新北师大版九年级数学(上)竞赛试题及答案

合集下载

北师大版九年级数学上册单元测试卷:第二章 《一元二次方程》(含答案)

北师大版九年级数学上册单元测试卷:第二章 《一元二次方程》(含答案)

单元测试卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,692.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是()A.k≥5 B.k≥5且k≠1 C.k≤5且k≠1 D.k≤53.下列方程中,是关于x的一元二次方程的是()A.+x=3 B.x2+2x﹣3=0C.4x+3=x D.x2+x+1=x2﹣2x4.已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3 B.﹣3 C.D.﹣5.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75006.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020 B.﹣2020 C.2019 D.﹣20197.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根8.若x 1x 2=2,+=,则以x 1,x 2为根的一元二次方程是( )A .x 2+3x ﹣2=0B .x 2﹣3x +2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0 9.若关于x 的一元二次方程x 2+2x +c =0有实数根,则c 的取值可能为( )A .4B .3C .2D .110.设a 、b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2018B .2018C .2020D .2022二.填空题(每题4分,共20分)11.已知一元二次方程x 2+2x +m =0的一个根是﹣1,则m 的值为 .12.若关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,则一次函数y =mx +m 的图象不经过第 象限.13.已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 . 14.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜 场.15.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= .三.解答题(每题10分,共50分)16.解下列方程.(1)x 2+2x ﹣35=0(2)4x (2x ﹣1)=1﹣2x17.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?20.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.参考答案一.选择题1.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.2.解:①当该方程是关于x的一元一次方程时,k﹣1=0即k=1,此时x=﹣,符合题意;②当该方程是关于x的一元二次方程时,k﹣1≠0即k≠1,此时△=16﹣4(k﹣1)≥0.解得k≤5;综上所述,k的取值范围是k≤5.故选:D.3.解:A、因为方程是分式方程,不是整式方程,所以方程不是一元二次方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;D、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;故选:B.4.解:根据题意得m+n=3,mn=﹣1,所以=.故选:B.5.解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.6.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a 2﹣1=a ,﹣a 2+a =﹣1,∴﹣a 3+2a +2020=﹣a (a 2﹣1)+a +2020=﹣a 2+a +2020=2019.故选:C .7.解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =3,解出其中一个根是x =﹣1,∴(﹣1)2﹣3+c =0,解得:c =2,故原方程中c =4,则b 2﹣4ac =9﹣4×1×4=﹣7<0,则原方程的根的情况是不存在实数根.故选:A .8.解:∵+=,∴x 1+x 2=x 1x 2,∵x 1x 2=2,∴x 1+x 2=3,∴以x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:B .9.解:根据题意得△=22﹣4c ≥0,解得c ≤1.故选:D .10.解:∵a 、b 是方程x 2+x ﹣2020=0的两个实数根,∴a +b =﹣1,ab =﹣2020,则原式=ab ﹣a ﹣b +1=ab ﹣(a +b )+1=﹣2020+1+1=﹣2018.故选:A .二.填空题(共5小题)11.解:把x =﹣1代入方程得1﹣2+m =0,解得m =1,故答案为1.12.解:∵关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,∴m ≠0且△=(﹣2)2﹣4m (﹣1)<0,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.13.解:设2x2+3=t,且t≥3,∴原方程化为:t2+2t﹣15=0,∴t=3或t=﹣5(舍去),∴2x2+3=3,故答案为:314.解:设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:x(x+1)=66,整理,得:x2+x﹣132=0,解得:x1=11,x2=﹣12(不合题意,舍去).故答案为:11.15.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.三.解答题(共5小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,12(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100﹣2(x﹣50)]件,依题意,得:(x﹣40)[100﹣2(x﹣50)]=1350,整理,得:x2﹣140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.18.解:(1)设BC=xm,则AB=(33﹣3x)m,依题意,得:x(33﹣3x)=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.19.(1)证明:∵△=(2k+1)2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)x=∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=或2.20.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.。

北师大版九年级上学期数学全册试题及参考答案

北师大版九年级上学期数学全册试题及参考答案
D.∠CAB=∠CAD
3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是( )
A.168 cm2B.336 cm2C.672 cm2D.84 cm2
4.菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为( )
A.4 B.8 C.10 D.12
5.下列语句中,错误的是( )
A.菱形是轴对称图形,它有两条对称轴
A.对角线相等B.对角相等C.对边相等D.对角线互相平分
8.若矩形的对角线长为4cm,一条边长为2cm,则此矩形的面积为()
A.8 cm2B.4 cm2C.2 cm2D.8cm2
9.如图所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处,则∠ABE的度数是()
A.29° B.32° C.22° D.61°
12.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后,得到正方形EFCG,EF交AD于H,求DH的长.
13.如图,P为正方形ABCD的对角线上任一点,PE⊥AB于E,PF⊥BC于F,判断DP与EF的关系,并证明.
拓展、探究、思考
14.如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连结DP交AC于点Q.
9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.
10.菱形的面积为8 平方厘米,两条对角线的比为1: ,那么菱形的边长为_______.
三、解答题
11.如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF
12.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求:
三、11.△ADE≌△ABFAE=AF.

北师大版数学九年级上册第四章测试题及答案(共2套)

北师大版数学九年级上册第四章测试题及答案(共2套)

北师大版数学九年级上册第四章测试题(一)(图形的相似测试卷)一、选择题1.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M2.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:163.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.4.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对5.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:27.四边形ABCD与四边形A′B′C′D′位似,O为位似中心,若OA:OA′=1:3,则S四边形ABCD:S四边形A´B´C´D´=()A.1:9 B.1:3 C.1:4 D.1:58.小刚身高1.7m,测得他站立在阳光下的影长为0.85m,紧接着他把手臂竖直举起,测得影长为1.1m,那么小刚举起手臂超出头顶()A.0.5 m B.0.55 m C.0.6 m D.2.2 m9.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.= B.=C.= D.=10.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,。

