inf 时,所有人都将患病。

传染病传播的数学模型

传染病传播的数学模型

传染病传播的数学模型传染病的传播一直是人类社会面临的重大挑战之一。

为了更好地理解和预测传染病的传播规律,数学模型发挥着至关重要的作用。

这些模型基于数学原理和统计学方法,能够帮助我们分析传染病的传播机制、评估防控措施的效果,并为公共卫生决策提供科学依据。

传染病传播的数学模型通常基于一些基本的假设和概念。

首先,需要考虑人群的划分。

一般将人群分为易感者(S)、感染者(I)和康复者(R)三类,这就是著名的 SIR 模型。

在 SIR 模型中,易感者是指那些尚未感染疾病但有可能被感染的人群;感染者是已经感染了疾病并且具有传染性的人群;康复者则是经过感染后已经恢复健康并且获得了免疫力的人群。

模型的核心在于描述这三类人群之间的转化关系。

假设在单位时间内,每个感染者平均能够感染的易感者数量为β,感染者的恢复率为γ。

那么,在某个时刻 t,易感者数量的变化率可以表示为βSI,感染者数量的变化率为βSI γI,康复者数量的变化率为γI 。

通过求解这些微分方程,可以得到传染病在人群中的传播动态。

然而,实际情况往往更加复杂。

例如,有些传染病存在潜伏期,即感染者在感染后一段时间内不具有传染性。

这时就需要引入潜伏期感染者(E),形成SEIR 模型。

还有些传染病在感染后可能会导致死亡,这就需要考虑死亡者(D)的因素。

除了人群的分类,传染病传播的数学模型还需要考虑传播途径。

常见的传播途径包括空气传播、接触传播、飞沫传播等。

对于不同的传播途径,感染的概率和传播的效率可能会有所不同。

例如,空气传播的传染病往往传播速度更快、范围更广,而接触传播的传染病则可能在特定的人群或环境中更容易传播。

另一个重要的因素是人群的流动和社交网络。

在现代社会,人们的移动和交流非常频繁,这会极大地影响传染病的传播范围和速度。

通过将人群的流动模式和社交网络结构纳入数学模型,可以更准确地预测传染病的传播趋势。

比如,在交通枢纽城市或者人口密集的大城市,传染病的传播速度可能会更快;而在相对封闭和人口稀少的地区,传播速度可能会较慢。

传染病疫情报告的模型与趋势分析

传染病疫情报告的模型与趋势分析

传染病疫情报告的模型与趋势分析一、引言传染病疫情报告是了解和控制传染病流行状况的重要手段。

传染病的爆发往往具有一定的规律性和趋势,通过建立合适的数学模型,可以对传染病的发展趋势进行预测和分析,从而为疫情防控提供科学依据。

本文将介绍传染病疫情报告中常用的模型以及趋势分析方法,并结合实际案例进行论述。

二、传染病报告的模型1. SIR模型SIR模型是传染病疫情报告中最常用的模型之一。

该模型将人群划分为易感染者(Susceptible)、感染者(Infectious)和康复者(Removed)三类,通过建立这三类人群之间的转化关系来描述传染病的发展过程。

在传染病爆发初期,SIR模型中的感染者数目迅速增加,而易感染者则逐渐减少。

随着时间的推移,感染者逐渐康复或死亡,成为康复者,康复者的数量也会增加。

通过对SIR模型中的各个参数进行调整,可以拟合出疫情发展的趋势,并预测疫情最终的规模和时长。

2. SEIR模型SEIR模型是对SIR模型的扩展,增加了潜伏期(E)这一概念。

潜伏期是指感染者被感染后尚未出现症状的时间段,潜伏者在这段时间内仍然可以传播病毒。

SEIR模型中的人群被划分为易感染者(S), 潜伏者(E), 感染者(I)和康复者(R)四类。

通过对这四类人群之间的转化关系进行建模,可以更加准确地描述传染病的传播过程。

三、传染病报告的趋势分析1. 疫情曲线分析疫情曲线是描述疫情发展趋势的一种图形表示方式。

根据每天报告的感染者数量,可以绘制出疫情曲线图。

通过观察疫情曲线的形态以及曲线上的波动情况,可以初步判断疾病的传播速度和爆发规模。

当疫情曲线呈现上升趋势时,意味着疫情正在快速扩散,此时需要采取紧急措施进行干预。

而当疫情曲线出现拐点或下降趋势时,表示疫情得到了一定的控制,但仍需警惕可能的反弹。

2. 基本传染数分析基本传染数R0是衡量传染病传播能力的重要指标,表示一个感染者在疫情蔓延过程中平均能够传染的其他人数。

传染病的数学模型(一)