北师大版九年级数学试题

北师大版九年级数学试题

2022-2023第一学期期末质量检测一、选择题(每题3分,共30分)1.关于x 的一元二次方程ax 2+bx +c =0(a ≠0,b 2﹣4ac >0)的根是()A .B .C .D .2.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为().A .2(1)3y x =--+B .2(1)3y x =-++C .2(1)3y x =---D .2(1)3y x =-+-3.下表是求代数式ax 2﹣bx 的值的情况,根据表格中的数据可知,关于x 的一元二次方程ax 2﹣bx ﹣2=0的根是()x …﹣2﹣10123…ax 2﹣bx …6226…A .x =1B .x 1=0,x 2=1C .x =2D .x 1=﹣1,x 2=24.已知点A (﹣1,y 1)、B (﹣2,y 2)、C (3,y 3)都在反比例函数y =的图象上,则y 1、y 2、y 3的关系是()A .y 2>y 1>y 3B .y 2>y 3>y 1C .y 3>y 1>y 2D .y 3>y 2>y 15.下列说法正确的有()个.①菱形的对角线相等;②对角线互相垂直平分的四边形是菱形;③有三个角是直角的四边形是矩形;④正方形既是菱形又是矩形;⑤正方形的对角线相等且互相垂直平分.A .1B .2C .3D .46.如图,在△ABC 中,点D 、E 分别是AB 和AC 边上的点,DE ∥BC ,AD =3BD ,四边形BDEC 的面积是28,则△ABC 的面积为()A .61B .62C .63D .647.如图,在边长相等的小正方形组成的网格中,点A ,B ,C ,D ,E 都在网格的格点上,则∠ADC 的正弦值为()A .B .C .D .8.如图,在平面直角坐标系中,点P 在反比例函数ky x =(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为()A.B.C. D.49.中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=()A.2B.32C.12D.5510.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc <0;②2a +b =0;③m 为任意实数,则a +b >am 2+bm ;④a ﹣b +c >0;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2.其中正确的有()A .1个B .2个C .3个D .4个二.填空题(每题4分,共24分)11.在平面直角坐标系xOy 中,若反比例函数y =的图象位于第二、四象限,则k 的取值范围是.12.某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数169万,设新注册用户数的年平均增长率为x (x >0),则x =(用百分数表示).13.正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =(k ≠0)的图象经过点C ,则k 的值为.14.如图,在平面直角坐标系xOy 中,一次函数()0y ax b a =+≠的图像与反比例函数()0ky k x=≠的图像交于P 、Q 两点.点()43P ,-,点Q 的纵坐标为-2.根据图象写出使一次函数值小于反比例函数值的x 的取值范围.15.如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则sin ∠APC 的值为()16.如图,铅球运动员掷铅球的高度y (m )与水平距离x (m )之间的函数解析式是21251233y x x =-++,则该运动员此次掷铅球的成绩是()m.三、解答题17.(8分)(1)计算:()﹣1﹣+3tan30°+|﹣2|.(2)解方程(x+1)(x+2)=2x+4.18.(8分)已知关于x的一元二次方程kx2+(k+1)x+1=0(1)求证:这个方程一定有实根;(2)若这个方程有一根为﹣3,试求k的值.19.(8分)如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=(m≠0,x>0)的图象交于点A(2,n),与y轴交于点B,与x轴交于点C(﹣4,0).(1)求k与m的值;(2)P(a,0)为x轴上的一动点,当△APB的面积为时,求a的值.20.(8分)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.等级时长t (单位:分钟)人数所占百分比A 0≤t <24xB 2≤t <420C 4≤t <636%Dt ≥616%根据图表信息,解答下列问题:(1)本次调查的学生总人数为,表中x 的值为;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.21.(8分)在正方形ABCD 中,点M 是边AB 的中点,点E 在线段AM 上(不与点A 重合),点F 在边BC 上,且AE =2BF ,连接EF ,以EF 为边在正方形ABCD 内作正方形EFGH .(1)如图1,若AB =4,当点E 与点M 重合时,求正方形EFGH 的面积.(2)如图2,已知直线HG 分别与边AD ,BC 交于点I ,J ,射线EH 与射线AD 交于点K .求证:EK =2EH ;∵点M 是边AB 的中点,若AB =4,当点E 与点M 重合,∴AE=BE=2,22.(8分)某食品零售店为食品厂代销一种馒头,未售出的馒头可退回厂家,经统计销售情况发现,当这种馒头的单价定为7角时,每天卖出160个,在此基础上,这种馒头的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后,该零售店每个馒头的成本是5角.设这种馒头的单价为x角,零售店每天销售这种馒头所获得的利润为y角.(1)用含x的代数式分别表示出每个馒头的利润与卖出的馒头个数;(2)当馒头单价定为多少角时,该零售店每天销售这种馒头获得的利润最大?最大利润为多少?23.(8分)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)24.(10分)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2+k(a≠0)图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,其中点B的坐标为(2,0),点C的坐标为(0,4).(1)求该抛物线的解析式;(2)如图1,若点P为抛物线上第二象限内的一个动点,点M为线段CO上一动点,当△APC的面积最大时,求△APM周长的最小值;。

北师大版九年级(上)期末数学试卷及答案一

北师大版九年级(上)期末数学试卷及答案一

北师大版九年级(上)期末数学试卷及答案一、选择题(本大题有16小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.下列事件中,是随机事件的是()A.实心铁球投入水中会沉入水底B.从车间刚生产的产品中任意抽取一个是次品C.早上的太阳从西方升起D.从一个只装有红球的盒子里摸出一个球是红球3.正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是()A.B.C.D.4.在平面直角坐标系中,有A(2,﹣1),B(﹣1,﹣2),C(2,1),D(﹣2,1)四点.其中,关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A5.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR6.如图,矩形ABCD~矩形DEFC,且面积比为4:1,则AE:ED的值为()A.4:1B.3:1C.2:1D.3:27.新冠肺炎传染性很强,曾有1人同时患上新冠肺炎,在一天内一人平均能传染x人,经过两天传染后64人患上新冠肺炎,则x的值为()A.4B.5C.6D.78.如图,在⊙O中,直径AB⊥弦CD,若∠OCD=25°,则..的度数是()A.25°B.65°C.32.5°D.50°9.一个圆锥的底面半径为k m,侧面积为4πcm2,现将其侧面展开平铺成的扇形的圆心角为()A.90°B.135°C.60°D.45°10.给出一种运算:对于函数y=x n,规定y′=n×x n﹣1.若函数y=x4,则有y′=4×x3,已知函数y=x3,则方程y′=9x的解是()A.x=3B.x=﹣3C.x1=0,x2=3D.x1=0,x2=﹣311.如图,AB是⊙O的直径,BC是弦,OD∥AC交于点D交BC于点E,若BC=8,ED=2,⊙O半径是()A.3B.4C.5D.212.如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c =0的解为()A.﹣4,3B.﹣5,2C.﹣3,2D.﹣2,113.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为()A.B.C.D.14.某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图),现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg.研究表明,当空气中每立方米的含药量不低于3mg才有效,那么此次消毒的有效时间是()A.10分钟B.12分钟C.14分钟D.16分钟15.如图,已知抛物线y=ax2+bx+c(a≠0)交x轴于点A(﹣1,0)和x轴正半轴于点B,且BO=3AO,交y轴正半轴于点C.有下列结论:①abc>0;②2a+b=0;③x=1时y有最大值﹣4a;④3a+c=0.其中,正确结论的个数是()A.1B.2C.3D.416.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.已知⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且GE:EF=:2,当边AD或BC所在的直线与⊙O相切时,AB的长是()A.9B.4C.12或4D.12或9二、填空题(本大题有3小题,每小题有2个空,每空2分,共12分.请把答案写在题中横线上)17.将方程x2﹣2(3x﹣2)+x+1=0化成一般形式是,方程根的情况是.18.定义:如果几个全等的正n边形依次有一边重合,排成一圈,中间可以围成一个正多边形,那么我们称作正n 边形的环状连接.如图1,我们可以看作正八边形的环状连接,中间围成一个正方形.(1)若正六边形作环状连接,如图2,中间可以围成的正多边形的边数为;(2)若边长为a的正n边形作环状连接,中间围成的是等边三角形,则这个环状连接的外轮廓长为.(用含a的代数式表示)19.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,则S1+S2+S3=,S1+S2+S3+…+S n=(用含n的代数式表示,n为正整数).三、解答题(本大题有7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.小明同学解一元二次方程x2﹣6x﹣1=0的过程如图所示.解:x2﹣6x=1①x2﹣6x+9=1②(x﹣3)2=1③x﹣3=±1④x1=4,x2=2⑤(1)小明解方程的方法是.(填选项字母)A.直接开平方法B.因式分解法C.配方法D.公式法他的求解过程从第步开始出现错误.(2)解这个方程.21.为庆祝中国共产党成立100周年,某校团委将举办文艺演出.小明和小亮计划结伴参加该文艺演出.小明想参加唱红歌节目,小亮想参加朗诵节目.他们想通过做游戏来决定参加哪个节目,于是小明设计了一个游戏,如图,分别把转盘A,B分成4等份和5等份,并在每一份内标上数字.游戏规则是:小明转动A转盘,同时小亮转动B转盘,当两个转盘停止后,指针所在区域的数字之积为奇数时,则按照小明的想法参加唱红歌节目;当数字之积为偶数时,则按照小亮的想法参加朗诵节目.如果指针恰好在分割线上时,则需要重新转动转盘.(1)A转盘停止后,指针指向奇数的概率为;(2)请利用画树状图或列表的方法,分别求他们参加唱红歌和朗诵节目的概率,并说明这个游戏规则对小明、小亮双方公平吗?22.如图,在△ABC中,AF⊥BC于点F.将△ABC绕点A按顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=50°,求∠DAF的度数;(2)若∠E=∠CAD,求证:AD=CD.23.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的解析式;(2)若点P是反比例函数y=图象上的一点,且满足△OPC与△ABC的面积相等,求点P的坐标.24.如图,点E为△ABC边BC上一点,过点C作CD⊥BA,交BA的延长线于点D,交EA的延长线于点F,且DF•DC=DB•DA.(1)求证:AE⊥BC;(2)如果BE=CE,求证:BC2=2BD•AC.25.在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP,BP的连接点P在⊙O上,当点P在⊙O上转动时,带动点A,B分别在射线OM,ON上滑动,OM⊥ON.当AP与⊙O相切时,点B恰好落在⊙O上,如图2.请仅就图2的情形解答下列问题.(1)求证:∠P AO=2∠PBO;(2)若⊙O的半径为5,AP=,求BP的长.26.如图,抛物线y=ax2+bx+3(a,b是常数,且a≠0)与x轴交于A,B两点,与y轴交于点C.并且A,B两点的坐标分别是A(1,0),B(﹣3,0),抛物线顶点为D.(1)①求出抛物线的解析式;②顶点D的坐标为;③直线BD的解析式为;(2)若E为线段BD上的一个动点,其横坐标为m,过点E作EF⊥x轴于点F,求当m为何值时,四边形EFOC 的面积最大?(3)若点P在抛物线的对称轴上,若线段P A绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,请直接写出点P的坐标.。

【北师大版】九年级数学上期末试卷(及答案)(1)

【北师大版】九年级数学上期末试卷(及答案)(1)