传染病的数学模型(一)

传染病的数学模型(一)引言概述:传染病的数学模型是通过数学方法对传染病的传播过程进行建模和预测的一种方法。

它可以帮助我们理解传染病的传播规律、评估控制措施的有效性,从而指导公共卫生决策。

本文将从概念、数学模型建立、参数估计、应用案例和局限性五个方面阐述传染病的数学模型。

正文内容:一、概念1. 传染病传播过程的基本概念2. 数学模型在理解传染病传播规律中的作用3. 传染病传播的主要途径及其模型4. 传染病的基本流行病学指标5. 常见传染病的数学模型分类及特点二、数学模型建立1. 传染病传播的动力学模型建立过程2. 常见数学模型的基本方程及假设3. 数学模型的参数选择和数据需求4. 模型的数值解和模拟仿真方法5. 模型灵敏度分析和鲁棒性评估方法三、参数估计1. 传染病传播参数的基本概念和估计方法2. 基于数据的参数估计方法及其优缺点3. 遗传算法在参数估计中的应用4. 参数不确定性分析及其影响5. 基于多源数据的参数估计方法及其应用四、应用案例1. 传染病模型在疫情预测中的应用2. 传染病模型在控制措施评估中的应用3. 传染病模型在疫苗接种策略优化中的应用4. 传染病模型在早期预警系统中的应用5. 传染病模型在流行病学调查分析中的应用五、局限性1. 数学模型的假设和简化带来的局限性2. 数据不确定性对模型预测的影响3. 模型的敏感性和鲁棒性问题4. 非线性和时空不均匀性问题的处理5. 模型的外推和推广的合理性评价总结:传染病的数学模型在理解传染病传播规律、预测疫情发展趋势、评估防控措施等方面发挥着重要作用。

通过建立合理的数学模型并进行参数估计,我们能够更好地了解传染病的特点和传播规律,并以此为基础制定出合理的公共卫生决策。

然而,数学模型也存在一定的局限性,需要充分考虑数据不确定性、模型的假设简化以及非线性和时空不均匀性等问题。

因此,在使用传染病的数学模型时,我们需要谨慎并结合其他数据和方法进行综合分析。

传染病的数学模型

传染病的数学模型

传染病模型详解2.2.2 SI/SIS,SIR 经典模型经典的传播模型大致将人群分为传播态S,易感染态/和免疫态R 。

S 态表示该个体 带有病毒或谣言的传播能力,一戸•接触到易感染个体就会以一泄概率导致对方成为传播态。

/表示该个体没有接触过病毒或谣言,容易被传播态个体感染。

R 表示当经过一个或多个 感染周期后,该个体永远不再被感染。

S/模型考虑了最简单的情况,即一个个体被感染,就永远成为感染态,向周用邻居不断传 播病毒或谣言等。

假设个体接触感染的概率为0,总人数为N.在各状态均匀混合网络中 建立传播模型如下:从而得到1-屮严_可见,起初绝大部分的个体为/态,任何一个S 态个体都会遇到/态个体并且传染给对 方,网络中的S 态个数随时间成指数增长。