一、选择题1.小明制作了5张卡片,上面分别写了一个条件:①AB BC =;②AB BC ⊥;③AD BC =;④AC BD ⊥,⑤AC BD =.从中随机抽取一张卡片,能判定ABCD 是菱形的概率为( )A .15B .25C .35D .452.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是( )A .613B .513C .413D .3133.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为( )A .34B .13C .12D .144.太原是我国生活垃圾分类的46个试点城市之一,垃圾分类的强制实施也即将提上日程根据规定,我市将垃圾分为了四类可回收垃圾、餐厨垃圾有害垃圾和其他垃圾现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是( )A .16B .18C .112D .1165.下列说法正确的是( ) A .圆是轴对称图形,任何一条直径都是圆的对称轴B .平分弦的直径垂直于弦C .长度相等的弧是等弧D .在同圆或等圆中,相等的圆心角所对的弦相等6.如图,AB 为O 的直径,C 为O 上一点,其中6AB =,120AOC ∠=︒,P 为O上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )A .37B .3272+C .237+D .33722+ 7.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .45B .215C .16D .8 8.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .239.如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为 ( )A .90°B .95°C .100°D .105°10.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转90︒得到月牙②,则点A 的对应点A’的坐标为 ( )A .(2,2)B .(2,4)C .(4,2)D .(1,2) 11.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤< 12.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .7二、填空题13.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是__________. 14.一只小狗在如图所示的地板上走来走去,地板是由大小相等的小正方形铺成的.最终停在黑色方砖上的概率是_______.15.在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有_____个.16.如图,扇形AOB 的圆心角是直角,半径为3C 为OB 边上一点,将△AOC 沿AC 边折叠,圆心O 恰好落在弧AB 上的点D ,则阴影部分面积为___________17.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________.18.如图,正方形ABCD 的边长为6,点E 在边CD 上.以点A 为中心,把ADE 顺时针旋转90︒至ABF 的位置,若2DE =,则FC =________.19.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,桥下的水面宽AB 为6m ,当水位上涨2m 时,水面宽CD 为_____m (结果保留根号).20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A ,B 是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形,同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请用画树状图或者列表的方式说明理由.22.图①、图②均为 4×4 的正方形网格,线段 AB 、BC 的端点均在格点上,按要求在图①、图②中作图并计算其面积.(1)在图①中画一个四边形 ABCD ,点D 在格点上,使四边形 ABCD 有一组对角相等,并求=四边形ABCD S .(2)在图②中画一个四边形 ABCE ,点E 在格点上,使四边形 ABCE 有一组对角互补,并求ABCE S =四边形 .23.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.24.如图,已知ABC 和A B C ''''''△及点O .(1)画出ABC 关于点O 对称的A B C ''';(2)若A B C ''''''△与A B C '''关于点O '对称,请确定点O '的位置.25.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.26.解答下列各题.(1)解方程:2(1)90x --=.(2)已知21x =,求225x x -+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据菱形的判定方法求解即可.【详解】解::①AB BC =;根据有一组邻边相等的平行四边形是菱形,可判定ABCD 是菱形;②AB BC ⊥;根据有一个内角是直角的平行四边形是矩形,可判定ABCD 是矩形; ③AD BC =;是ABCD 本身具有的性质,无法判定ABCD 是菱形;④AC BD ⊥,根据对角线互相垂直的平行四边形是菱形,可判定ABCD 是菱形; ⑤AC BD =.根据对角线相等的平行四边形是矩形,可判定ABCD 是矩形∴共有5种等可能结果,其中符合题意的有2种∴能判定ABCD 是菱形的概率为25故选:B.【点睛】本题考查概率的计算及菱形的判定,掌握菱形的判定方法正确分析推理是解题关键.2.B解析:B【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有16种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【详解】解:∵由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,∴概率为:513P=;故选:B.【点睛】本题考查了求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=mn.3.C解析:C【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.圆的直径正好是大正方形边长,∴22,∴2,222=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【点睛】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.4.C解析:C【分析】根据题意,由列表法得到投放的所有结果,然后正确的只有1种,即可求出概率.【详解】解:由列表法,得:∴共有12种等可能的结果数,其中将两包垃圾随机投放到其中的两个垃圾箱中,能实现对应投放的结果为1种,∴投放正确的概率为:1P ;12故选择:C.【点睛】本题考查了列表法与树状图法求概率,解题的关键是正确求出所有等可能的结果数.5.D解析:D【分析】根据对称轴的定义对A进行判断;根据垂径定理的推论对B进行判断;根据等弧定义对C 进行判断;根据圆心角定理对D进行判断.【详解】解:A、圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以A选项错误;B、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C、长度相等的弧不一定能重合,所以不一定是等弧,所以C选项错误;D、在同圆或等圆中,相等的圆心角所对的弦相等,所以D选项正确.故选:D.【点睛】本题考查了圆的有关性质,掌握相关定理是解题关键.6.D解析:D【分析】如图,连接OQ,作CH⊥AB于H.首先证明点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大,利用勾股定理求出CK即可解决问题;【详解】如图,连接OQ ,作CH ⊥AB 于H .∵AQ =QP ,∴OQ ⊥PA ,∴∠AQO =90°,∴点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,∵120AOC ∠=︒∴∠COH =60°在Rt △OCH 中,∵∠COH =60°,OC=12AB=3, ∴OH =12OC =32,CH =22332OC OH +=, 在Rt △CKH 中,CK =223332⎛⎫+= ⎪⎪⎝⎭372, ∴CQ 的最大值为33722+, 故选:D .【点睛】 本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点Q 的运动轨迹,学会构造辅助圆解决问题,属于中考填空题中的压轴题. 7.A解析:A【分析】连接OA ,先根据⊙O 的直径CD =12,CP :PO =1:2求出CO 及OP 的长,再根据勾股定理可求出AP 的长,进而得出结论.【详解】连接OA ,∵⊙O的直径CD=12,CP:PO=1:2,∴CO=6,PO=4,∵AB⊥CD,∴AP=22OA OP- =2264-=25,∴AB=2AP=22545⨯=.故选:A.【点睛】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式2222ar d⎛⎫=+⎪⎝⎭成立,知道这三个量中的任意两个,就可以求出另外一个.8.C解析:C【分析】如图:连接OB、O C,先根据圆的内接四边形对角互补得到∠C=67.5°,再利用等腰三角形的性质和三角形内角和计算出∠BAC=45°,再根据圆周角定理可得∠BOC=90°,最后根据勾股定理求解即可.【详解】解:∵四边形ADBC为⊙O的内接四边形,∠D=112.5°∴∠C=180°-∠D=180°-112.5°=67.5°∵AC=AB∴∠BAC=180°-2∠C=45°∴∠BOC=90°∴BC=22222222OB OC+=+=.故答案为C.【点睛】本题考查了圆内接四边形的性质、等腰直角三角形的性质和圆周角定理,掌握圆内接四边形的对角互补是解答本题的突破口.9.C解析:C【分析】直接根据四边形AEHB 的四个内角和为360°即可求解.【详解】解:∵将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,∴∠BAE =35°,∠E =90°,∠ABD =45°,∴∠ABH =135°,∴∠DHE =360°-∠E -∠BAE -∠ABH =360°-90°-35°-135°=100°.故选C .【点睛】此题考查了正方形的性质、旋转角、多边形的内角和定理,正确找出旋转角是解题关键. 10.B解析:B【详解】解:连接A′B ,由月牙①顺时针旋转90°得月牙②,可知A′B ⊥AB ,且A′B=AB ,由A (-2,0)、B (2,0)得AB=4,于是可得A′的坐标为(2,4).故选B .11.D解析:D【分析】根据判别式的意义得到△=(-2a )2-4(a 2-3a+6)<0,解得a <2,再求出抛物线的对称轴为直线x=a ,根据二次函数的性质得到a≥-1,从而得到实数a 的取值范围是-1≤a <2.【详解】解∵抛物线22236y x ax a a =-+-+与x 轴没有公共点,∴△=(-2a )2-4(a 2-3a+6)<0,解得a <2,∵抛物线的对称轴为直线x=-22a -=a ,抛物线开口向上, 而当x <-1时,y 随x 的增大而减小,∴a≥-1,∴实数a 的取值范围是-1≤a <2.故选:D .【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.B解析:B【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x队,根据题意得:12x(x-1)=10,化简,得x2-x-20=0,解得x1=5,x2=-4(舍去),∴参加此次比赛的球队数是5队.故选:B.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.二、填空题13.【分析】列举出所有等可能的情况数找出能构成三角形的情况数即可求出所求概率【详解】从长为35710的四条线段中任意选取三条作为边所有等可能情况有:357;3510;3710;5710共4种其中能构成三解析:1 2【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【详解】从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=21 42 ,故答案为12.【点睛】此题考查了列表法与树状图法,以及三角形的三边关系,其中概率=所求情况数与总情况数之比.14.【分析】先观察次地板一共有多少块小正方形铺成再把是黑色的小正方块数出来用黑色的小整块数目比总的小正方块即可得到答案【详解】解:由图可知该地板一共有3×5=15块小正方块黑色的小正方块有5块因此停在黑 解析:13【分析】先观察次地板一共有多少块小正方形铺成,再把是黑色的小正方块数出来,用黑色的小整块数目比总的小正方块即可得到答案.【详解】解:由图可知,该地板一共有3×5=15块小正方块,黑色的小正方块有5块, 因此,停在黑色方砖上的概率是51153=, 故答案是13. 【点睛】 本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;能正确数出黑色的小正方块是做对题目的关键,还需要注意,每个小正方块的大小是否一样,才能避免错误.15.17【分析】根据口袋中有3个黑球利用小球在总数中所占比例得出与实验比例应该相等求出即可【详解】解:通过大量重复摸球试验后发现摸到红球的频率稳定在085左右口袋中有3个黑球∵假设有x 个红球∴=085解 解析:17【分析】根据口袋中有3个黑球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x 个红球, ∴3x x +=0.85, 解得:x =17, 经检验x =17是分式方程的解,∴口袋中有红球约有17个.故答案为:17.【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.16.【分析】根据题意和折叠的性质可以得到OA=AD ∠OAC=∠DAC 然后根据OA=OD 即可得到∠OAC 和∠DAC 的度数再根据扇形AOB 的圆心角是直角半径为2可以得到OC的长结合图形可知阴影部分的面积就是解析:343π-【分析】根据题意和折叠的性质,可以得到OA=AD,∠OAC=∠DAC,然后根据OA=OD,即可得到∠OAC和∠DAC的度数,再根据扇形AOB的圆心角是直角,半径为23,可以得到OC的长,结合图形,可知阴影部分的面积就是扇形AOB的面积减△AOC和△ADC的面积.【详解】解:连接OD,∵△AOC沿AC边折叠得到△ADC,∴OA=AD,∠OAC=∠DAC,又∵OA=OD,∴OA=AD=OD,∴△OAD是等边三角形,∴∠OAC=∠DAC=30°,∵扇形AOB的圆心角是直角,半径为23,∴OC=2,∴阴影部分的面积是:2902322360(23)π⨯⨯=343π-故答案为343π-.【点睛】本题考查扇形面积的计算,解答本题的关键是明确扇形面积的计算公式,利用数形结合的思想解答.17.【分析】M点为BC和AB的垂直平分线的交点利用点ABC坐标易得BC的垂直平分线为直线x=3AB的垂直平分线为直线y=x从而得到M点的坐标然后计算MB得到⊙M的半径【详解】解:∵点ABC的坐标分别是(解析:()3,310【分析】M点为BC和AB的垂直平分线的交点,利用点A、B、C坐标易得BC的垂直平分线为直线x=3,AB的垂直平分线为直线y=x,从而得到M点的坐标,然后计算MB得到⊙M的半径.