与此同时,随着/态个体的减少,网络中S 态个 数达到饱和,逐渐网络中个体全部成为S 态。

然而在现实世界中,个体不可能一直都处于传播态。

有些节点会因为传播的能力和意愿 的下降,从而自动转变为永不传播的R 态。

而有些节点可能会从S 态转变/态,因此简单 的S/模型就不能满足节点具有自愈能力的现实需求,因而岀现S/S 模型和S7R 模型。

S/R 是研究复杂网络谣言传播的经典的模型。

采用与病毒传播相似的过程中的S, I , R 态 代表传播过程中的三种状态。

Zanetee, Moreno 先后研究了小世界传播过程中的谣言传播。

Moreno 等人将人群分为S (传播谣言)、I (没有听到谣言),R (对谣言不再相信也不传 播)。

假设没有听到谣言/个体与s 个体接触,以概率久伙)变为s 个体,s 个体遇到s 个体 或/?个体以概率a 伙)变为如图2.9所示。

建立的平均场方程:- = ^■(1-0 dt・仇谊)=M 皿=罠0)对此方程进行求解可得: IS 2.9 SIR 模型的状态转移圏di(t) ・~;-= 一九(k)i ⑴ s(t)dt< = A(k一a伙)s(f)[s(/) + r(t)] dt= a(k)s(/)[$(f) + r(t)]dt与之前人得到的均匀网络的病毒传播的结论相反,谣言在均匀网络中传播没有阈值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学模型实验》实验报告
姓名:学院:地点:
学号:专业:时间:年月日
一、实验名称:
传染病SIR模型
二、实验目的:
探讨传染病的SIR模型。

通过微分方程的解的特征,分析受感染人数的变化规律,预报感染病的高潮时间,得出控制感染病蔓延的方法。

三、实验任务:
大多数传染病如天花、流感、肝炎、荨麻等治愈后均有很强的免疫力,所以对于病愈后即非健康者(易感染者)、也非病人(已感染者)的人,他们已经退出了传染系统。

假设:总人数N不变,人群分为健康者、病人和病愈免疫的移出者三类。

三类人在总人数N中占的比例分别为s(t),i(t)和r(t)。

建立相关模型,进行求解分析
四、实验步骤:
1.模型假设
2.模型构成
3.数值计算
4.结果分析
五、实验内容:
(一)模型假设
1.总人数N不变,人群分为健康者、病人和病愈免疫的移出者三类,称SIR模型。

时刻t三类人在总人数中所占的比例分别为s(t),i(t)和r(t)。

2.病人的日接触率为λ,日治愈率为μ,传染期接触数为β=λ/μ。

(二)模型构成
由假设1显然有s(t)+i(t)+r(t)=1;由假设2,对于病愈免疫的移出者而言应有:Ndi/dt=λNsi-μNi; Ndr/dt=μNi。

再记初始时刻的健康者和病人的比例分别是s0(s0>0)和i0(i0>0),则由此得到SIR模
型的方程可以写作
(三)数值计算
设方程中λ=1,μ=0.3,i(0)=0.02,s(0)=0.98,MATLAB编程语言如下:
建立函数:
function y=ill(t,x)
a=1;b=0.3;
y=[a*x(1)*x(2)-b*x(1),-a*x(1)*x(2)]';
引用:
ts=0:50;
x0=[0.02,0.98];
[t,x]=ode45('ill',ts,x0);
plot(t,x(:,1),t,x(:,2)),grid,pause
plot(x(:,2),x(:,1)),grid,
得到轨迹图如下:
i(t),s(t)图像
i-s图像(相轨线)
(四)结果分析
由图可看出,i(t)由初值增长至约t=7时达到最大值,然后减少,t趋
于无穷,i趋于零;s(t)则单调减少,t趋于无穷,s趋于0.0398.
1.无论初始条件s0,t0如何,病人终将消失
2.最终未被感染的健康者的比例是s∞
3.若s0>1/β,则i(t)先增加,当s=1/β时,i(t)达到最大值,然后i(t)减
小且趋于0,s(t)单调减少至s∞。

4.若s0<=1/β,则i(t)单调减小且至0,s(t)单调减少至s∞。

根据对SIR模型的分析,当s0<=1/β时传染病不会蔓延。

所以为了制止蔓延,除了提高卫生和医疗水平,使阈值1/β变大以外,另一个途径就是降低s0,这可以通过预防接种使群众免疫的办法做到。

六、结论体会:
通过本次实验,更深入的了解到关于传染病模型是如何进行假设、建立、求解。

SIR模型是一个比较复杂的模型,采用了数值计算、图形观察与理论分析相结合的方法,可看做是计算机技术与建模方法巧妙结合。

相关文档
最新文档