【详解】解:∵点A,B,C的坐标分别是(0,2),(2,0),(4,0),∴BC的垂直平分线为直线x=3,∵OA=OB,∴△OAB为等腰直角三角形,∴AB的垂直平分线为第一、三象限的角平分线,即直线y=x,∵直线x=3与直线y=x的交点为M点,∴M点的坐标为(3,3),∵MB==∴⊙M.故答案为(3,3.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.18.8【分析】先根据旋转的性质和正方形的性质证明CBF三点在一条直线上又知BF=DE=2可得FC的长【详解】∵四边形ABCD是正方形∴∠ABC=∠D=90°AD=AB由旋转得:∠ABF=∠D=90°BF解析:8【分析】先根据旋转的性质和正方形的性质证明C、B、F三点在一条直线上,又知BF=DE=2,可得FC的长.【详解】∵四边形ABCD是正方形,∴∠ABC=∠D=90°,AD=AB,由旋转得:∠ABF=∠D=90°,BF=DE=2,∴∠ABF+∠ABC=180°,∴C、B、F三点在一条直线上,∴CF=BC+BF=6+2=8,故答案为:8.【点睛】本题主要考查了正方形的性质、旋转变换的性质,难度适中.由旋转的性质得出BF=DE 是解答本题的关键.19.2【分析】首先求出B点纵坐标进而得出D点纵坐标即可求出D点横坐标进而得出CD的长【详解】解:由题意可得:当AB=6m则B点横坐标为3故此时y=﹣×32=﹣3当水位上涨2m时此时D点纵坐标为:﹣3+2解析:【分析】首先求出B点纵坐标,进而得出D点纵坐标,即可求出D点横坐标,进而得出CD的长.【详解】解:由题意可得:当AB=6m,则B点横坐标为3,故此时y=﹣13×32=﹣3,当水位上涨2m时,此时D点纵坐标为:﹣3+2=﹣1,则﹣1=﹣13x2,解得:x=故当水位上涨2m时,水面宽CD为.故答案为:【点睛】此题主要考查了二次函数的应用,求出D点横坐标是解题关键.20.-43【分析】由根与系数的关系可得出关于p或q的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p﹣3×(﹣1)=q所以p=﹣4q=3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p或q的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p,﹣3×(﹣1)=q,所以p=﹣4,q=3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3) (-1)=q是解题的关键.三、解答题21.公平,图表见解析【分析】画出树状图,求出配成紫色的概率判断即可.【详解】解:这个游戏对双方公平,理由如下:画树状图如下:由树状图可知,所有等可能的结果共有6种,其中能配成紫色的结果有3种, ∴()31==62P 小颖去,()31==62P 小亮去, ∵11=22, ∴这个游戏对双方是公平的.【点睛】本题考查了游戏公平性的判断,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平,画出树状图,求出各自获胜的概率是解答本题的关键.22.(1)图见详解,6 ;(2)图见详解,4.5【分析】(1)过C 画AB 的平行线,过A 画BC 的平行线,两线交于一点D ,根据平行四边形的判定定理可得四边形ABCD 是平行四边形,由平行四边形的性质可知∠CBA=∠CDA ,然后用用割补法求出面积即可;(2)根据图中正方形网格和∠B 的特点,作出∠E 与∠B 互补,然后用割补法求面积即可.【详解】解:(1)如图,S 四边形ABCD =3×4-122⨯×2-222⨯-112⨯=6; (2)如图,S 四边形ABCE =3×3-122⨯×2-222⨯-112⨯=92. 【点睛】 此题主要考查了应用设计作图,首先要理解题意,弄清问题中对所作图形的要求,然后利用割补法求面积.23.29【分析】先利用树状图展示所有9种等可能的结果数,即组成的两位数为33,34,35,43,44,45,53,54,55;其中十位上的数字与个位上的数字之和为9的两位数有45和54两个,然后根据概率的概念计算即可.【详解】画树状图如下:共有9种等可能的结果数,即按这种方法能组成的两位数有33,34,35,43,44,45,53,54,55;其中十位上的数字与个位上的数字之和为9的两位数有45和54两个, ∴P (十位与个位数字之和为9)=29. 24.(1)详见解析(2)详见解析【分析】(1)分别作A 、B 、C 三点关于点O 对称点A B C '''、、,再顺次连接即可;(2)若A B C ''''''△与A B C '''关于点O '对称,连接两组对应点的连线的交点即为所求点.【详解】(1)如图,分别作A 、B 、C 三点关于点O 对称点A B C '''、、,连接A B B C A C ''''''、、,则所得A B C '''为所求三角形;(2)如图,连接C C '''、A A '''相交于点O '、则点O '即为所求点.【点睛】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,解题的关键是看图. 25.(1)2y x 2x 3=-++;(2)①23922S t t =-+;②92,此时P 坐标315,24⎛⎫ ⎪⎝⎭【分析】(1)由点A 、B 坐标,利用待定系数法求解抛物线的表达式即可;(2)①过点P 作PH ⊥x 轴于H ,设点P 坐标为(t ,223t t -++),由PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形即可表示出S 关于t 的函数表达式;②由于BC 为定值,所以点P 到直线BC 的距离最大时即为S 最大,根据二次函数的性质求出S 的最大值,利用勾股定理求出线段BC 的长,再利用等面积法求出点P 到直线BC 的距离的最大值,进而可求出此时的点P 坐标.【详解】解:(1)将点A (﹣1,0)、B (3,0)代入2y x bx c =-++中,得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴,抛物线的表达式为2y x 2x 3=-++;(2)①过点P 作PH ⊥x 轴于H ,如图,当x=0时,y=3,∴C (0,3),OC=3,∵点P 的坐标为(t ,223t t -++)且点P 在第一象限,∴PH=223t t -++,OH=t ,BH=3﹣t ,∴PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形=22111(233)(3)(23)33222t t t t t t ⋅-+++⋅+⋅-⋅-++-⨯⨯ =23922t t -+, ∴S 关于t 的函数关系式为S=23922t t -+(t >0); ②由S=23922t t -+= 23327()228t --+,且32-<0,得: 当t= 32时,S 有最大值,最大值为278, ∵OB=3,OC=3,∴=∵当t=32时,223t t -++=23315()23224-+⨯+= ∴点P 到直线BC2728⨯=,此时,点P 的坐标为(32,154). 【点睛】本题考查了待定系数法求二次函数的解析式、坐标与图形的性质、二次函数的性质、割补法求三角形的面积,解答的关键是认真审题,寻找知识点的关联点,利用待定系数法、割补法和数形结合思想进行推理、探究和计算.26.(1)14x =,22x =-;(2)6.【分析】(1)方程整理后,直接开平方即可求解;(2)代数式225x x -+配方整理成()214x -+后,把x 的值代入计算即可.【详解】(1)由原方程得2(1)9x -=, ∴13x -=±,解得:14x =,22x =-;(2)∵2225(1)4x x x -+=-+,将1x =代入得:原式)2114=-+ 24=+6=.【点睛】本题考查了解一元二次方程-直接开平方法以及求代数式的值,熟练掌握完全平方公式是解本题的关键.。

北师大版九年级数学上学期 用配方法求解一元二次方程同步试卷含答案解析

北师大版九年级数学上学期 用配方法求解一元二次方程同步试卷含答案解析

九年级数学上册同步测试:2.2 用配方法求解一元二次方程一、选择题(共15小题)1.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根2.已知关于=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥23.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣44.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=25.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=196.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=157.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+98.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=99.若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.510.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣11.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=10912.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2= B.(x+)2=C.(x﹣)2=D.(x﹣)2=13.若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?()A.22 B.28 C.34 D.4014.关于≠0)的解是x1=﹣3,(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=215.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3二、填空题(共7小题)16.方程x2=2的解是.17.一元二次方程x2+3﹣2x=0的解是.18.若将方程=.19.将=.20.方程x2﹣2x﹣2=0的解是.21.方程x2﹣2﹣4,则=.三、解答题(共8小题)23.解方程:x2﹣6x﹣4=0.24.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)25.解方程:(2x﹣1)2=x(3x+2)﹣7.26.解方程(1)x2﹣2x﹣1=0(2)=.27.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.28.(1)解方程:x2﹣2x=1;(2)解不等式组:.29.解方程:x2﹣4x+1=0.30.用配方法解关于x的一元二次方程ax2+bx+c=0.北师大版九年级数学上册同步测试:2.2 用配方法求解一元二次方程参考答案与试题解析一、选择题(共15小题)1.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根【考点】解一元二次方程-直接开平方法.【分析】根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.【点评】此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.2.已知关于=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥2【考点】解一元二次方程-直接开平方法.【分析】首先移项把﹣m移到方程右边,再根据直接开平方法可得m的取值范围.【解答】解;(,∵一元二次方程(≥0,故选:B.【点评】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.3.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣4【考点】解一元二次方程-直接开平方法.【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】解:(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=﹣4,故选:D.【点评】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.4.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=2【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选D.【点评】考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+9【考点】解一元二次方程-配方法.【分析】根据配方法,可得方程的解.【解答】解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.【点评】本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.8.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.9.若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.5【考点】解一元二次方程-直接开平方法.【分析】首先同时除以a得:(x﹣b)2=,再两边直接开平方可得:x﹣b=±,然后把﹣b移到右边,再根据方程的两根可得a、b的值,进而算出a+b的值.【解答】解:a(x﹣b)2=7,两边同时除以a得:(x﹣b)2=,两边直接开平方可得:x﹣b=±,则x=±+b,∵两根为±,∴a=4,b=,∴a+b=4=,故选:B.【点评】此题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.10.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程变形后,配方得到结果,开方即可求出值.【解答】解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.故选:C.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.11.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=109【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项,利用完全平方公式化简得到结果即可.【解答】解:方程x2+10x+9=0,整理得:x2+10x=﹣9,配方得:x2+10x+25=16,即(x+5)2=16,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.12.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2= B.(x+)2=C.(x﹣)2=D.(x﹣)2=【考点】解一元二次方程-配方法.【专题】转化思想.【分析】先移项,把二次项系数化成1,再配方,最后根据完全平方公式得出即可.【解答】解:ax2+bx+c=0,ax2+bx=﹣c,x2+x=﹣,x2+x+()2=﹣+()2,(x+)2=,故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.13.若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?()A.22 B.28 C.34 D.40【考点】解一元二次方程-配方法.【分析】配方得出(2x+3)2=1156,推出2x+3=34,2x+3=﹣34,求出x的值,求出a、b的值,代入3a+b求出即可.【解答】解:4x2+12x﹣1147=0,移项得:4x2+12x=1147,4x2+12x+9=1147+9,即(2x+3)2=1156,2x+3=34,2x+3=﹣34,解得:x=,x=﹣,∵一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,∴a=,b=﹣,∴3a+b=3×+(﹣)=28,故选B.【点评】本题考查了有理数的混合运算和解一元二次方程的应用,能求出a、b的值是解此题的关键,主要培养学生解一元二次方程的能力,题型较好,难度适中.14.关于≠0)的解是x1=﹣3,(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】利用直接开平方法得方程m(x+h)2+k=0的解x=﹣h±,则﹣h﹣=﹣3,﹣h+=2,再解方程m(x+h﹣3)2+k=0得x=3﹣h±,所以x1=0,(,h,k均为常数,m ≠0)得x=﹣h±,而关于≠0)的解是x1=﹣3,x2=2,所以﹣h﹣=﹣3,﹣h+=2,方程m(x+h﹣3)2+k=0的解为x=3﹣h±,所以x1=3﹣3=0,x2=3+2=5.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法:形如)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(n=±.15.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3【考点】解一元二次方程-直接开平方法;估算无理数的大小.【专题】计算题.【分析】利用直接开平方法解方程得出两根进而估计无理数的大小得出答案.【解答】解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x2=1+>3,x1=1﹣<﹣1,故选:A.【点评】此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键.二、填空题(共7小题)16.方程x2=2的解是±.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=2,x=±.故答案为±.【点评】本题考查了解一元二次方程﹣直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.17.一元二次方程x2+3﹣2x=0的解是x1=x2=.【考点】解一元二次方程-配方法.【分析】先分解因式,即可得出完全平方式,求出方程的解即可.【解答】解:x2+3﹣2x=0(x﹣)2=0∴x1=x2=.故答案为:x1=x2=.【点评】此题考查了解一元二次方程,熟练掌握求根的方法是解本题的关键.18.若将方程=3.【考点】解一元二次方程-配方法.【分析】此题实际上是利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,配方,得(=3.故答案为:3.【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.将=3.【考点】配方法的应用.【专题】计算题.【分析】原式配方得到结果,即可求出m的值.【解答】解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(=3,故答案为:3【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.20.方程x2﹣2x﹣2=0的解是x1=+1,x2=﹣+1.【考点】解一元二次方程-配方法.【分析】首先把常数﹣2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.【解答】解:x2﹣2x﹣2=0,移项得:x2﹣2x=2,配方得:x2﹣2x+1=2+1,(x﹣1)2=3,两边直接开平方得:x﹣1=,则x1=+1,x2=﹣+1.故答案为:x1=+1,x2=﹣+1.【点评】此题主要考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.22.若一元二次方程a+1与2m﹣4,则=4.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法得到x=±,得到方程的两个根互为相反数,所以m+1+2m﹣4=0,解得m=1,则方程的两个根分别是2与﹣2,则有=2,然后两边平方得到=4.【解答】解:∵x2=,∴x=±,∴方程的两个根互为相反数,∴m+1+2m﹣4=0,解得m=1,∴一元二次方程ax2=b的两个根分别是2与﹣2,∴=2,∴=4.故答案为:4.【点评】本题考查了解一元二次方程﹣直接开平方法:形如)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(n=±.三、解答题(共8小题)23.解方程:x2﹣6x﹣4=0.【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.【点评】本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.24.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤⑤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【考点】解一元二次方程-配方法.【专题】阅读型.【分析】(1)移项要变号;(2)移项后配方,开方,即可得出两个方程,求出方程的解即可.【解答】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为:⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n x2=﹣4n.【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.25.解方程:(2x﹣1)2=x(3x+2)﹣7.【考点】解一元二次方程-配方法.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.26.解方程(1)x2﹣2x﹣1=0(2)=.【考点】解一元二次方程-配方法;解分式方程.【专题】计算题.【分析】(1)方程常数项移到右边,两边加上1,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,则x1=1+,x2=1﹣;(2)去分母得:4x﹣2=3x,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,利用配方法解方程时,首先将二次项系数化为1,常数项移到右边,然后两边加上一次项系数以一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.27.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.【考点】解一元二次方程-配方法.【专题】阅读型.【分析】第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.28.(1)解方程:x2﹣2x=1;(2)解不等式组:.【考点】解一元二次方程-配方法;解一元一次不等式组.【专题】计算题.【分析】(1)方程两边都加上1,配成完全平方的形式,然后求解即可;(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1)x2﹣2x+1=2,(x﹣1)2=2,所以,x1=1+,x2=1﹣;(2),解不等式①得,x≥﹣2,解不等式②得,x<,所以,不等式组的解集是﹣2≤x<.【点评】(1)考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.(2)主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).29.解方程:x2﹣4x+1=0.【考点】解一元二次方程-配方法.【专题】计算题;配方法.【分析】移项后配方得到x2﹣4x+4=﹣1+4,推出(x﹣2)2=3,开方得出方程x﹣2=±,求出方程的解即可.【解答】解:移项得:x2﹣4x=﹣1,配方得:x2﹣4x+4=﹣1+4,即(x﹣2)2=3,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.【点评】本题考查了用配方法解一元二次方程、解一元一次方程的应用,关键是配方得出(x﹣2)2=3,题目比较好,难度适中.30.用配方法解关于x的一元二次方程ax2+bx+c=0.【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:∵关于x的方程ax2+bx+c=0是一元二次方程,∴a≠0.∴由原方程,得x2+x=﹣,等式的两边都加上,得x2+x+=﹣+,配方,得(x+)2=﹣,当b2﹣4ac>0时,开方,得:x+=±,解得x1=,x2=,当b2﹣4ac=0时,解得:x1=x2=﹣;当b2﹣4ac<0时,原方程无实数根.【点评】本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.。

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第1章~第3章(北师版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学(上)竞赛试题一. 选择题(每小题5分,共30分)1、某件商品的标价为13200元,若以8折降价出售,仍可获利10%(相对于进货价),则该商品的进货价是( )A 、9504元B 、9600元C 、9900元D 、10000元 2、如图,在凸四边形ABCD 中,BD BC AB ==,︒=∠80ABC ,则ADC ∠等于( )A 、︒80B 、︒100C 、︒140D 、︒160第2题图 第5题图3、如果方程()()0422=+--m x x x 的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是( )A 、04m <≤B 、3≥mC 、4≥mD 、34m <≤4.今有长度分别为1,2,…,9的线段各一条,现从中选出若干条线段组成“线段组”,由这一组线段恰好可以拼接成一个正方形,则这样的“线段组”的组数有( ) A .5组. B .7组. C .9组. D .11组.5.如图,菱形ABCD 中,3=AB ,1=DF ,︒=∠60DAB ,︒=∠15EFG ,BC FG ⊥,则=AE ( )A . 21+.B .6.C .132-.D .31+.6.某个一次函数的图象与直线132y x =+平行,与x 轴,y 轴的交点分别为A ,B ,并且过点(2-,4-),则在线段AB 上(包括点A ,B ),横、纵坐标都是整数的点有( ).A .3个 B. 4个 C. 5个 D. 6个二:填空题.(每小题5分,共30分)7.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是 .8.如图,Rt△ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠= .9.定义新运算“*”,规则:()()a ab a b b a b ≥⎧*=⎨<⎩,如122*=,()522-*=。

若210x x +-=的两根为12,x x ,则12x x *= .第10题图10. 如图,在△ABC 中,中线CM 与高线CD 三等分∠ACB ,则∠B 等于 .11、母亲节到了,小红,小莉,小莹到花店买花送给自己的母亲.小红买了3枝玫瑰,7枝康乃馨,1枝百合花,付了14元;小莉买了4枝玫瑰,10枝康乃馨,1枝百合花,付了16元;小莹买上面三种花各2枝,则她应付 ______元12.如图,是一个树形图的生长过程,自上而下,一个空心圆生成一个实心圆,一个实心圆生成一个实心圆和一个空心圆,依此生长规律,第9行的实心圆的个数是 .三:解答题(本大题共4小题,共40分)13.(8分)如图,在矩形ABCD 中,AB =3,BC =4,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰落在∠BCD 的平分线上时,求CA 1 的长度 。

14.(10分)已知0422=-+a a ,2=-b a ,求ba 211++的值15. (10分)如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=2,DE=1,BD=8,设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小;(3)根据(2)中的规律和结论,请构图求出代数式9)12(422+-++x x 的最小值. 16. (12分)在ABC Rt ∆中,︒=∠90ACB ,AE 垂直于AB 边上的中线CD ,交BC 于点E . (1)求证:CE BC AC ⋅=2(2)若3=CD ,4=AE ,求边AC 与BC 的长 九年级数学(上)竞赛试题答案 一、选择题1、B .2、C .3、D .4、C .5、D6、B二:填空题7、8米 8、10° 9、215- 10、30° 11、20 12、21 DEACB第8题图 A 'BDAC第1行 第2行第3行 第4行 第5行 第6行 ……第(12)题三:解答题(本大题共小题,共40分)13、解:过A 1作A 1M ⊥BC ,垂足为M ,设CM =A 1M =x ,则BM =4-x ,在Rt △A 1BM 中,,∴=…………………………………………………(5分)∴x =A 1M = (8)∴在等腰Rt △A 1CM 中,C A 1=…………………………(10分)14.解:由已知得2b a =-,所以121a b ++2123122aa a a a =+=+---. ········································ (5分) 由2240a a +-=得222aa -=-. ···················································· (8分)所以233222a aa a a a ==-----, 所以121a b++2=-. ···································································· (10分) 15、 解: (1)125)8(22+++-x x 3分(2)当A 、C 、E 三点共线时,AC +CE 的值最小 5分(3)如下图所示,作BD =12,过点B 作AB ⊥BD ,过点D 作ED ⊥BD ,使AB =2,ED =3,连结AE 交BD 于点C .AE 的长即为代数式9)12(422+-++x x 的最小值.8分过点A 作AF ∥BD 交ED 的延长线于点F ,得矩形ABDF , 则AB =DF =2,AF =BD =8. 所以AE=22)23(12++=13即9)12(422+-++x x 的最小值为13. 10分16、解:(1)因为CD 是AB 边上的中线,所以CD =DB ,∠ABC =∠DCB =∠CAE ,∠ACB =∠ECA =90︒,所以△ACB ∽△ECA , ·································································· (4分) 所以AC CBEC CA=, 所以2AC BC CE =⋅. ··································································· (6分) (2)因为CD 是Rt △ABC 的中线, 所以CD=AD=BD 。

所以AB=6。

所以22236AC BC AB +==。

························································· (9分) 由(1)知△ACB ∽△ECA ,所以6342BC AB CA EA ===。

相关文档
最新文档